This image shows Nico Sneeuw

Nico Sneeuw

Prof. Dr.-Ing.

Head of Institute, Chair of Physical and Satellite Geodesy, Vice Dean

Contact

+49 711 685 83389
+49 711 685 83285

Geschwister-Scholl-Str. 24D
70174 Stuttgart
Germany
Room: 5.305

  1. 2023

    1. Bützler, C., Forbriger, T., Zürn, W., Widmer-Schnidrig, R., & Sneeuw, Ni. (2023). G04p-002: Systematical errors of superconducting gravimeters – An investigation of sensor differences of dual sphere superconducting gravimeters. IUGG, Berlin, Germany.
    2. Bützler, C., Forbiger, T., Zürn, W., Widmer-Schnidrig, R., & Sneeuw, N. (2023). Systematical errors of superconducting gravimeters.  An investigation of sensor differences of four dual sphere superconducting gravimeters. DGG Jahrestagung, Bremen.
    3. Camici, S., Brocca, L., Massari, C., Tarpanelli, A., Sneeuw, N., & et al. (2023). Potential of NGGM MAGIC for global runoff estimation: the STREAM approach. MAGIC Science and Applications Workshop 2023, Assisi, Italy.
    4. Da Silva, E., Woolliams, E. R., Picot, N., Poisson, J.-C., Skourup, H., Moholdt, G., Fleury, S., Behnia, S., Favier, V., Arnaud, L., Aublanc, J., Fouqueau, V., Taburet, N., Renou, J., Yesou, H., Tarpanelli, A., Camici, S., Fredensborg Hansen, R. M., Nielsen, K., … Féménias, P. (2023). Towards Operational Fiducial Reference Measurement (FRM) Data for the Calibration and Validation of the Sentinel-3 Surface Topography Mission over Inland Waters, Sea Ice, and Land Ice. Remote Sensing, 15(19), Article 19. https://doi.org/10.3390/rs15194826
    5. Deng, X.-L., & Sneeuw, N. (2023). Analytical Solutions for Gravitational Potential up to Its Third-order Derivatives of a Tesseroid, Spherical Zonal Band, and Spherical Shell. Surveys in Geophysics. https://doi.org/10.1007/s10712-023-09774-z
    6. Deng, X., & Sneeuw, N. (2023). Superposition error elimination effect of a spherical shell and a spherical zonal band discretized into tesseroids in gravity field modeling. IUGG, Berlin, Germany. https://doi.org/10.57757/IUGG23-1067
    7. Elmi, O., Tourian, M., & Sneeuw, N. (2023). Extending River Discharge Time Series of Global Runoff Data Center (GRDC) Using Satellite Data. IUGG, Berlin, Germany.
    8. Elmi, O., Tourian, M. J., Saemian, P., & Sneeuw, N. (2023). Extending river discharge time series of the Global Runoff Data Center (GRDC) using satellite data: A product with uncertainty estimate. Hydrospace 2023, Lisbon, Portugal.
    9. Elmi, O., Tourian, M. J., Saemian, P., Papa, F., & Sneeuw, N. (2023). Long Term Analysis of Global Surface Water Volume Change Using Remote Sensing Data. Hydrospace 2023, Lisbon, Portugal.
    10. Ke, S., Tourian, M., Sneeuw, N., Paiva, R., Durand, M., & David, C. (2023). Estimating Daily Discharge of an Entire River Network Using Space-based SWOT Observations. IUGG, Berlin, Germany.
    11. Ke, S., Tourian, M., & Sneeuw, N. (2023). Estimation of River Discharge using SWOT: full catchment coverage with optimal space and time resolution. SWOT Science Team Meeting, Toulouse, France.
    12. Lin, Y., Gao, C., Li, X., Rong, Y., Zhang, T., Li, L., Zhou, X., Cai, J., Sneeuw, N., & Yu, J. (2023). ATTRIBUTION ANALYSIS OF CLIMATE CHANGE AND HUMAN ACTIVITIES TO WATER VOLUME VARIATION IN LARGE LAKES. In International Archives of the ISPRS. ISPRS Geospacial Week 2023, Egypt.
    13. Liu, B., Zou, X., Yi, S., Sneeuw, N., Li, J., & Cai, J. (2023). Reconstructing GRACE-Like Time Series of High Mountain Glacier Mass Anomalies Based on A Statistical Model. IUGG, Berlin, Germany.
    14. Sneeuw, N., Bergé-Nguyen, M., & Crétaux, J.-F. (2023). Physical Heights of Inland Lakes. X Hotine-Marussi Symposium on Mathematical Geodesy, 7. https://doi.org/10.1007/1345_2023_192
    15. Sneeuw, N., Tourian, M., & Yi, S. (2023). Total Drainable Water Storage (TDWS): latent hydrological signal in the gravity mean field. MAGIC Science and Applications Workshop 2023, Assisi, Italy.
    16. Tourian, M., Saemian, P., Ferreira, V., Sneeuw, N., Frappart, F., & Papa, F. (2023). A copula-supported Bayesian framework for spatial downscaling of GRACE-derived terrestrial water storage flux. IUGG, Berlin, Germany.
    17. Tourian, M. J., Papa, F., Elmi, O., Sneeuw, N., Kitambo, B., Tshimanga, R. M., Paris, A., & Calmant, S. (2023). Current availability and distribution of Congo Basin’s freshwater resources. Communications Earth & Environment, 4(1), Article 1. https://doi.org/10.1038/s43247-023-00836-z
    18. Wang, B., & Sneeuw, N. (2023). Crossover Adjustment of ICESat-2 Satellite Altimetry for the Arctic Region. Advances in Space Research. https://doi.org/10.1016/j.asr.2023.07.041
    19. Yi, S., Saemian, P., Sneeuw, N., & Tourian, M. (2023). Estimating runoff from pan-Arctic drainage basins for 2002-2019 using and improved runoff-storage relationship. The 8th Youth Geoscience Forum, Wuhan, China.
    20. Yi, S., Saemian, P., Sneeuw, N., & Tourian, M. (2023). Estimating runoff from pan-Arctic drainage basins for 2002-2019 using and improved runoff-storage relationship (2). Workshop on Geodesy and Climate Change, Zhuhai, China.
    21. Yi, S., Saemian, P., Sneeuw, N., & Tourian, M. J. (2023). Estimating runoff from pan-Arctic drainage basins for 2002–2019 using an improved runoff-storage relationship. Remote Sensing of Environment, 298, 1–23. https://doi.org/10.1016/j.rse.2023.113816
    22. Yi, S., Saemian, P., Sneeuw, N., & Tourian, M. J. (2023). Estimating runoff from pan-Arctic drainage basins for 2002–2019 using an improved runoff-storage relationship. Remote Sensing of Environment, 298, 113816. https://doi.org/10.1016/j.rse.2023.113816
    23. Yin, Z., Sneeuw, N., & Zhang, K. (2023). The geometrical features of a gravitational plumb line using the potential flow theory – a revisit. IUGG, Berlin, Germany.
    24. Yu, J., Rong, Y., Lin, Y., Li, X., Gao, C., Zhang, T., Zhou, X., Cai, J., & Sneeuw, N. (2023). Spatiotemporal dynamic impacts of Lake Victoria water volume variations on sustainable economic development. International Journal of Applied Earth Observation and Geoinformation, 123, 103475. https://doi.org/10.1016/j.jag.2023.103475
  2. 2022

    1. Behnia, S., Woolliams, E., Schneider, N., Tourian, M. J., Sneeuw, N., Poisson, J.-C., Picot, N., Cretaux, J.-F., Piras, F., & Tarpanelli, A. (2022). Satellite altimetry Cal/Val for inland waters: How to couple FDRs and TDPs to FRMs? Metrology for Climate Action, online.
    2. Bützler, C., Forbriger, T., Widmer-Schnidrig, R., & Sneeuw, N. (2022). Instrumental Disturbances of Superconducting Gravimeters - How much do they influence long term studies of gravity? Arbeitskreis Geodäsie/Geophysik, Oppurg, Germany.
    3. Bützler, C., Douch, K., Widmer-Schnidrig, R., & Sneeuw, N. (2022). Realistic modeling of gravity strain due to prompt elasto-gravity signals (PEGS) - How simple can the Earth model be? Conference on Mathematics of Wave Phenomena 2022, Karlsruhe, Germany.
    4. Camici, S., Tarpanelli, A., Brocca, L., Massari, C., Nielsen, K., Sneeuw, N., Tourian, M. J., Yi, S., Restano, M., & Benveniste, J. (2022). Satellite observations for runoff and river discharge estimation: STREAMRIDE approach. EGU 2022, Vienna, Ausria.
    5. Camici, S., Tarpanelli, A., Brocca, L., Massari, C., Nielsen, K., Sneeuw, N., Tourian, M. J., Yi, S., Restano, M., & Benveniste, J. (2022). Satellite observations for runoff and river discharge estimation: STREAMRIDE approach&\#160$\mathsemicolon$. https://doi.org/10.5194/egusphere-egu22-9234
    6. Camici, S., Tarpanelli, A., Brocca, L., Massari, C., Filippucci, P., Nielsen, K., Sneeuw, N., Tourian, M. J., Yi, S., Restano, M., & Benveniste, J. (2022). Satellite-based river discharge estimation: the STREAMRIDE project. COSPAR 2022, 44th Scientific Assembly, Athens, Greece.
    7. Camici, S., Tarpanelli, A., Massari, C., Brocca, L., Nielsen, K., Sneeuw, N., Tourian, M. J., Yi, S., Restano, M., & Benveniste, J. (2022). STREAMRIDE: runoff and river discharge estimation by using satellite observations. ESA Living Planet Symposium, Bonn, Germany.
    8. Camici, S., Giuliani, G., Brocca, L., Massari, C., Tarpanelli, A., Hashemi Farahani, H., Sneeuw, N., Restano, M., & Benveniste, J. (2022). Synergy between satellite observations of soil moisture and water storage anomalies for runoff estimation. Geoscientific Model Development, 15, Article 15. https://doi.org/10.5194/gmd-15-6935-2022
    9. Cretaux, J.-F., Bergé-Nguyen, M., & Sneeuw, N. (2022). Use of a priori mean lake surface for calibration of rolling and random errors. SWOT Science Team Meeting, ST, Chapel Hill & Tousouse.
    10. Douch, K., Saemian, P., & Sneeuw, N. (2022). Identification of conceptual rainfall-runoff models of large drainage basins based on GRACE and in-situ data. EGU 2022, Vienna, Austria.
    11. Douch, K., Sneeuw, N., & Saemian, P. (2022). Identification of lumped rainfall-runoff models of large drainage basins for satellite data assimilation. ESA Living Planet Symposium 2022, Bonn, Germany.
    12. Elmi, O., Tourian, M. J., Bárdossy, A., & Sneeuw, N. (2022). Spaceborne river discharge from a nonparametric stochastic quantile mapping function. ESA Living Planet Symposium 2022, Bonn, Germany.
    13. Liu, B., Zou, X., Yi, S., Sneeuw, N., Li, J., & Cai, J. (2022). Reconstructing GRACE-like time series of high mountain glacier mass anomalies. Remote Sensing of Environment, 280, 1–22. https://doi.org/10.1016/j.rse.2022.113177
    14. Poisson, J. C., Picot, N., Yésou, H., Tarpanelli, A., Paris, A., Sneeuw, N., Behnia, S., Tourian, M., Fjortoft, R., Boy, F., Blumstein, D., Calzas, M., Cancet, M., Lucas, S., Azzoni, M., Laignel, B., Crétaux, J.-F., Calmant, S., Nielsen, K., … Férnéias, P. (2022). Towards the provision of operational FRM measurements for Sentinel-3 over inland water: procedures, protocols and roadmap. ESA Living Planet Symposium 2022, Bonn, Germany.
    15. Saemian, P., Tourian, M. J., & Sneeuw, N. (2022). A least-squares collocation approach to densifying river level from multi-mission satellite altimetry; Case study Mackenzie River basin. EGU 2022, Vienna, Austria.
    16. Saemian, P., Tourian, M. J., AghaKouchak, A., Madani, K., & Sneeuw, N. (2022). How much water did Iran lose over the last two decades? Journal of Hydrology: Regional Studies, 41, 101095. https://doi.org/10.1016/j.ejrh.2022.101095
    17. Saemian, P., Tourian, M. J., Douch, K., & Sneeuw, N. (2022). Long-term Total Water Storage Anomalies Over Land Using GRACE observations, Models, and data-driven method. Frontiers of Geodetic Science, Essen.
    18. Sneeuw, N., Wang, B., Bao, J., Ke, S., & Tourian, M. J. (2022). Constraining river streamflow determination using bathymetry and slope from ICESat-2 satellite altimetry. EGU 2022, Vienna, Austria.
    19. Sneeuw, N. (2022). Multi-mission Satellite Geodesy for the Quantification of the Water Cycle.
    20. Sneeuw, N. (2022). Physical heights of inland lakes.
    21. Sneeuw, N., Berge-Nguyen, M., & Cretaux, J.-F. (2022). Physical heights of inland lakes. X Hotine-Marussi Symposium 2022, Milan, Italy.
    22. Sneeuw, N., Bergé-Nguyen, M., & Crétaux, J.-F. (2022). Physical heights of inland lakes. Frontiers of Geodetic Science, Essen.
    23. Sneeuw, N. (2022). Satellite gravimetry: how to weigh ice sheets, glaciers and the global watercycle? Erasmus+ Project: Climate Change: open your senses, University of Stuttgart.
    24. Tourian, M. J., Papa, F., Elmi, O., Sneeuw, N., Kitambo, B., Tshimanga, R., Paris, A., & Calmant, S. (2022). Current availability and distribution of Congo basin\textquotesingles freshwater resources. https://doi.org/10.21203/rs.3.rs-1325377/v1
    25. Tourian, M. J., Behnia, S., Yu, S., Elmi, O., & Sneeuw, N. (2022). Estimation of inter-satellite and inter-track biases of satellite altimetry missions over lakes and reservoirs using surface area from satellite imagery. ESA Living Planet Symposium 2022, Bonn, Germany.
    26. Tourian, M. J., Elmi, O., Shafaghi, Y., Behnia, S., Saemian, P., Schlesinger, R., & Sneeuw, N. (2022). HydroSat: geometric quantities of the global water cycle from geodetic satellites. Earth System Science Data. https://doi.org/10.5194/essd-14-2463-2022
    27. Wang, B., & Sneeuw, N. (2022). Crossover Adjustment of ICESat-2 Satellite Altimetry for Arctic Region. ESA Living Planet Symposium 2022, Bonn, Germany.
    28. Yi, S., & Sneeuw, N. (2022). A novel spatial filter to reduce north--south striping noise in GRACE spherical harmonic coefficients. Journal of Geodesy, 96(4), Article 4. https://doi.org/10.1007/s00190-022-01614-z
    29. Yin, Z., & Sneeuw, N. (2022). Solving the multi-body boundary value problem with CFD techniques. X Hotine-Marussi Syposium 2022, Milan, Italy.
  3. 2021

    1. Bamber, J. L., Vishwakarma, B. D., Bates, P., Sneeuw, N., & Westaway, R. M. (2021). Evaluating linear trends with respect to past decadal variability can help us assess the severity of GRACE observed water storage change. https://doi.org/10.5194/egusphere-egu21-8881
    2. Behnia, S., Tourian, M. J., & Sneeuw, N. (2021). Leading Edge Identification with Prior Information (LEIPI): a new approach to retracking inland altimetry waveforms. Frontiers of Geodetic Science digital 2021, Hannover.
    3. Bo, W., & Sneeuw, N. (2021). Crossover Adjustment of ICESat-2 Satellite Altimetry for Arctic Region. Frontiers of Geodetic Science digital 2021, Hannover.
    4. Bützler, C., Douch, K., Widmer-Schnidrig, R., & Sneeuw, N. (2021). Prompt Elasto-Gravity Signals Detection with gravity strainmeters or gravity gradiometers? Frontiers of Geodetic Science digital 2021, Hannover.
    5. Bützler, C., Douch, K., Widmer-Schnidrig, R., & Sneeuw, N. (2021). Realistic modeling of gravity strain due to prompt elasto-gravity signals (PEGS) - How simple can the Earth model be? Arbeitskreis Geodäsie/Geophysik, Laacher See.
    6. Domeneghetti, A., Molari, G., Tourian, M., Tarpanelli, A., Behnia, S., Moramarco, T., Sneeuw, N., & Brath, A. (2021). Testing the use of single- and multi-mission satellite altimetry for the calibration of hydraulic models. Advances in Water Resources, 151, 103887. https://doi.org/10.1016/j.advwatres.2021.103887
    7. Douch, K., Saemian, P., & Sneeuw, N. (2021). A state-space representation of the water storage dynamics at basin scale to do hydrology backward. https://iccc.iag-aig.org/iccc-workshops/ws21
    8. Douch, K., Saemian, P., & Sneeuw, N. (2021). Data-driven and physically informed modelling of the Terrestrial Water Storage dynamics. https://doi.org/10.5194/egusphere-egu21-15253
    9. Elmi, O., Tourian, M. J., Bárdossy, A., & Sneeuw, N. (2021). Spaceborne river discharge from a nonparametric stochastic quantile mapping function. Water Resources Research, e2021WR030277. https://doi.org/10.1029/2021WR030277
    10. Liu, B., Zou, X., Yi, S., Sneeuw, N., Cai, J., & Li, J. (2021). Identifying and separating climate- and human-driven water storage anomalies using GRACE satellite data. Remote Sensing of Environment, 263, 112559. https://doi.org/10.1016/j.rse.2021.112559
    11. Liu, W., & Sneeuw, N. (2021). Aliasing of ocean tides in satellite gravimetry: a two-step mechanism. Journal of Geodesy, 95(134), Article 134. https://doi.org/doi.org/10.1007/s00190-021-01586-6
    12. Moghadaspour, H., Iran Pour, S., Amiri-Simkooei, A., Sneeuw, N., Behzadpour, S., & Mayer-Gürr, T. (2021). Ionospheric TEC analysis and modeling using Empirical Mode Decomposition (EMD).
    13. Moghadaspour, H., Iran Pour, S., Behzadpour, S., Mayer-Gürr, T., Sneeuw, N., & Amiri-Simkooei, A. (2021). Use of Empirical Mode Decomposition (EMD) method to investigate the solar storms impact on GRACE range-rate residuals.
    14. Neto, A. R., Behnia, S., Tourian, M. J., da Costa, F. A., & Sneeuw, N. (2021). Satellite altimetry over small reservoirs in the Brazilian semiarid region. RBRH. https://doi.org/10.1590/2318-0331.262120210038
    15. Roohi, Sh., Sneeuw, N., Benveniste, J., Dinardo, S., Issawy, E. A., & Zhang, G. (2021). Evaluation of CryoSat-2 water level derived from different retracking scenarios over selected inland water bodies. Advances in Space Research, 68(2), Article 2. https://doi.org/10.1016/j.asr.2019.06.024
    16. Saemian, P., Hosseini-Moghari, S.-M., Fatehi, I., Shoarinezhad, V., Modiri, E., Tourian, M. J., Tang, Q., Nowak, W., Bárdossy, A., & Sneeuw, N. (2021). Comprehensive evaluation of precipitation datasets over Iran. Journal of Hydrology, 603, 1–23. https://doi.org/10.1016/j.jhydrol.2021.127054
    17. Saemian, P., Tourian, M. J., & Sneeuw, N. (2021). Estimation of sub-monthly discharge over Arctic rivers through satellite altimetry: case study Mackenzie River. Frontiers of Geodetic Science digital 2021, Hannover.
    18. Sneeuw, N. (2021). Orbit choices for satellite gravimetry. International Forum on Satellite Gravity Cooperation, Bejing, China.
    19. Sneeuw, N. (2021). Orbit theory: basics of satellite goedesy. GRACE Hackweek, online.
    20. Sneeuw, N. (2021). Satellite gravimetry as remote sensing tool. GRACE Hackweek, online.
    21. Sneeuw, N., Vishwakarma, B. D., & Zhang, J. (2021). Statistical downscaling of GRACE products to improve spatial resolution. https://doi.org/10.5194/egusphere-egu21-10022
    22. Tourian, M. J., Elmi, O., Shafaghi, Y., Behnia, S., Saemian, P., Schlesinger, R., & Sneeuw, N. (2021). HydroSat: a repository of global water cycle products from spaceborne geodetic sensors. Earth System Science Data Discussions, 2021, 1--42. https://doi.org/10.5194/essd-2021-174
    23. Tourian, M., & Sneeuw, N. (2021). Spatial downscaling of GRACE water storage change using a copula-supported Bayesian framework. https://iccc.iag-aig.org/iccc-workshops/ws21
    24. Tourian, M. J., Ke, S., Elmi, O., Sneeuw, N., & Durand, M. (2021). Estimation of river discharge using a mass-conserved Kalman filter approach relying on simulated SWOT observations. Frontiers of Geodetic Science digital 2021, Hannover.
    25. Vishwakarma, B. D., Bates, R. M., Sneeuw, N., Westaway, J., & Bamber, J. L. (2021). How to interpret severity of linear trends from GRACE time series. https://iccc.iag-aig.org/iccc-workshops/ws21
    26. Vishwakarma, B. D., Zhang, J., & Sneeuw, N. (2021). Downscaling GRACE total water storage change using partial least squares regression. Scientific Data, 8(1), Article 1. https://doi.org/10.1038/s41597-021-00862-6
    27. Vishwakarma, B. D., Bates, P., Sneeuw, N., Westaway, R., & Bamber, J. (2021). Re-assessing global water storage trends from GRACE time series. Environmental Research Letters, 16, 1–9. https://doi.org/10.1088/1748-9326/abd4a9
    28. Wang, B., & Sneeuw, N. (2021). Crossover Adjustment of ICESat-2 Satellite Altimetry for Arctic Region. Frontiers of Geodetic Science digital 2021, Hannover.
    29. Yi, S., & Sneeuw, N. (2021). A regime shift in global land water storage since 2021. Frontiers of Geodetic Science digital 2021, Hannover.
    30. Yi, S., & Sneeuw, N. (2021). Filling the Data Gaps Within GRACE Missions Using Singular Spectrum Analysis. Journal of Geophysical Research: Solid Earth, 126(5), Article 5. https://doi.org/10.1029/2020jb021227
    31. Yin, Z., & Sneeuw, N. (2021). A CFD-based gravitational field modeling method and its potential applications in deep space exploration. Frontiers of Geodetic Science digital 2021, Hannover.
    32. Yin, Z., & Sneeuw, N. (2021). Modeling the gravitational field by using CFD techniques. Journal of Geodesy, 95(6), Article 6. https://doi.org/10.1007/s00190-021-01504-w
  4. 2020

    1. Behnia, S., Tourian, M. J., & Sneeuw, N. (2020). How to Get Rid of Outliers in Time Series of Inland Altimetry?
    2. Bo Wang, Mohammad Tourian, N. S. (2020). Coastal Altimetry using ICESat-2 Photon-Counting Laser Altimeter. https://www.dropbox.com/s/3zhqyupvuzt0qtn/CAW12%20Presentations.zip?dl=0&file_subpath=%2FCAW12+Presentations%2FDAY+II%2FAM%2F09_Wang_Coastal_Altimetry_2020.pdf
    3. Cai, J., Dong, D., Sneeuw, N., & Yao, Y. (2020). Converted Total Least Squares Method and Gauss-Helmert Model with Applications to Coordinate Transformations. In P. Novák, M. Crespi, N. Sneeuw, & F. Sansò (Eds.), IX Hotine-Marussi Symposium on Mathematical Geodesy (pp. 117--125). Springer International Publishing.
    4. Cambiotti, G., Douch, K., Cesare, S., Haagmans, R., Sneeuw, N., Anselmi, A., Marotta, A. M., & Sabadini, R. (2020). On Earthquake Detectability by the Next-Generation Gravity Mission. Surveys in Geophysics, 41(5), Article 5. https://doi.org/10.1007/s10712-020-09603-7
    5. Camici, S., Brocca, L., Massari, C., Giuliani, G., Sneeuw, N., Hashemi Farahani, H., Restano, M., & Benveniste, J. (2020). An observation-based approach for global runoff estimation: exploiting satellite soil moisture and Grace. https://doi.org/10.5194/egusphere-egu2020-13718
    6. Douch, K., Bützler, C., Cambiotti, G., Cesare, S., Sneeuw, N., Anselmi, A., Marotta, A. M., & Sabadini, R. (2020). Observation of earthquake co- and post-seismic signals with the Next Generation Gravity Mission (NGGM). The present and future of satellite gravimetry – Workshop on the design, development and applications of satellite gravimetry, Kanpur. https://satgrav2020.tuxfamily.org/posts/observation-of-earthquake-co-and-post-seismic-signals-with-the-next-generation-gravity-mission-nggm/
    7. Ghobadi-Far, K., Han, S.-C., Allgeyer, S., Tregoning, P., Sauber, J., Behzadpour, S., Mayer-Gürr, T., Sneeuw, N., & Okal, E. (2020). GRACE gravitational measurements of tsunamis after the 2004, 2010, and 2011 great earthquakes. Journal of Geodesy, 94(65), Article 65. https://doi.org/10.1007/s00190-020-01395-3
    8. Ghobadi-Far, K., Han, S.-C., & Sneeuw, N. (2020). Towards low latency GRACE follow on gravimetric observations for studying high frequency, transient geophysical processes in the Earth system. The Present & Future Satellite Gravimetry - Workshop on the design, development and application of satellite gravimetry, Kanpur. https://satgrav2020.tuxfamily.org/posts/towards-low-latency-grace-follow-on-gravimetric-observations-for-studying-high-frequency-transient-geophysical-processes-in-the-earth-system/
    9. Lin, Y., Li, X., Zhang, T., Chao, N., Yu, J., Cai, J., & Sneeuw, N. (2020). Water Volume Variations Estimation and Analysis Using Multisource Satellilte Data: A Case Study of Lake Victoria. Remote Sensing, 12(18), Article 18. https://doi.org/10.3390/rs12183052
    10. Mattes, D., Losch, M., Rabe, B., Tourian, M., & Sneeuw, N. (2020). Response of Arctic sea level and hydrography to hydrological regime change over boreal catchments (RASLyBoCa). https://www.gis.uni-stuttgart.de/forschung/doc/Mattes_2020a.pdf
    11. Saemian, P., Elmi, O., Vishwakarma, B., Tourian, M., & Sneeuw, N. (2020). Analyzing the Lake Urmia restoration progress using ground-based and spaceborne observations. Science of The Total Environment, 139857. https://doi.org/10.1016/j.scitotenv.2020.139857
    12. Tourian, M. J., Elmi, O., Behnia, S., & Sneeuw, N. (2020). Defining a retracking manifold within a radargram stack to improve satellite altimetric water level over coastal seas: A feasibility study. ESA 12th Coastal Altimetry Workshop, Frascati, Italy.
    13. Tourian, M. J., & Sneeuw, N. (2020). Spatial downscaling of GRACE water storage change using a Bayesian approach supported by copula. The present and future of satellite gravimetry – Workshop on the design, development and applications of satellite gravimetry, Kanpur. https://satgrav2020.tuxfamily.org/posts/spatial-downscaling-of-grace-water-storage-change-using-a-bayesian-approach-supported-by-copula/
    14. Wang, B., Tourian, M., & Sneeuw, N. (2020). Coastal Altimetry using ICESat-2 Photon-Counting Laser Altimeter.
    15. Yi, S., & Sneeuw, N. (2020). Emerging instability in global terrestrial water storage since 2010. https://doi.org/10.5194/egusphere-egu2020-17922
    16. Yi, S., Sneeuw, N., Foster, J., & Pan, Y. (2020). Intense drought in the Island of Hawaiʻi and its modulation on magma upwelling. The present and future of satellite gravimetry – Workshop on the design, development and applications of satellite gravimetry, Kanpur. https://satgrav2020.tuxfamily.org/posts/intense-drought-in-the-island-of-hawai%CA%BBi-and-its-modulation-on-magma-upwelling/
    17. Zhang, J., Tourian, M. J., & Sneeuw, N. (2020). Identification of ENSO signature in the boreal hydrological cycle through canonical correlation with sea surface temperature anomalies. International Journal of Climatology, 40, 6219–6241. https://doi.org/10.1002/joc.6573
  5. 2019

    1. Behnia, S., & Sneeuw, N. (2019). In search for an optimum outlier rejection scheme: application to altimetric time series.
    2. Behnia, S., Tourian, M., Ribeiro Neto, A., & Sneeuw, N. (2019). São Francisco as monitored by Radar Altimetry Satellites. https://www.gis.uni-stuttgart.de/forschung/doc/Behnia_2019.pdf
    3. Cai, J., Qian, K., Sneeuw, N., Lin, Y., & Li, W. (2019). A-optimal design Regularization and its Applications in Extreme Learning Machine for Regression Analysis and Multi-class Classification.
    4. Camici, S., Brocca, L., Massari, C, Giuliani, G., Sneeuw, N., Hashemi Farahani, H., Restano, M., & Benveniste, J. (2019). A satellite-based approach for total runoff estimation: stream project.
    5. Camici, S., Brocca, L., Massari, C, Giuliani, G., Sneeuw, N., Hashemi Farahani, H., Restano, M., & Benveniste, J. (2019). Total runoff estimation from satellite data: STREAM project.
    6. Camici, S., Brocca, L., Massari, C., Giuliani, G., Sneeuw, N., Hashemi Farahani, H., & Benveniste, J. (2019). Total runoff estimation through the exploitation of multiple satellite data: STREAM project.
    7. Chen, Q., Engels, J., Sneeuw, N., & van Dam, T. (2019). Feasibility study of the Next Generation Gravity Mission (NGGM) for atmosphere.
    8. Devaraju, B., Sharma, V., Kumar, V., Weigelt, M., & Sneeuw, N. (2019). Analysing the lower degree harmonics of time-variable gravity field via the polar-form of spherical harmonics.
    9. Douch, K., Cambiotti, G., Sneeuw, N., Anselmi, A., Marotta, A., & Sabadini, R. (2019). On the Possibility to monitor the Co- and Post-seismic Signal with the Next Generation Gravity Mission. https://www.gis.uni-stuttgart.de/forschung/doc/Douch_2019.pdf
    10. Elmi, O., & Sneeuw, N. (2019). A Graph-Based Image Segmentation Algorithm for Extracting Dynamic River Masks.
    11. Elmi, O., Tourian, M. J., & Sneeuw, N. (2019). A Graph-Based Image Segmentation Algorithm for Extracting Dynamic River Masks.
    12. Elmi, O., & Sneeuw, N. (2019). Estimation of River Discharge using Non-Parametric Machine Learning Techniques.
    13. Elmi, O., Tourian, M. J., & Sneeuw, N. (2019). Estimation of River Discharge using Non-Parametric Techniques.
    14. Feng, W., Wang, C., Zhong, M., Shum, C., Hsu, H., Sneeuw, N., Douch, K., Chen, Q., & Yeh, H. (2019). Potential hydrological and seismological applications of the next-generation gravity field missions based on multi-pair constellations and joint sino-European numerical simulations.
    15. Gao, Y., Cai, J., & Sneeuw, N. (2019). Applying directional statistics to GNSS carrier phase observations and to spherical harmonic phase spectra.
    16. Ghobadi Far, K., Han, S., Sauber, J., Lemoine, F., Behzadpour, S., Mayer-Gürr, T., & Sneeuw, N. (2019). A Feasibility Study of Detection of Earth’s Free Oscillations Excited by the 2004 Sumatra Earthquake Using GRACE Inter-Satellite Tracking Data.
    17. Ghobadi-Far, K., Han, S.-C., Sauber, J., Lemoine, F., Behzadpour, S., Mayer-Gürr, T., Sneeuw, N., & Okal, E. (2019). Gravitational Changes of the Earth\textquotesingles Free Oscillation From Earthquakes: Theory and Feasibility Study Using GRACE Inter-satellite Tracking. Journal of Geophysical Research: Solid Earth. https://doi.org/10.1029/2019JB017530
    18. Iran Pour, S., Sneeuw, N., Weigelt, M., & Amiri-Simkooei, A. (2019). Orbit Optimization for Future Satellite Gravity Field Missions: Influence of the Time Variable Gravity Field Models in a Genetic Algorithm Approach. International Association of Geodesy Symposia. https://doi.org/10.1007/1345_2019_79
    19. Issawy, E., Sneeuw, N., Elmi, O., Tourian, M. J., Roohi, S., Javaid, M., & Mohamed, H. (2019). Inland Water Monitoring Using Spaceborne Geodetic Sensors.
    20. Lin, Y., Li, X., Zhang, T., Li, W., Yu, J., Sneeuw, N., & Cai, J. (2019). Estimation of water volume variations for large-scale lake based on multi-source satellite data.
    21. Mattes, D., Hashemi Farahani, H., & Sneeuw, N. (2019). Densifying radar altimetry-derived water level time series along rivers by least squares collocation.
    22. Nie, Y., Shen, Y., Chen, Q., Cai, J., & Sneeuw, N. (2019). Synergistic Observation Analysis of GRACE Follow-On and Chinese Future TianQin-II Mission.
    23. Pail, R., Bamber, J., Biancale, R., Bingham, R., Braitenberg, C., Eicker, A., Flechtner, F., Gruber, T., Güntner, A., Heinzel, G., Horwath, M., Longuevergne, L., Müller, J., Panet, I., Savenije, H., Seneviratne, S., Sneeuw, N., van Dam, T., & Wouters, B. (2019). Mass variation observing system by high low inter-satellite links (MOBILE) – a new concept for sustained observation of mass transport from space. Journal of Geodetic Science, 9(1), Article 1. https://doi.org/10.1515/jogs-2019-0006
    24. Peyman, S., Douch, K., & Sneeuw, N. (2019). Investigating Granger causality between sea surface temperature and terrestrial water storage change in Europe.
    25. Purkhauser, A., Pail, R., Hauk, M., Visser, P., Sneeuw, N., Saemian, P., Liu, W., Engels, J., Chen, Q., Siemes, C., Haagmans, R., & Massotti, L. (2019). Comprehensive analysis of the influence of different parameters on the achievable gravity fields of NGGM: Results of the ESA-ADDCON project.
    26. Roohi, S., Sneeuw, N., Benveniste, J., Dinardo, S., Issawy, E., & Zhang, G. (2019). Evaluation of CryoSat-2 water level derived from different retracking scenarios over selected inland water bodies. Advances in Space Research, 1–16. https://doi.org/10.1016/j.asr.2019.06.024
    27. Saemian, P., Hashemi Farahani, H., & Sneeuw, N. (2019). A comprehensive assessment of GRACE decorrelating filters for hydrological applications.
    28. Sneeuw, N., & Saemian, P. (2019). Next-Generation Gravity Missions for Drought Monitoring. https://www.gis.uni-stuttgart.de/forschung/doc/Saemian_2019.pdf
    29. Tourian, M. J., & Sneeuw, N. (2019). Spatio-temporal downscaling in Geodesy: A call to action.
    30. Vishwakarma, B., Bates, P., Sneeuw, N., & Bamber, J. (2019). Mapping global water stress from GRACE satellite data.
    31. Wang, B., & Sneeuw, N. (2019). Monitoring inland surface water level using Sentinel-3 data.
    32. Yi, S., Pan, Y., & Sneeuw, N. (2019). Contemporary evolution of the Island of Hawaii observed by spaceborne gravimetry.
    33. Yin, Z., & Sneeuw, N. (2019). Modeling the Gravitational Field by Using CFD Techniques. International Association of Geodesy Symposia, 1–8. https://doi.org/10.1007/1345_2019_72
    34. Zhang, J., & Sneeuw, N. (2019). An empirical spatial downscaling of GRACE by statistical assimilation of multiple hydrological variables.
    35. Zhang, T., Lin, Y., Cai, J., & Sneeuw, N. (2019). Accuracy evaluation and comparison of an optimized learning method on remote sensing imagery classification.
  6. 2018

    1. Behnia, S., Wang, T., & Sneeuw, N. (2018). What can we learn from satellite altimetry over salt flats? A case study using CryoSat-2 over Salar de Uyuni. https://www.gis.uni-stuttgart.de/forschung/doc/Behnia_2018.pdf
    2. Cai, J., Dong, D., Sneeuw, N., & Yao, Y. (2018). Converted total least squares method and Gauss-Helmert model with applications in coordinate transformations.
    3. Devaraju, B., & Sneeuw, N. (2018). The role of two-point functions in geodesy and their classification. In (Schw)Ehre, wem (Schw)Ehre gebührt : Festschrift zur Verabschiedung von Prof. Dr.-Ing. Dr. h.c. Bernhard Heck. Hrsg.: A. Heck (1; Vol. 2018, Issue 1, pp. 49--55). KIT Scientific Publishing, Karlsruhe. https://doi.org/10.5445/KSP/1000080211
    4. Iran-Pour, S., Weigelt, M., Amiri-Simkooei, A.-R., & Sneeuw, N. (2018). Impact of groundtrack pattern of a single pair mission on the gravity recovery quality. Geosciences (MDPI), 8(9)(315), Article 315. https://doi.org/10.3390/geosciences8090315
    5. Iran-Pour, S., Weigelt, M., Amiri-Simkooei, A., & Sneeuw, N. (2018). Orbit optimization for future gravity field missions: the influence of the choice of time variable gravity field models. https://www.gis.uni-stuttgart.de/forschung/doc/Iran-Pour_2018.pdf
    6. Lin, Y., Yu, J., Cai, J., Sneeuw, N., & Li, F. (2018). Spatio-Temporal Analysis of Wetland Changes Using a Kernel Extreme Learning Machine Approach. Remote Sensing, 10(7), Article 7. https://doi.org/10.3390/rs10071129
    7. Liu, W., Sneeuw, N., Iran Pour, S., Tourian, M. J., & Reubelt, T. (2018). A posteriori de-aliasing of ocean tide error in future double-pair satellite gravity missions. International Association of Geodesy Symposia, 147. https://doi.org/10.1007/1345_2016_259
    8. Liu, W., & Sneeuw, N. (2018). A triple-pair tandem constellation mitigating ocean tide aliasing.
    9. Mattes, D., Elmi, O., & Sneeuw, N. (2018). Analysis of waveforms in the satellite altimetry by using neural networks. https://www.gis.uni-stuttgart.de/forschung/doc/Mattes_2018.pdf
    10. Purkhauser, A., Pail, R., Hauk, M., Visser, P., Sneeuw, N., Saemian, P., Liu, W., Engels, J., Chen, Q., & Siemes, C. (2018). Gravity Field Retrieval of Next Generation Gravity Missions regarding Geophysical Services: Results of the ESA-ADDCON Project.
    11. Sneeuw, N., Tourian, M., & Reager, J. (2018). Can GRACE observe the total drainable water storage of a river basin? A first estimate over the Amazon basin.
    12. Sneeuw, N., & Tourian, M. (2018). Hydro-Geodesy: geodetic satellite methods for hydrological purposes.
    13. Sneeuw, N. (2018). Spaceborne Gravimetry: Technology, Missions and Applications.
    14. Sneeuw, N., Reager, J. T., & Tourian, M. J. (2018). Total drainable water storage from spaceborne gravimetry.
    15. Tourian, M. J., Reager, J. T., & Sneeuw, N. (2018). The Total Drainable Water Storage of the Amazon River Basin: A First Estimate Using GRACE. Water Resources Research, 54(5), Article 5. https://doi.org/10.1029/2017wr021674
    16. Vishwakarma, B., Devaraju, B., & Sneeuw, N. (2018). What is the Spatial Resolution of GRACE Satellite Products for Hydrology? Remote Sensing, 10(852), Article 852. https://doi.org/10.3390/rs10000852
    17. Xia, Z., Farahani, H., Sneeuw, N., & Tourian, M. (2018). Assessment of radar altimetry river water level data densification methods.
    18. Yan, L., Farahani, H., & Sneeuw, N. (2018). Water Level Analysis in Tibet using CryoSat-2. https://www.gis.uni-stuttgart.de/forschung/doc/YanL_2018.pdf
    19. Ye, Z., Tenzer, R., & Sneeuw, N. (2018). Comparison of methods for a 3-D density inversion from airborne gravity gradiometry. Studia Geophysica et Geodaetica, 62(1), Article 1. https://doi.org/10.1007/s11200-016-0492-6
    20. Yin, Z., & Sneeuw, N. (2018). Modelling the gravitational field by using CFD techniques.
    21. Yuan, P., Jiang, W., Wang, K., & Sneeuw, N. (2018). Effects of Spatiotemporal Filtering on the Periodic Signals and Noise in the GPS Position Time Series of the Crustal Movement Observation Network of China. Remote Sensing, 10(9), Article 9. https://doi.org/10.3390/rs10091472
  7. 2017

    1. Cai, J., Qian, K., & Sneeuw, N. (2017). Revisiting of the determination of proper regularization parameter: $\alpha$-Weighted BLE via A-optimal design and its comparison with numerical methods and ridge regression.
    2. Cai, J., Qian, K., Sneeuw, N., Wang, C., & Wang, J. (2017). The optimal regularization ($\alpha$-weighted BLE via A-optimal design) and its application in GNSS-based ionospheric tomography.
    3. Daras, I., Visser, P., Sneeuw, N., van Dam, T., Pail, R., Gruber, T., Tabibi, S., Chen, Q., Liu, W., Tourian, M. J., Engels, J., Saemian, P., Siemes, C., & Haagmans, R. (2017). Impact of Orbit Design Choices on the Gravity Field Retrieval of Next Generation Gravity Missions - Insights on the ESA-ADDCON Project.
    4. Daras, I., Visser, P., Sneeuw, N., van Dam, T., Pail, R., Gruber, T., Chen, Q., Liu, W., Tourian, M. J., Engels, J., Saemian, P., Siemes, C., & Haagmans, R. (2017). Near real-time gravity and its applications in the era of Next Generation Gravity Missions - Insights on the ESA-ADDCON project.
    5. Devaraju, B., & Sneeuw, N. (2017). The polar form of the spherical harmonic spectrum: implications for filtering GRACE data. Journal of Geodesy, 15. https://doi.org/10.1007/s00190-017-1037-7
    6. Dong, D., Cai, J., & Sneeuw, N. (2017). Converted Total Least Squares method and its application in coordinate transformation.
    7. Elmi, O., Tourian, M. J., & Sneeuw, N. (2017). Markov Random Field Based Waveform Retracking Solved by the Graph Cuts Technique.
    8. Gao, Y., Cai, J., & Sneeuw, N. (2017). Analysis of coordinate transformation with different polynomial models.
    9. Iran Pour, S., Mehrabi, H., Vishwakarma, B. D., Weigelt, M., Amiri-Simkooei, A., & Sneeuw, N. (2017). Land subsidence analysis by InSAR and GRACE time-series for two hydrological basins in West Iran.
    10. Iran Pour, S., Vishwakarma, B. D., Weigelt, M., Amiri-Simkooei, A., & Sneeuw, N. (2017). Sampling geophysical signals: How the satellite groundtrack pattern can influence the quality of gravity field recovery for climate change studies.
    11. Jiang, W., Yuan, P., Chen, H., Cai, J., Li, Z., Chao, N., & Sneeuw, N. (2017). Annual variations of monsoon and drought detected by GPS: A case study in Yunnan, China. Scientific Reports, 7(Article no. 5874), Article Article no. 5874. https://doi.org/10.1038/s41598-017-06095-1
    12. Lin, Y., Ji, H., Ye, Q., Cai, J., & Sneeuw, N. (2017). Research on an Optimal ELM Classification Model for Remote Sensing Image with Artificial Fish-swarm Algorithm.
    13. Liu, W., & Sneeuw, N. (2017). Ocean tide alias spectrum estimation for satellite gravity missions.
    14. Liu, W., Sneeuw, N., Iran Pour, S., Tourian, M. J., & Reubelt, T. (2017). A Posteriori De-aliasing of Ocean Tide Error in Future Double-Pair Satellite Gravity Missions. International Association of Geodesy Symposia, 1--7. https://doi.org/10.1007/1345_2016_259
    15. Liu, W., & Sneeuw, N. (2017). Towards ocean tide alias error mitigation of GRACE-derived gravity field time series based on a data-driven method -- a simulation study.
    16. Pail, R., Hauk, M., Purkhauser, A., Visser, P., Sneeuw, N., van Dam, T., Gruber, T., Chen, Q., Liu, W., Tourian, M. J., Engels, J., Saemian, P., Siemes, C., & Haagmans, R. (2017). Studies on next-generation gravity missions for climate-relevant applications.
    17. Saemian, P., Elmi, O., Vishwakarma, B. D., Tourian, M. J., & Sneeuw, N. (2017). The desiccating Lake Urmia is restoring: A multisensor approach to investigate natural and human-induced reasons for increase of lake volume after 2014.
    18. Sharifi, M. A., Seif, M. R., Baur, O., & Sneeuw, N. (2017). Gravity field recovery from orbit information using the Lagrange formalism. Annals of Geophysics, 60(3), Article 3. https://doi.org/10.4401/ag-7204
    19. Sneeuw, N., & Devaraju, B. (2017). Amplitude-phase representation of GRACE spherical harmonic spectra.
    20. Sneeuw, N., & Devaraju, B. (2017). Filtering GRACE gravity fields: anisotropy and other annoyances.
    21. Sneeuw, N. (2017). Future satellite gravimetry missions: recent developments as well as algorithmic aspects.
    22. Sneeuw, N. (2017). SVD based time series analysis.
    23. Tourian, M. J., Elmi, O., Mohammadnejad, A., & Sneeuw, N. (2017). Estimating River Depth from SWOT-Type Observables Obtained by Satellite Altimetry and Imagery. Water, 9(10), Article 10. https://doi.org/10.3390/w9100753
    24. Tourian, M. J., Schwatke, C., & Sneeuw, N. (2017). River discharge estimation at daily resolution from satellite altimetry over an entire river basin. Journal of Hydrology, 546, 230--247. https://doi.org/10.1016/j.jhydrol.2017.01.009
    25. Tourian, M. J., & Sneeuw, N. (2017). Spatio-temporal downscaling of GRACE water storage changes data at catchment scale.
    26. Tourian, M. J., Reager, J. T., & Sneeuw, N. (2017). The total drainable water storage of the Amazon River Basin: a first estimate using GRACE.
    27. Vishwakarma, B. D., Horwath, M., Devaraju, B., Groh, A., & Sneeuw, N. (2017). A Data-Driven Approach for Repairing the Hydrological Catchment Signal Damage Due to Filtering of GRACE Products. Water Resources Research, 53(11), Article 11. https://doi.org/10.1002/2017WR021150
    28. Vishwakarma, B. D., & Sneeuw, N. (2017). Comparing the data-driven and the model-dependent strategies for improving filtered GRACE signal.
    29. Vishwakarma, B. D., Horwath, M., Devaraju, B., Groh, A., & Sneeuw, N. (2017). Repairing signal damage in GRACE due to filtering: A comprehensive data-driven approach.
    30. Vishwakarma, B. D., Zhang, J., Devaraju, B., & Sneeuw, N. (2017). Searching signatures of climate change in GRACE products.
    31. Zhang, J., Tourian, M. J., & Sneeuw, N. (2017). Can the teleconnection between ENSO and the boreal hydrological cycle be revealed by sea surface temperature anomalies?
  8. 2016

    1. Domeneghetti, A., Tarpanelli, A., Tourian, M. J., Brocca, L., Moramarco, T., Castellarin, A., & Sneeuw, N. (2016). The Benefit of Multi-Mission Altimetry Series for the Calibration of Hydraulic Models.
    2. Elmi, O., Tourian, M. J., & Sneeuw, N. (2016). An automatic water body area monitoring algorithm for satellite images based on Markov Random Fields.
    3. Elmi, O., Tourian, M. J., & Sneeuw, N. (2016). Dynamic river masks from multi-temporal satellite imagery: an automatic algorithm using graph cuts optimization.
    4. Ghobadi-Far, K., Sharifi, M. A., & Sneeuw, N. (2016). 2D Fourier series representation of gravitational functionals in spherical coordinates (9). 90(9), Article 9. https://doi.org/10.1007/s00190-016-0916-7
    5. Ghobadi-Far, K., Sharifi, M., & Sneeuw, N. (2016). 2D Fourier series representation of gravity quantities on the sphere.
    6. Kunstmann, H., Lorenz, C., Tourian, M. J., Devaraju, B., & Sneeuw, N. (2016). Basin-scale runoff prediction: An Ensemble Kalman Filter framework based on global hydrometeorological data sets.
    7. Li, H., Antoni, M., Reubelt, T., Sneeuw, N., Zhong, M., & Zhou, Z. (2016). Gravity Field Error Assessment for the Cartwheel Formation via the Semi-Analytical Approach.
    8. Li, H., Antoni, M., Reubelt, T., Sneeuw, N., Zhong, M., & Zhou, Z. (2016). A Semi-Analytical Approach to Gravity Field Analysis from Cartwheel Formation 2.
    9. Li, H., Reubelt, T., Antoni, M., & Sneeuw, N. (2016). Gravity field error analysis for pendulum formations by a semi-analytical approach. 1--19. https://doi.org/10.1007/s00190-016-0958-x
    10. Li, J., Sneeuw, N., Jiang, W., Cai, J., Chu, Y., & Jin, T. (2016). The lake level monitoring in China from satellite altimetric missions.
    11. Liu, W., Sneeuw, N., Pour, S. I., Tourian, M. J., & Reubelt, T. (2016). A Posteriori De-aliasing of Ocean Tide Error in Future Double-Pair Satellite Gravity Missions. In International Symposium on Earth and Environmental Sciences for Future Generations (pp. 103--109). Springer International Publishing. https://doi.org/10.1007/1345_2016_259
    12. Liu, W., Iran Pour, S., Tourian, M. J., & Sneeuw, N. (2016). A data-driven method to calculate alias periods for de-aliasing ocean tide errors.
    13. Liu, W., Sneeuw, N., Iran Pour, S., Jiang, W., Tourian, M. J., & Reubelt, T. (2016). Ocean tide aliasing in spaceborne gravimetry: a data-driven determination of the tidal alias spectrum.
    14. Sneeuw, N., Li, J., Cai, J., Jiang, W., Tourian, M., Elmi, O., Chu, Y., & Jin, T. (2016). Current and future geodetic satellite missions for global change monitoring.
    15. Sneeuw, N., Li, J., Cai, J., Jiang, W., Xu, X., Chu, Y., Jin, T., Chao, N., Elmi, O., & Tourian, M. (2016). Current and Future Geodetic Satellite Missions for Global Change Monitoring.
    16. Sneeuw, N., Iran Pour, S., Reubelt, T., Daras, I., Murböck, M., Pail, R., Gruber, T., Visser, P., Encarnação, J., van den IJssel, J., Van Dam, T., Weigelt, M., Cesare, S., Tonetti, S., Cornara, S., Haagmans, R., Siemes, C., & Massotti, L. (2016). ESA SC4MGV Study: Assessment of Satellite Constellations for Monitoring the Variations in Earth Gravity Field.
    17. Sneeuw, N., & Li, J. (2016). Monitoring lake level variations over the Qinghai-Tibet Plateau by consistent multi-satellite altimetry (QTibMSA).
    18. Tourian, M. J., Tarpanelli, A., Elmi, O., Qin, T., Brocca, L., Moramarco, T., & Sneeuw, N. (2016). Spatiotemporal densification of river water level time series by multimission satellite altimetry (2). 52(2), Article 2. https://doi.org/10.1002/2015WR017654
    19. Tourian, M. J., Elmi, O., & Sneeuw, N. (2016). Combining the strength of satellite altimetry and imagery to estimate river discharge. https://www.gis.uni-stuttgart.de/forschung/doc/TOUR_2016f.pdf
    20. Tourian, M. J., Riegger, J., & Sneeuw, N. (2016). GRACE, 14 years monitoring of the water storage anomaly: how about quantification of total drainable water storage?
    21. Tourian, M. J., Elmi, O., Shafaghi, Y., & Sneeuw, N. (2016). HydroSat: a repository of global water cycle products from spaceborne geodetic sensors.
    22. Tourian, M. J., Sneeuw, N., Losch, M., & Rabe, B. (2016). Response of Arctic sea level and hydrography to hydrological regime change over boreal catchments.
    23. Tourian, M. J., & Sneeuw, N. (2016). River discharge estimation from multi-mission altimetry with optimized spatial coverage and temporal resolution.
    24. Tourian, M., Thor, R., & Sneeuw, N. (2016). Least-Squares Prediction of Runoff Over Ungauged Basins. In C. Rizos & P. Willis (Eds.), IAG 150 Years -- Proceedings of the IAG Scientific Assembly in Postdam, Germany, 2013 (Vol. 143, pp. 257--261). Springer. https://doi.org/10.1007/1345_2015_170
    25. Vishwakarma, B. D., Balangé, L., Sneeuw, N., & Devaraju, B. (2016). Hydro-meteorological validation of GRACE de-leakage approach.
    26. Vishwakarma, B. D., Balangé, L., Sneeuw, N., & Devaraju, B. (2016). Minimizing filtering induced change to GRACE signal at catchment scale.
    27. Vishwakarma, B. D., Devaraju, B., & Sneeuw, N. (2016). Minimizing the effects of filtering on catchment scale GRACE solutions (8). 8, Article 8. https://doi.org/10.1002/2016WR018960
    28. Vishwakarma, B. D., Devaraju, B., & Sneeuw, N. (2016). Minimizing the signal damage due to filtering of GRACE observed mass changes.
    29. Vishwakarma, B. D., & Sneeuw, N. (2016). Reducing the filtering-induced error in Greenland ice mass loss seen by GRACE.
    30. Vishwakarma, B. D., Sneeuw, N., & Devaraju, B. (2016). Repairing filtering induced damage to the GRACE time-series at catchment scale.
    31. Vishwakarma, B. D., Devaraju, B., & Sneeuw, N. (2016). Repairing filtering-induced damage to GRACE signal at catchment scale.
    32. Ye, Z., Tenzer, R., Sneeuw, N., Liu, L., & Wild-Pfeiffer, F. (2016). Generalized model for a Moho inversion from gravity and vertical gravity-gradient data (1). 207(1), Article 1. https://doi.org/10.1093/gji/ggw251
    33. Zhang, J., & Sneeuw, N. (2016). Common patterns of continental water storage and sea surface temperature.
  9. 2015

    1. Antoni, M., Li, H., Reubelt, T., & Sneeuw, N. (2015). Pre-mission error assessment for the pendulum formation via the semi-analytical approach.
    2. Chen, Q., Van Dam, T., Li, Z., Wang, L., & Sneeuw, N. (2015). On modeling the environmental loading induced displacements in the local area.
    3. Chen, Q., Weigelt, M., Sneeuw, N., & van Dam, T. (2015). On time-variable seasonal signals: comparison of SSA and Kalman filtering based approaches. In N. Sneeuw, P. Novák, M. Crespi, & F. Sansò (Eds.), VIII Hotine-Marussi Symposium on Mathematical Geodesy (Vol. 142, pp. 75--80). Springer. https://doi.org/10.1007/1345_2015_4
    4. Chen, Q., Cui, B., & Sneeuw, N. (2015). Singular spectrum analysis for modelling geodetic time series.
    5. Daras, I., Pail, R., Visser, P., Weigelt, M., Iran Pour, S., Murböck, M., Gruber, T., Texeira da Encarnac\ ao, J., Sneeuw, N., Tonetti, S., Christian, S., van den IJssel, J., Cornara, S., Van Dam, T., Cesare, S., & Haagmans, R. (2015). Temporal aliasing effects on future gravity satellite missions and their assessment -- Lessons from the ESA-SC4MGV project.
    6. Daras, I., Pail, R., Visser, P., Weigelt, M., Iran Pour, S., Murböck, M., Gruber, T., Texeira da Encarnac\ ao, J., Sneeuw, N., Tonetti, S., Christian, S., van den IJssel, J., Cornara, S., Van Dam, T., Cesare, S., & Haagmans, R. (2015). Treatment of temporal aliasing on future gravity satellite missions -- an insight into ESA-SC4MGV project.
    7. Devaraju, B., & Sneeuw, N. (2015). Insights into filtering on the sphere offered by the polar form of spherical harmonics.
    8. Devaraju, B., & Sneeuw, N. (2015). On the spatial resolution of filters defined on the sphere.
    9. Devaraju, B., & Sneeuw, N. (2015). On the spatial resolution of homogeneous fillters on the sphere. In N. Sneeuw, P. Novák, M. Crespi, & F. Sansò (Eds.), VIII Hotine-Marussi Symposium on Mathematical Geodesy (Vol. 142, pp. 67--73). Springer. https://doi.org/10.1007/1345_2015_5
    10. Domeneghetti, A., Tarpanelli, A., Tourian, M. J., Brocca, L., Moramarco, T., Castellarin, A., & Sneeuw, N. (2015). Hydraulic model calibration by using satellite altimetry: comparison of different products.
    11. Elmi, O., Tourian, M. J., & Sneeuw, N. (2015). A comparison between Landsat and MODIS images for estimating discharge from river width.
    12. Elmi, O., Tourian, M. J., & Sneeuw, N. (2015). Improving the temporal and spatial resolution of water level time series over Po River (Italy) obtained by satellite altimetry.
    13. Elmi, O., Tourian, M. J., & Sneeuw, N. (2015). An automatic water body area monitoring algorithm for satellite images based on Markov Random Fields.
    14. Elmi, O., Tourian, M. J., & Sneeuw, N. (2015). Comparison of different automatic adaptive threshold selection techniques for estimating discharge from river width.
    15. Elmi, O., Tourian, M. J., & Sneeuw, N. (2015, July). River discharge estimation using channel width from satellite imagery. 2015 IEEE International Geoscience and Remote Sensing Symposium (IGARSS). https://doi.org/10.1109/igarss.2015.7325867
    16. Ghobadi-Far, K., Sharifi, M., & Sneeuw, N. (2015). GOCE gradiometry data processing using the Rosborough approach (12). 89(12), Article 12. https://doi.org/10.1007/s00190-015-0849-6
    17. Iran Pour, S., Reubelt, T., Sneeuw, N., & ESA SC4MGV Study Team. (2015). Impact of groundtrack pattern of double pair missions on the gravity recovery quality -- Lessons from the ESA SC4MGV project.
    18. Iran Pour, S., Weigelt, M., Reubelt, T., Daras, I., Murböck, M., Teixeira da Encarnac\ ao, J., van den IJssel, J., Tonetti, S., Cornara, S., Cesare, S., Gruber, T., Van Dam, T., Visser, P., Pail, R., Sneeuw, N., Massotti, L., Siemes, C., & Haagmans, R. (2015). Study of post-processing methods for future gravity satellite missions.
    19. Li, H., Antoni, M., Reubelt, T., Zhou, Z., Zhong, M., Chen, Q., & Sneeuw, N. (2015). A Semi-analytical Approach to Gravity Field Analysis from Pendulum Formation.
    20. Lin, Y., Yu, J., Shen, M., Cai, J., & Sneeuw, N. (2015). The Spatio-temporal Dynamic Analysis of Wetland Evolution Process in Chongming Dongtan Using Remote Sensing Data.
    21. Liu, W., Iran Pour, S., Tourian, M. J., & Sneeuw, N. (2015). De-aliasing of ocean tide error in future dual-pair satellite gravity missions.
    22. Liu, W., Iran Pour, S., Tourian, M. J., Reubelt, T., & Sneeuw, N. (2015). Impact of satellite repeat period and gravity recovery resolution on ocean tide aliasing periods.
    23. Lorenz, C., Tourian, M. J., Devaraju, B., Sneeuw, N., & Kunstmann, H. (2015). Prediction of basin-scale runoff using an Ensemble Kalman filter framework based on global hydrometeorological datasets.
    24. Lorenz, C., Tourian, M. J., Devaraju, B., Sneeuw, N., & Kunstmann, H. (2015). Basin-scale runoff prediction: An E nsemble K alman F ilter framework based on global hydrometeorological data sets. Water Resources Research, 51(10), Article 10. https://doi.org/10.1002/2014wr016794
    25. Meyer, U., Dahle, C., Sneeuw, N., Jäggi, A., Beutler, G., & Bock, H. (2015). The effect of pseudo-stochastic orbit parameters on GRACE monthly gravity fields: Insights from lumped coefficients. In N. Sneeuw, P. Novák, M. Crespi, & F. Sansò (Eds.), VIII Hotine-Marussi Symposium on Mathematical Geodesy (Vol. 142, pp. 177--183). Springer. https://doi.org/10.1007/1345_2015_67
    26. Modiri, S., Lorenz, C., Sneeuw, N., & Kunstmann, H. (2015). Copula-based estimation of large-scale water storage changes: exploiting the dependence structure between hydrological and GRACE data.
    27. Modiri, S., Iran Pour, S., Lorenz, C., Kunstmann, H., & Sneeuw, N. (2015). Copula-based filtering for GRACE Follow-On and future satellite gravity missions.
    28. Roese-Koerner, L., Devaraju, B., Schuh, W. D., & Sneeuw, N. (2015). Describing the Quality of Inequality Constrained Estimates. In H. Kutterer, F. Seitz, H. Alkhatib, & M. Schmidt (Eds.), The 1st International Workshop on the Quality of Geodetic Observation and Monitoring System (QuGOMS’11) (Vol. 140, pp. 15--20). Springer Verlag. https://doi.org/10.1007/978-3-319-10828-5_3
    29. Roohi, S., Sneeuw, N., Dinardo, S., & Beneviste, J. (2015). Evaluation of CryoSat-2 performance over inland water bodies.
    30. Roohi, S., Sneeuw, N., Dinardo, S., & Beneviste, J. (2015). Monitoring of lake water level variation from pulse and doppler beam-limited altimeters.
    31. Roohi, S., & Sneeuw, N. (2015). River monitoring from multi satellite altimetry missions, Earth observation for water cycle science.
    32. Roth, M., Antoni, M., Devaraju, B., Weigelt, M., & Sneeuw, N. (2015). SHBundle -- spherical harmonic synthesis/analysis until very high degree/order.
    33. Sharifi, M. A., Ghobadi-Far, K., & Sneeuw, N. (2015). Representation of the geopotential functionals based on a 2D Fourier expression in terms of spherical coordinates.
    34. Sneeuw, N., Ghobadi-Far, K., & Sharifi, M. A. (2015). Analysis of GOCE gravitational gradients by the Rosborough formulation.
    35. Sneeuw, N., Chen, Q., & Cui, B. (2015). On the capabilities of singular spectrum analysis for modeling geodetic time series.
    36. Sneeuw, N., & Sharifi, M. A. (2015). Rosborough representation in satellite gravimetry. In N. Sneeuw, P. Novák, M. Crespi, & F. Sansò (Eds.), VIII Hotine-Marussi Symposium on Mathematical Geodesy, Rome, Italy (Vol. 142, pp. 109--114). Springer. https://doi.org/10.1007/1345_2015_68
    37. Tourian, M. J., & Sneeuw, N. (2015). A Kalman Filter approach to estimate river discharge using altimetric water level time series.
    38. Tourian, M. J., Tarpanelli, A., Elmi, O., Qin, T., Brocca, L., Moramarco, T., & Sneeuw, N. (2015). River discharge estimation along the Po river from densified water level time series of multi-mission satellite altimetry spatially and temporally.
    39. Tourian, M. J., Elmi, O., Chen, Q., Devaraju, B., Roohi, Sh., & Sneeuw, N. (2015). A spaceborne multisensor approach to monitor the desiccation of Lake Urmia in Iran. Remote Sensing of Environment, 156, 349--360. https://doi.org/10.1016/j.rse.2014.10.006
    40. Tourian, M. J., Qin, T., Elmi, O., Tarpanelli, A., Brocca, L., Maramarco, T., & Sneeuw, N. (2015). Improving the temporal and spatial resolution of water level time series over Po River (Italy) obtained by satellite altimetry.
    41. Tourian, M. J., Thor, R., & Sneeuw, N. (2015). Least-Squares Prediction of Runoff Over Ungauged Basins. In International Association of Geodesy Symposia (pp. 257--261). Springer International Publishing. https://doi.org/10.1007/1345_2015_170
    42. Vishwakarma, B. D., Devaraju, B., & Sneeuw, N. (2015). Data driven approach to minimize effects of filtering on GRACE.
    43. Vishwakarma, B. D., & Sneeuw, N. (2015). Importance of leakage analysis for trend studies.
    44. Vishwakarma, B. D., Devaraju, B., & Sneeuw, N. (2015). Minimizing signal loss due to filtering of GRACE observed total water storage change.
    45. Wang, L., Van Dam, T., Weigelt, M., Tourian, M. J., Chen, Q., & Sneeuw, N. (2015). Continental water storage variations inferred from 3-D GPS coordinates timeseries for the major river basins in Europe and North America.
    46. Zhang, J., & Sneeuw, N. (2015). Predicting the variation of continental water storage by ENSO index.
    47. Zhang, J., & Sneeuw, N. (2015). Statistical investigation of sensitivity of river discharge and continental total water storage with respect to ENSO.
  10. 2014

    1. Cai, J., & Sneeuw, N. (2014). Stochastic modeling of GOCE gravitational tensor invariants. In F. Flechtner, N. Sneeuw, & W. D. Schuh (Eds.), GEOTECHNOLOGIEN Science Report (20; Issue 20, pp. 115--121). Springer-Verlag Berlin Heidelberg. https://doi.org/10.1007/978-3-642-32135-1_15
    2. Chen, Q., Devaraju, B., & Sneeuw, N. (2014). Hydrological loading signal observed by GPS and GRACE in South America. http://www.uni-stuttgart.de/gi/research/Geodaetische_Woche/2014/Session02/QChen-etal.pdf
    3. Daras, I., Pail, R., Visser, P., Weigelt, M., Iran Pour, S., Murböck, M., Tonetti, S., Gruber, T., Encarnação, J., Cesare, S., Siemes, C., van den IJssel, J., Cornara, S., Van Dam, T., Sneeuw, N., & Haagmans, R. (2014). Treatment of temporal aliasing on future gravity satellite missions -- an insight into ESA-SC4MGV project.
    4. Elmi, O., Tourian, M. J., & Sneeuw, N. (2014). River discharge estimation using channel width measurements from satellite imagery (MODIS).
    5. Gruber, T., Baldesarra, M., Brieden, P., Daras, I., Danzmann, K., Doll, B., Feili, D., Flechtner, F., Flury, J., Heinzel, G., Iran Pour, S., Kusche, J., Langemann, M., Löcher, A., Müller, J., Müller, V., Murböck, M., Naeimi, M., Pail, R., … Wang, X. (2014). Next Generation Satellite Gravimetry Mission Study (NGGM-D).
    6. Gruber, T., Baldesarra, M., Brieden, P., Daras, I., Danzmann, K., Doll, B., Feili, D., Flechtner, F., Flury, J., Heinzel, G., Iran Pour, S., Kusche, J., Langemann, M., Löcher, A., Müller, J., Müller, V., Murböck, M., Naeimi, M., Pail, R., … Wang, X. (2014). Next Generation Satellite Gravimetry Mission Study (NGGM-D) (2).
    7. Iran Pour, S., Raimondo, J. C., Murböck, M., Wang, X., Reubelt, t, Daras, I., Gruber, T., Doll, B., Pail, R., Flechtner, F., & N, S. (2014). Auswahl Bahnkonfiguration.
    8. Iran Pour, S., Reubelt, T., Weigelt, M., Murböck, M., Daras, I., Tonetti, S., Cornara, S., Gruber, T., Van Dam, T., Pail, R., & Sneeuw, N. (2014). Genetic-algorithm based search strategy for optimal scenarios of future dual-pair gravity satellite missions.
    9. Iran Pour, S., Reubelt, T., & Sneeuw, N. (2014). Relative importance of coloured noise vs. model errors in reduced scale gravity field recovery of future satellite missions.
    10. Iran Pour, S., Weigelt, M., Murböck, M., Tonetti, S., Visser, P., Daras, I., Encarnacao, J., Cesare, S., Siemes, C., van den IJssel, J., Cornara, S., Gruber, T., Van Dam, T., Pail, R., Sneeuw, N., & Haagmans, R. (2014). Search strategy for optimal double pair scenarios for future gravity satellite missions -- experience from the ESA SC4MGV project.
    11. Iran Pour, S., Raimondo, J. C., Murböck, M., Wang, X., Reubelt, T., Daras, I., Gruber, T., Pail, R., & Sneeuw, N. (2014). Towards the selection of optimal gravity satellite missions: Orbit configuration and Technological conditions.
    12. Kusche, J., Klemann, V., & Sneeuw, N. (2014). Mass Distribution and Mass Transport in the Earth System: Recent Scientific Progress Due to Interdisciplinary Research (6). 35(6), Article 6. https://doi.org/10.1007/s10712-014-9308-9
    13. Lorenz, C., Kunstmann, H., Devaraju, B., Tourian, M. J., Sneeuw, N., & Riegger, J. (2014). Large-Scale Runoff from Landmasses: A Global Assessment of the Closure of the Hydrological and Atmospheric Water Balances (6). 15(6), Article 6. https://doi.org/10.1175/jhm-d-13-0157.1
    14. Lorenz, C., Kunstmann, H., Devaraju, B., Tourian, M. J., Sneeuw, N., & Riegger, J. (2014). Large-Scale Runoff from Landmasses: A Global Assessment of the Closure of the Hydrological and Atmospheric Water Balances\ast. Journal of Hydrometeorology, 15(6), Article 6. https://doi.org/10.1175/jhm-d-13-0157.1
    15. Reubelt, T., Sneeuw, N., Iran Pour, S., Pail, R., Gruber, T., Murböck, M., Visser, P., De Texeira De Encarnação, J., Van Dam, T., Weigelt, M., Cesare, S., & Cornara, S. (2014). The ESA project SC4MGV “‘Assessment of Satellite Constellations for Monitoring the Variations in Earth’s Gravity Field -- overview, objectives and first results.’”
    16. Reubelt, T., Sneeuw, N., Iran Pour, S., Hirth, M., Fichter, W., Müller, J., Brieden, P., Flechtner, F., Raimondo, J.-C., Kusche, J., Elsaka, B., Gruber, T., Pail, R., Murböck, M., Doll, B., Sand, R., Wang, X., Klein, V., Lezius, M., … Pelivan, I. (2014). Future Gravity Field Satellite Missions. In F. Flechtner, N. Sneeuw, & W. D. Schuh (Eds.), Geotechnologien Science Report (20; Issue 20, pp. 165--230). Springer Berlin Heidelberg. https://doi.org/10.1007/978-3-642-32135-1_21
    17. Reubelt, T., Baur, O., Weigelt, M., Roth, M., & Sneeuw, N. (2014). GOCE Long-Wavelength Gravity Field Recovery from 1s-Sampled Kinematic Orbits Using the Acceleration Approach. In U. Marti (Ed.), Gravity, Geoid and Height Systems (Vol. 141, pp. 21--26). Springer International Publishing Switzerland. https://doi.org/10.1007/978-3-319-10837-7_3
    18. Reudink, R., Klees, R., Francis, O., Kusche, J., Schlesinger, R., Shabanloui, V., Sneeuw, N., & Timmen, L. (2014). High tilt susceptibility of the Scintrex CG-5 relative gravimeters (6). 88(6), Article 6. https://doi.org/10.1007/s00190-014-0705-0
    19. Roohi, S., & Sneeuw, N. (2014). CryoSat-2 SARIn mode success to determine lake level variations.
    20. Roohi, S., & Sneeuw, N. (2014). CryoSat-2 SARIn mode success to determine lake level variations (2).
    21. Roohi, S., Sneeuw, N., Tseng, K. H., & Shum, C. K. (2014). Full and sub-waveform retracking to assess the ability of pulse limited altimeter in monitoring water level variations of inland water body.
    22. Sneeuw, N., Li, J., Baur, O., Cai, J., Tourian, M. J., Elmi, O., Jiang, W., Chu, Y., Jin, T., Wirnsberger, H., Krauss, S., & Maier, A. (2014). Current and Future Geodetic Satellite Missions for Global Change Monitoring (ESA SP-724). ESA SP-724, Article ESA SP-724.
    23. Sneeuw, N., Cai, J., & Tourian, M. J. (2014). Current and Future Geodetic Satellite Missions for Global Change Monitoring GSM4GCM.
    24. Sneeuw, N., Lorenz, C., Devaraju, Band Tourian, M. J., Riegger, J., Kunstmann, H., & Bardossy, A. (2014). Estimating runoff using hydro-geodetic approaches: Status and challenges (6). 35(6), Article 6. https://doi.org/10.1007/s10712-014-9300-4
    25. Sneeuw, N., Tourian, M. J., Elmi, O., Roohi, S., Chen, Q., & Devaraju, B. (2014). Komplementarität geodätischer Raumverfahren -- ein hydrogeodätisches Beispiel.
    26. Sneeuw, N., Tourian, M. J., Elmi, O., Roohi, S., & Chen, Q. (2014). Multi-mission monitoring of the desiccation of Lake Urmia in Iran.
    27. Sneeuw, N. (2014). Trends and seasonalities in the gravity field, direct and indirect, from space geodetic methods. The first international workshop on the detailed structure of the Earth gravity field, its temporal variation effects and the national vertical datum modernization.
    28. Sneeuw, N., Lorenz, C., Devaraju, B., Tourian, M. J., Riegger, J., Kunstmann, H., & Bárdossy, A. (2014). Estimating Runoff Using Hydro-Geodetic Approaches. Surveys in Geophysics, 35(6), Article 6. https://doi.org/10.1007/s10712-014-9300-4
    29. Su, Z., Ma, Y., van der Velde, R., Dente, L., Wang, L., Zeng, Y., Chen, X., Huang, Y., Menenti, M., Sobrino, J., Li, Z. L., Sneeuw, N., Wen, J., He, Y., Tang, B., & Zhong, L. (2014). CEOP-TPE -- Concerted Earth Observation and Prediction of Water and Energy Cycles in the Third Pole Environment (ESA SP-724). ESA SP-724, Article ESA SP-724.
    30. Tourian, M. J., Elmi, O., Chen, Q., Devaraju, B., Roohi, S., & Sneeuw, N. (2014). A spaceborne multisensor approach to monitor the desiccation of Lake Urmia in Iran. 156, 349--360. https://doi.org/10.1016/j.rse.2014.10.006
    31. Tourian, M. J., Lorenz, C., Devaraju, B., Riegger, J., Kunstmann, H., & Sneeuw, N. (2014). Discharge Estimation Using Hydro-Geodetic Approaches. https://agu.confex.com/agu/fm14/meetingapp.cgi/Paper/5081
    32. Tourian, M. J., Qin, T., Tarpanelli, A., Brocca, L., Moramarco, T., & Sneeuw, N. (2014). Improving the temporal and spatial resolution of water level time series over Po River (Italy) obtained by multi-mission satellite altimetry.
    33. Varga, P., Krumm, F. W., Grafarend, E. W., Sneeuw, N., Schreider, A. A., & Horváth, F. (2014). Evolution of the oceanic and continental crust during Neo-Proterozoic and Phanerozoic. 25, 255--263. https://doi.org/10.1007/s12210-014-0298-9
    34. Vishwakarma, B. D., & Sneeuw, N. (2014). Aspects of inter-catchment signal leakage due to filtering of GRACE observed total water storages.
    35. Wang, L., Van Dam, T., Weigelt, M., Tourian, M. J., Chen, Q., & Sneeuw, N. (2014). Continental water storage inferred from 3-D GPS coordinates in Danube Basin. http://labs.adsabs.harvard.edu/adsabsadsabs/abs/2014AGUFM.G23A0464V/
    36. Weigelt, M., Iran Pour, S., Murböck, M., Tonetti, S., Visser, P., Daras, I., Encarnacao, J., Cesare, S., Siemes, C., van den IJssel, J., Cornara, S., Gruber, T., Van Dam, T., Pail, R., Sneeuw, N., & Haagmans, R. (2014). A methodology to choose the orbit for a double pair scenario future gravity satellite mission experiences from the ESA SC4MGV project. https://orbilu.uni.lu/bitstream/10993/18689/1/Weigeltetal_A2_1545_SC4MGV.pdf
    37. Weigelt, M., Baur, O., Steffen, H., Jäggi, A., Mayer-Gürr, T., Van Dam, T., Tourian, M. J., Sosnica, K., Zehentner, N., & Sneeuw, N. (2014). How well can the combination of hlSST and SLR replace GRACE?
    38. Weigelt, Mand Van Dam, T., Baur, O., Steffen, H., Tourian, M. J., Jäggi, A., Prange, L., Meyer, U., Bock, H., Mayer-Gürr, T., Zehentner, N., & Sneeuw, N. (2014). Pushing the limits of gravity field recovery from high-low satellite-to-satellite tracking -- a combination of 10 years of data of the satellite pseudo-constellation CHAMP, GRACE and GOCE. http://www.bernese.unibe.ch/publist/2014/pres/mw_EGU_2014.pdf
    39. Wu, G., Tourian, M. J., & Sneeuw, N. (2014). Monitoring Lake Level Variations in Yangtze River Basin Derived from Multi-Mission Satellite Altimetry.
    40. Ye, Z., Sneeuw, N., & Liu, L. (2014). 3D constrained inversion of airborne gravity gradient data using the ART method.
    41. Ye, Z., Sneeuw, N., Tenzer, R., & Liu, L. (2014). Depth inversion of a deep homogeneous layer using gravity and vertical gravity gradient disturbance.
    42. Zhang, J., Tourian, M. J., & Sneeuw, N. (2014). River discharge estimation of Yangtze River by least-squares prediction.
    43. Zhang, J., Tourian, M. J., & Sneeuw, N. (2014). Storage and discharge estimation of Danube basin by least-squares prediction.
    44. Zhang, Y., Widmer-Schnidrig, R., & Sneeuw, N. (2014). Coherency analysis between superconducting gravimeters at BFO and Strasbourg.
    45. Zhourun, Y., Sneeuw, N., & Liu, L. (2014). Moho depth inversion from gravity and gravity gradient data. https://earth.esa.int/documents/10174/1860854/3_Zhourun_v3
  11. 2013

    1. Chen, Q., Zhang, J., Wang, L., Van Dam, T., Weigelt, M., Devaraju, B., & Sneeuw, N. (2013). Comparison of seasonal hydrological loading information from GPS and GRACE observations.
    2. Chen, Q., Weigelt, M., Sneeuw, N., & Van Dam, T. (2013). On time-variable seasonal signals: comparison of SSA and Kalman filtering based approaches.
    3. Chen, Q., Zhang, J., Devaraju, B., & Sneeuw, N. (2013). Seasonal loading deformation from GPS and GRACE observations on the Tibetan Plateau.
    4. Chen, Q., Van Dam, T., Sneeuw, N., Collilieux, X., Weigelt, M., & Rebischung, P. (2013). Singular spectrum analysis for modeling seasonal signals from GPS time series. 72, 25--35. https://doi.org/10.1016/j.jog.2013.05.005
    5. Cramer, M., Schwieger, V., Fritsch, D., Keller, W., Kleusberg, A., & Sneeuw, N. (2013). Geoengine -- The University of Stuttgart International Master Program with more than 6 years of experience. Environment for Sustainability, 19. http://www.fig.net/resources/proceedings/fig_proceedings/fig2013/papers/ts01e/TS01E_cramer_schwieger_et_al_6689.pdf
    6. Devaraju, B., & Sneeuw, N. (2013). On the spatial resolution of filters on the sphere.
    7. Elmi, O., Tourian, M. J., & Sneeuw, N. (2013). A comparison between remote sensing approaches to water extent monitoring.
    8. Elmi, O., Tourian, M. J., & Sneeuw, N. (2013). Monitoring of the hydrological cycle using remote sensing approaches.
    9. Elsaka, B., Raimondo, J. C., Brieden, P., Reubelt, T., Kusche, J., Flechtner, F., Iran Pour, S., Sneeuw, N., & Müller, J. (2013). Comparing seven candidate mission configurations for temporal gravity field retrieval through full-scale numerical simulation (1). 88(1), Article 1. https://doi.org/10.1007/s00190-013-0665-9
    10. Elsaka, B., Raimondo, J. C., Brieden, P., Reubelt, T., Kusche, J., Flechtner, F., Sneeuw, N., & Müller, J. (2013). Full-scale numerical simulation scenarios using three-month observations of possible future satellite-gravimetric missions.
    11. Gruber, T. H., Pail, R., Murböck, M., Sneeuw, N., Reubelt, T., Iran Pour, S., Müller, J., Flury, J., Brieden, P., Naemi, M., Danzmann, K., Heinzel, G., Sheard, B., Müller, V., Kusche, J., Löcher, A., Feili, D., Flechtner, F., Raimondo, J. C., … Langemann, M. (2013). Next Generation Satellite Gravimetry Mission Study (NGGM-D).
    12. Iran Pour, S., Reubelt, T., Ellmer, M., & Sneeuw, N. (2013). Influence of Ground-Track Pattern Distribution of Double Inline Satellite Pair on Quality of the Gravity Solutions.
    13. Iran Pour, S., Reubelt, T., & Sneeuw, N. (2013). Quality assessment of sub-Nyquist recovery from future gravity satellite missions (5). 52(5), Article 5. https://doi.org/10.1016/j.asr.2013.05.026
    14. Iran Pour, S., Reubelt, T., & Sneeuw, N. (2013). Searching for the optimal dual pair gravity satellite missions.
    15. Lorenz, C., Kunstmann, H., Devaraju, B., & Sneeuw, N. (2013). Assimilation of GRACE and hydro-meteorological information for improving large-scale total water storage changes.
    16. Meyer, U., Jäggi, A., Bock, H., Beutler, G., Dahle, C., & Sneeuw, N. (2013). Orbit and gravity field: common versus sequential analysis. http://boris.unibe.ch/44131/1/Marussi2013_UM.pdf
    17. Murböck, M., Pail, R., Reubelt, T., Sneeuw, N., Gruber, T., & Daras, I. (2013). On Reducing Temporal Aliasing with Multi-Satellite Formations.
    18. Reubelt, T., Baur, O., Weigelt, M., Mayer-Gürr, T., Sneeuw, N., Van Dam, T., & Tourian, M. J. (2013). On the capability of non-dedicated GPS-tracked satellite constellations for estimating mass variations: case study Swarm.
    19. Reubelt, T., Baur, O., Weigelt, M., & Sneeuw, N. (2013). On the capability of SWARM for estimating time-variable gravity fields and mass variations.
    20. Roohi, S., & Sneeuw, N. (2013). Analysis of sampling behavior of candidate SWOT satellite orbits.
    21. Roohi, S., & Sneeuw, N. (2013). Lake level variations from satellite radar altimetry with retracking of multi-leading edge.
    22. Roohi, S., & Sneeuw, N. (2013). Monitoring drying up of Urmia lake with satellite altimetry.
    23. Roth, M., Sneeuw, N., & Keller, W. (2013). Euler Deconvolution of GOCE Gravity Gradiometry Data. In W. Nagel, D. Kröner, & M. Resch (Eds.), High Performance Computing in Science and Engineering ’12 (pp. 503--515). Springer Berlin Heidelberg. https://doi.org/10.1007/978-3-642-33374-3_36
    24. Sharif, M. A., Sneeuw, N., Seif, M., & Farzaneh, S. (2013). A semi-analytical formulation of the Earth’s flattening on the satellite formation flying observables using the Lagrange coefficients.
    25. Sharifi, M. A., Sneeuw, N., & Ghobadi, K. (2013). Analysis of GOCE data based on the Rosborough method.
    26. Sneeuw, N., Devaraju, B., & Tourian, M. J. (2013). Die Vermessung der Welt -- aus dem All. In Der Traum vom Fliegen (9; Issue 9, pp. 56--63). Universität Stuttgart. http://www.uni-stuttgart.de/hkom/publikationen/themenheft/09/index.html
    27. Sneeuw, N., Thor, R., & Tourian, M. J. (2013). River discharge from ungauged catchments by least-squares prediction.
    28. Sneeuw, N. (2013). Rosborough representation in satellite gravimetry.
    29. Thor, R., Tourian, M. J., & Sneeuw, N. (2013). Least squares prediction of discharge over ungauged basins.
    30. Tourian, M. J., Elmi, O., & Sneeuw, N. (2013). A multi-sensor approach to monitor the desiccation of Lake Urmia in Iran.
    31. Tourian, M. J., Sneeuw, N., & Bárdossy, A. (2013). A quantile function approach to discharge estimation from satellite altimetry (ENVISAT) (7). 49(7), Article 7. https://doi.org/10.1002/wrcr.20348
    32. Tourian, M. J., Lorenz, C., Devaraju, B., Riegger, J., Kunstmann, H., & Sneeuw, N. (2013). Estimating runoff using hydro-geodetic approaches; assessment and comparison.
    33. Tourian, M. J., Thor, R., Riegger, J., & Sneeuw, N. (2013). Runoff estimation using satellite altimetry, GRACE and least squares prediction.
    34. Tourian, M. J., Sneeuw, N., & Bárdossy, A. (2013). A quantile function approach to discharge estimation from satellite altimetry (ENVISAT). Water Resources Research, 49(7), Article 7. https://doi.org/10.1002/wrcr.20348
    35. Van Dam, T., Tourian, M. J., Weigelt, M., Sneeuw, N., Jäggi, A., & Prange, L. (2013). Hydrological mass changes inferred from high-low satellite-to-satellite tracking data. http://meetingorganizer.copernicus.org/EGU2013/EGU2013-10138-1.pdf
    36. Varga, P., Krumm, F. W., Grafarend, E. W., Sneeuw, N., Horvath, F., & Schreider, A. A. (2013). Axial rotation and paleogeodynamics during Phaneorozoic.
    37. Viswakarama, B. D., Jain, K., Sneeuw, N., & Devaraju, B. (2013). Mumbai 2005, Bihar 2008 flood reflected in mass changes seen by GRACE satellites (3). 41(3), Article 3. https://doi.org/10.1007/s12524-012-0256-x
    38. Wang, L., Van Dam, T., Weigelt, M., Chen, Q., Tourian, M. J., & Sneeuw, N. (2013). An inversion approach for determining water storage change from 3-D GPS coordinates time series in Europe.
    39. Weigelt, M., Van Dam, T., Bandikova, T., Flury, J., & Sneeuw, N. (2013). A variant of the differential gravimetry approach for low-low satellite-to-satellite tracking based on angular velocities. https://orbilu.uni.lu/bitstream/10993/14252/1/Weigelt2013c.pdf
    40. Weigelt, M., Sneeuw, N., Schrama, E. J. O., & Visser, P. N. A. M. (2013). An improved sampling rule for mapping geopotential functions of a planet from a near polar orbit (2). 87(2), Article 2. https://doi.org/10.1007/s00190-012-0585-0
    41. Weigelt, M., Van Dam, T., Jäggi, A., Prange, L., Sneeuw, N., & Keller, W. (2013). Long-term mass changes over Greenland derived from high-low satellite-to-satellite tracking. http://www.bernese.unibe.ch/publist/2013/post/EGU2013_Weigeltetal_Greenland.pdf
    42. Weigelt, M., Van Dam, T., Jäggi, A., Prange, L., Tourian, M. J., Keller, W., & Sneeuw, N. (2013). Time-variable gravity signal in Greenland revealed by high-low satellite-to-satellite tracking (7). 118(7), Article 7. https://doi.org/10.1002/jgrb.50283
    43. Wu, G., Elmi, O., Tourian, M. J., & Sneeuw, N. (2013). Combined Measurement of Lake Levels and Surface Extent Change in the Yangtze River Basin.
    44. Wu, G., Elmi, O., Tourian, M. J., & Sneeuw, N. (2013). Combined Measurements of Lake Level and Surface Extent Change.
    45. Wu, G., Elmi, O., Tourian, M. J., & Sneeuw, N. (2013). Combined Measurements of Lake Levels and Surface Extent Change. https://www.gis.uni-stuttgart.de/forschung/doc/WU_2013a.pdf
    46. Ye, Z., Sneeuw, N., & Liu, L. (2013). Computation of topographic and isostatic effect on GOCE in the frequency domain.
    47. Zhang, Y., Widmer-Schnidrig, R., & Sneeuw, N. (2013). Can SGs be used to validate GRACE Gravity Field Models? -- Coherency Analysis between SGs at BFO and Strasbourg.
  12. 2012

    1. Baur, O., Reubelt, T., Weigelt, M., Roth, M., & Sneeuw, N. (2012). GOCE orbit analysis: Long-wavelength gravity field determination using the acceleration approach (3). 50(3), Article 3. https://doi.org/10.1016/j.asr.2012.04.022
    2. Chen, Q., Van Dam, T., Sneeuw, N., Collilieux, X., & Rebischung, P. (2012). Extracting seasonal signals from continuous GPS time series with modern statistical methods.
    3. Chen, Q., & Sneeuw, N. (2012). GPS time series analysis with Monte-Carlo singular spectrum analysis.
    4. Chen, Q., Van Dam, T., Sneeuw, N., & Collilieux, X. (2012). Separation of modulated seasonal signals from GPS time series with singular spectrum analysis.
    5. Devaraju, B., & Sneeuw, N. (2012). Anisotropic low-pass filters on the sphere: Design and performance analysis.
    6. Devaraju, B., & Sneeuw, N. (2012). Design and analysis of anisotropic low-pass filters on the sphere. http://meetingorganizer.copernicus.org/EGU2012/EGU2012-11640.pdf
    7. Devaraju, B., Lorenz, C., Tourian, M., & Sneeuw, N. (2012). Estimating hydrological mass changes from GRACE level-2 data: filtering and data assimilation.
    8. Devaraju, B., Lorenz, C., Tourian, M., Riegger, J., & Sneeuw, N. (2012). Estimating runoff from GRACE, hydrological data and hydro-meteorological models - a Kalman filtering approach.
    9. Devaraju, B., Lorenz, C., Tourian, M., & Sneeuw, N. (2012). Estimating runoff from the assimilation of GRACE data and hydro-meteorological models.
    10. Devaraju, B., Lorenz, C., Tourian, M., & Sneeuw, N. (2012). On the cyclo-stationarity of the time-variable Kaula rule.
    11. Devaraju, B., & Sneeuw, N. (2012). Performance Analysis of Isotropic Spherical Harmonic Spectral Windows. In N. Sneeuw, P. Novák, M. Crespi, & F. Sansò (Eds.), Proceedings VII Hotine-Marussi Symposium on Mathematical Geodesy, Rome, Italy (Vol. 137, pp. 105--110). Springer Berlin Heidelberg. https://doi.org/10.1007/978-3-642-22078-4-16
    12. Fersch, B., Kunstmann, H., Bárdossy, A., Devaraju, B., & Sneeuw, N. (2012). Continental-scale basin water storage variation from global and dynamically downscaled atmospheric water budgets in comparison with GRACE-derived observations (5). 13(5), Article 5. https://doi.org/10.1175/jhm-d-11-0143.1
    13. Iran Pour, S., Reubelt, T., & Sneeuw, N. (2012). How do the different satellite orbit configurations sample the gravity field?
    14. Iran Pour, S., & Sneeuw, N. (2012). Properties and Applications of EOF-Based Filtering of GRACE Solutions. In N. Sneeuw, P. Novák, M. Crespi, & F. Sansò (Eds.), Proceedings VII Hotine-Marussi Symposium on Mathematical Geodesy, Rome, Italy (Vol. 137, pp. 273--278). Springer Berlin Heidelberg. https://doi.org/10.1007/978-3-642-22078-4_41
    15. Iran Pour, S., Reubelt, T., Ellmer, M., & Sneeuw, N. (2012). Quality assessment of sub-Nyquist recovery from future gravity satellite missions.
    16. Novák, P., Baur, O., Martinec, Z., Sneeuw, N., Tsoulis, D., Vermeersen, B., van der Wal, W., Roth, M., Sebera, J., Valko, M., & Hoeck, E. (2012). Towards a better understanding of the Earth’s interior and geophysical exploration research “GOCE-GDC.”
    17. Reubelt, T., Sneeuw, N., & Grafarend, E. (2012). Comparison of kinematic orbit analysis methods for gravity field recovery. In N. Sneeuw, P. Novák, M. Crespi, & F. Sansò (Eds.), Proceedings VII Hotine-Marussi Symposium on Mathematical Geodesy, Rome, Italy (Vol. 137, pp. 259--265). Springer Berlin Heidelberg. https://doi.org/10.1007/978-3-642-22078-4_39
    18. Reubelt, T., Baur, O., Weigelt, M., & Sneeuw, N. (2012). On the capability of SWARM for estimating time-variable gravity fields and mass variations. http://www.gis.uni-stuttgart.de/res/paper/2012/Reubelt_et_al_GGHS2012.pdf
    19. Riegger, J., Tourian, M., Devaraju, B., & Sneeuw, N. (2012). Analysis of GRACE uncertainties by hydrological and hydro-meteorological observations. 59--60, 16--27. https://doi.org/10.1016/j.jog.2012.02.001
    20. Roese-Koerner, L., Devaraju, B., Sneeuw, N., & Schuh, W. D. (2012). A stochastic framework for inequality constrained estimation (11). 86(11), Article 11. https://doi.org/10.1007/s00190-012-0560-9
    21. Roth, M., Sneeuw, N., & Keller, W. (2012). Euler deconvolution of GOCE gravity gradiometry data.
    22. Sneeuw, N., & Devaraju, B. (2012). Analysing the performance of linear low-pass spectral filters on the sphere.
    23. Sneeuw, N., & Tourian, M. (2012). Application of altimetric and gravimetric space geodetic sensors to hydrology.
    24. Sneeuw, N. (2012). Inclination Functions: Orthogonality and Other Properties. In N. Sneeuw, P. Novák, M. Crespi, & F. Sansò (Eds.), Proceedings VII Hotine-Marussi Symposium on Mathematical Geodesy, Rome, Italy (Vol. 137, pp. 267--271). Springer Berlin Heidelberg. https://doi.org/10.1007/978-3-642-22078-4_40
    25. Tourian, M., Sneeuw, N., Riegger, J., & Bárdossy, A. (2012). A new method to derive river discharge from satellite altimetry (ENVISAT). Geoscience and Remote Sensing Symposium (IGARSS), 2012, 5250--5253. https://doi.org/10.1109/IGARSS.2012.6352425
    26. Tourian, M., Riegger, J., & Sneeuw, N. (2012). Satellite altimetry for river discharge.
    27. Tourian, M. J., Sneeuw, N., Riegger, J., & Bardossy, A. (2012, July). A new method to derive river discharge from satellite altimetry (ENVISAT). 2012 IEEE International Geoscience and Remote Sensing Symposium. https://doi.org/10.1109/igarss.2012.6352425
    28. Varga, P., Krumm, F., Doglioni, C., Grafarend, E., Panza, G. F., Riguzzi, F., Schreider, A. A., & Sneeuw, N. (2012). Did a change in tectonic regime occur between the Phanerozoic and earlier Epochs? (2). 23(2), Article 2. https://doi.org/10.1007/s12210-012-0172-6
    29. Weigelt, M., Van Dam, T., Jäggi, A., Prange, L., Sneeuw, N., & Keller, W. (2012). Large scale time variability from high-low SST -- filling the gap between GRACE and GFO.
    30. Weigelt, M., Jäggi, A., Prange, L., Chen, Q., Keller, W., & Sneeuw, N. (2012). Time variability from high-low SST -- filling the gap between GRACE and GFO. http://www.bernese.unibe.ch/publist/2012/pres/Pres_GGHS2012_Weigeltetal.pdf
  13. 2011

    1. Anselmi, A., Cesare, S., Visser, P., Van Dam, T., Sneeuw, N., Gruber, T., Altés, B., Christophe, B., Cossu, F., Ditmar, P. G., Murböck, M., Parisch, M., Renard, M., Reubelt, T., Sechi, G., & Texieira Da Encarnacao, J. G. (2011). Assessment of a next generation gravity mission to monitor the variations of Earth’s gravity field (Thales Alenia Space report SD-RP-AI-0721; Issue Thales Alenia Space report SD-RP-AI-0721).
    2. Baur, O., & Sneeuw, N. (2011). Are genetic algorithms a universal parameter estimation tool in geodesy?
    3. Baur, O., & Sneeuw, N. (2011). Assessing Greenland ice mass loss by means of point-mass modeling: a viable methodology.
    4. Baur, O., Weigelt, M., Reubelt, T., & Sneeuw, N. (2011). Towards an optimal GOCE-only gravity field solution: recovery of long-wavelength features via the acceleration approach.
    5. Cai, J., Sneeuw, N., Yang, Q., & Baur, O. (2011). GOCE gravity field model derived from rotational invariants. http://www.uni-stuttgart.de/gi/research/Geodaetische_Woche/2011/Session2/S2-16-Cai.pdf
    6. Cai, J., Sneeuw, N., & Baur, O. (2011). GOCE gravity field model derived from the rotational invariants of the gravitational tensor.
    7. Cai, J., Sneeuw, N., Yang, Q., & Baur, O. (2011). Implementing a stochastic model for GOCE invariants.
    8. Cai, J., Sneeuw, N., Yang, Q., & Baur, O. (2011). Stochastic modeling of GOCE invariants in real data analysis.
    9. Elsaka, B., Raimondo, J. C., Reubelt, T., Iran Pour, S., Kusche, J., Flechtner, F., & Sneeuw, N. (2011). Full-Scale mission simulations.
    10. Hirth, M., Fichter, W., Sheard, B., Heinzel, G., Reubelt, T., & Sneeuw, N. (2011). Control system design issues of future gravity missions. G.
    11. Hirth, M., Fichter, W., Reubelt, T., Sneeuw, N., & Iran Pour, S. (2011). Performance aspects of future gravity mission constellations.
    12. Iran Pour, S., Sneeuw, N., Weigelt, M., & Reubelt, T. (2011). Assessment of the aliasing effect of white noise on different solutions in gravity recovery simulations of a GRACE-like mission.
    13. Iran Pour, S., Sneeuw, N., Reubelt, T., & Weigelt, M. (2011). Comparison of full-repeat and sub-cycle solutions in gravity recovery simulations of a GRACE-like mission.
    14. Iran Pour, S., Sneeuw, N., Reubelt, T., & Weigelt, M. (2011). Quality assessment of simulations of future gravity field missions for hydrological purposes.
    15. Iran Pour, S., Sneeuw, N., & Reubelt, T. (2011). Quality assessment of sub-cycle vs. full repeat period solutions of future gravity field missions,.
    16. Lin, Y., Zhang, S., Cai, J., & Sneeuw, N. (2011). Application of wavelet support vector regression on SAR data de-noising (4). 22(4), Article 4. https://doi.org/10.3969/j
    17. Murböck, M., Pail, R., Gruber, T., Reubelt, T., Sneeuw, N., Fichter, W., & Müller, J. (2011). Concepts for future gravity satellite missions.
    18. Reubelt, T., Sneeuw, N., & Iran Pour, S. (2011). Are subcycle solutions meaningful for time variable gravity field analysis from future satellite missions?
    19. Reubelt, T., Sneeuw, N., & Iran Pour, S. (2011). Quick-look gravity field analysis of formation scenarios selection. In Geotechnologien -- Science Report No. 17 (pp. 126--133). Helmholtz-Zentrum Potsdam, Deutsches GeoForschungsZentrum GFZ. https://doi.org/10.2312/GFZ.gt.17.19
    20. Reubelt, T., Sneeuw, N., Iran Pour, S., Fichter, W., & Hirth, M. (2011). Sensitivity analysis of future satellite formations and configurations of them.
    21. Roese-Koerner, L., Devaraju, B., Schuh, W. D., & Sneeuw, N. (2011). Describing the quality of inequality constrained estimates.
    22. Schall, J., Baur, O., Brockmann, J. M., Cai, J., Eicker, A., Kargoll, B., Krasbutter, I., Kusche, J., Mayer-Gürr, T., Schuh, W. D., Shabanloui, A., & Sneeuw, N. (2011). Real data Analysis GOCE -- Gravity field determination from GOCE.
    23. Schlesinger, R., Roth, M., Sneeuw, N., & Nwoke, C. (2011). Schweresignal im Geothermiefall Staufen -- Jahresanalyse.
    24. Sneeuw, N., Weigelt, M., & Xu, X. (2011). Sampling the Earth with Satellites in Near-polar Orbit.
    25. Sneeuw, N. (2011). Spaceborne gravimetry: a novel tool for continental-scale storage change monitoring. http://meetingorganizer.copernicus.org/EGU2011/EGU2011-3344.pdf
    26. Tourian, M., Riegger, J., Sneeuw, N., & Devaraju, B. (2011). Analysis of GRACE uncertainties by hydrological and hydrometeorological observations.
    27. Tourian, M., Riegger, J., & Sneeuw, N. (2011). Long-range spatial correlations in GRACE products: a matter of S2-tidal aliasing? http://meetingorganizer.copernicus.org/EGU2011/EGU2011-5797.pdf
    28. Tourian, M., Riegger, J., Sneeuw, N., & Devaraju, B. (2011). Outlier identification and correction for GRACE aggregated data. 55, 627--640. https://doi.org/10.1007/s11200-009-9007-z
    29. van der Wal, W., Wang, L., Visser, P., Sneeuw, N., & Vermeersen, B. (2011). Evaluating GOCE data near a mid-ocean ridge and possible application to crustal structure in Scandinavia. In L. Ouwehand (Ed.), Proceedings of 4th International GOCE User Workshop, Munich, Germany (ESA SP-696; Issue ESA SP-696). ESA Communications -- ESTEC, Noordwijk, The Netherlands. http://esamultimedia.esa.int/multimedia/publications/SP-696/toc_SP696.pdf
    30. Visser, P., Ditmar, P., Encarnacao, J., Murböck, M., Gruber, T., Van Dam, T., Sneeuw, N., Reubelt, T., Anselmi, A., Cesare, S., Cossu, F., Parisch, M., Sechi, G., Massotti, L., & Aguirre, M. (2011). Scientific assessment of a next generation gravity mission.
    31. Visser, P. N. A. M., Schrama, E. J. O., Sneeuw, N., & Weigelt, M. (2011). Dependency of Resolvable Gravitational Spatial Resolution on Space-Borne Observation Techniques. In S. Kenyon, M. C. Pacino, & U. Marti (Eds.), Geodesy for Planet Earth, Proceedings of the 2009 IAG Symposium, Buenos Aires, Argentina (Vol. 136, pp. 373--379). Springer-Verlag Berlin Heidelberg. https://doi.org/10.1007/978-3-642-20338-1_45
    32. Wang, L., van der Wal, W., & Sneeuw, N. (2011). GOCE gravity models compared to EGM2008, GRACE and ship gravity measurements. http://meetingorganizer.copernicus.org/EGU2011/EGU2011-3719.pdf
    33. Weigelt, M., Baur, O., Reubelt, T., Sneeuw, N., & Roth, M. (2011). Long wavelength gravity field determination from GOCE using the acceleration approach. Proceedings of 4th GOCE User Workshop, ESA, Munich, Germany, ESA SP-696, Article ESA SP-696.
    34. Weigelt, M., Jäggi, A., Prange, L., Keller, W., & Sneeuw, N. (2011). Towards the time-variable gravity field from CHAMP.
    35. Zhang, S., Sneeuw, N., Cai, J., & Li, J. (2011). Zero-difference ambiguity fixing for PPP and precise orbit determination.
    36. Zhao, W., & Sneeuw, N. (2011). Local gravity field modeling by gradiometry.
    37. Zou, X., Cai, J., Sneeuw, N., & Li, J. (2011). Numerical study on the mixed model in the GOCE polar gap problem (3). 14(3), Article 3. https://doi.org/10.1007/s11806-011-0532-x
  14. 2010

    1. Baur, O., & Sneeuw, N. (2010). Assessing Greenland ice mass loss by means of point-mass modelling: methodology and results,.
    2. Baur, O., N, S., Cai, J., & Roth, M. (2010). GOCE data analysis: realization of the invariants approach in a high performance computing environment.
    3. Baur, O., Sneeuw, N., Cai, J., & Roth, M. (2010). GOCE data analysis: realization of the invariants approach in a high performance computing environment. Proceedings of the ESA Living Planet Symposium, Bergen, Norway, ESA SP-686.
    4. Baur, O., Cai, J., & Sneeuw, N. (2010). Spectral approaches to solving the polar gap problem. In F. Flechtner, T. Gruber, A. Güntner, M. Mandea, M. Rothacher, T. Schöne, & J. Wickert (Eds.), System Earth via Geodetic-Geophysical Space Techniques, (pp. 243--253). Springer Berlin Heidelberg. https://doi.org/10.1007/978-3-642-10228-8_19
    5. Brockmann, J. M., Baur, O., Cai, J., Eicker, A., Kargoll, B., Krasbutter, I., Kusche, J., Mayer-Gürr, T., Schall, J., Schuh, W. D., Shabanloui, A., & Sneeuw, N. (2010). REal data AnaLysis GOCE Gravity field determination from GOCE.
    6. Cai, J., Baur, O., & Sneeuw, N. (2010). GOCE gravity field determination by means of rotational invariants: first experiences. In GEOTECHNOLOGIEN Science Report: Öbservation of the System Earth from Space" (Vol. 17, pp. 62--69).
    7. Devaraju, B., Sneeuw, N., Tourian, M. J., Riegger, J., Fersch, B., & Kunstmann, H. (2010). Assimilating GRACE, hydrology and hydro-meteorology datasets for estimating monthly water storage changes over continents.
    8. Iran Pour, S., Sneeuw, N., & Reubelt, T. (2010). Assessments of gravity recovery simulations of future satellite missions by EOF and Canonical Correlation Analysis (CCA).
    9. Iran Pour, S., Sneeuw, N., & Reubelt, T. (2010). Geodetic Error Assessment Tools in the FGM project.
    10. Reubelt, T., Sneeuw, N., & Sharifi, M. A. (2010). Future Mission Design Options for Spatio-Temporal Geopotential Recovery. In S. P. Mertikas (Ed.), Gravity, Geoid and Earth Observation. International Association of Geodesy Symposia, IAG Commission 2: Gravity Field, Chania, Crete, Greece (Vol. 135, pp. 163--170). Springer-Verlag Berlin Heidelbergs. https://doi.org/10.1007/978-3-642-10634-7_22
    11. Reubelt, T., Sneeuw, N., Fichter, W., & Müller, J. (2010). The German joint research project “concepts for future gravity satellite missions.”
    12. Roese-Koerner, L., Devaraju, B., Schuh, W. D., & Sneeuw, N. (2010). Quality description of inequality constrained least-squares estimates.
    13. Schlesinger, R., Sneeuw, N., Asal, R., & Nwoke, C. (2010). Vorläufige Analyse zum Schweresignal im Hebungsgebiet Staufen.
    14. Sneeuw, N. (2010). Future Gravity Missions.
    15. Tourian, M. J., Devaraju, B., Sneeuw, N., & Riegger, J. (2010). Canonical Correlation Analysis (CCA) of GRACE, hydrological and hydro-meteorological signals.
    16. Tourian, M. J., Sneeuw, N., Rigger, J., & Bardossy, A. (2010). Extracting River Discharge from Satellite Altimetry.
    17. Tourian, M. J., Sneeuw, N., & Riegger, J. (2010). Feasibility study of extracting runoff data from satellite altimetry over continental surface waters.
    18. Tourian, M. J., Riegger, J., Devaraju, B., & Sneeuw, N. (2010). Investigation on Inter Cell Correlations of GRACE monthly solutions over the globe.
    19. Tourian, M. J., Riegger, J., Devaraju, B., & Sneeuw, N. (2010). Outlier detection and correction for GRACE data to improve the continental water balance.
    20. Visser, P. N. A. M., Sneeuw, N., Reubelt, T., Losch, M., & Van Dam, T. (2010). Space-borne gravimetric satellite constellations and ocean tides: aliasing effects (2). 181(2), Article 2. https://doi.org/10.1111/j.1365-246x.2010.04557.x
    21. Weigelt, M., Sneeuw, N., & Keller, W. (2010). Evaluation of EGM2008 by Comparison with Global and Local Gravity Solutions from CHAMP. In S. P. Mertikas (Ed.), Gravity, Geoid and Earth Observation (Vol. 135, pp. 497--504). Springer-Verlag Berlin Heidelberg. https://doi.org/10.1007/978-3-642-10634-7
    22. Zeile, O., Lachenmann, M., Baumstark, E., Mohr, A., Bock, D., Laufer, R., Sneeuw, N., & Röser, H. P. (2010). Analysis of orbital lifetime and observation conditions of small lunar satellites (3--4). 66(3--4), Article 3--4. https://doi.org/10.1016/j.actaastro.2009.07.008
  15. 2009

    1. Baur, O., Sneeuw, N., & Cai, J. (2009). GOCE Realdatenauswertung unter Anwendung der Invariantendarstellung, Projekttreffen REAL-GOCE.
    2. Baur, O., & Sneeuw, N. (2009). Punktmassenschätzung aus zeitvariablen GRACE Schwerefeldern. http://www.uni-stuttgart.de/gi/research/Geodaetische_Woche/2009/session2/Baur.pdf
    3. Devaraju, B., Tourian, M. J., Sneeuw, N., & Riegger, J. (2009). Inter-catchment correlation estimates from filtered GRACE monthly solutions.
    4. Devaraju, B., & Sneeuw, N. (2009). Performance analysis of isotropic spherical harmonic spectral windows.
    5. Fersch, B., Kunstmann, H., Sneeuw, N., & Devaraju, B. (2009). Continental scale atmospheric and terrestrial water budget modeling and comparison to GRACE. http://bibliothek.fzk.de/zb/veroeff/78046.pdf
    6. Fersch, B., Kunstmann, H., Devaraju, B., & Sneeuw, N. (2009). Large scale water balance estimations through regional atmospheric moisture flux modeling and comparison to GRACE signals. http://iahs.info/uploads/dms/iahs_333_0211.pdf
    7. Iran Pour, S., Bentel, K., & Sneeuw, N. (2009). EOF-based filtering of GRACE gravity field solutions: A comparison between spectral and spatial approaches. http://meetingorganizer.copernicus.org/EGU2009/EGU2009-2853-1.pdf
    8. Iran Pour, S., & Sneeuw, N. (2009). Properties and applications of EOF-based filtering of GRACE solutions.
    9. Iran Pour, S., Sneeuw, N., & Devaraju, B. (2009). The EOF-based filtering of GRACE solutions - Properties and applications.
    10. Lin, Y., Zhang, S., Cai, J., & Sneeuw, N. (2009). Application of Wavelet Support Vector Regression on SAR data Denoising.
    11. Lorenz, C., Devaraju, B., & Sneeuw, N. (2009). On the computation of a reliable signal covariance for the stochastic filtering of time-variable gravity field from GRACE.
    12. Reubelt, T., Sneeuw, N., & Grafarend, E. (2009). Comparison of kinematic orbit analysis methods for gravity field recovery.
    13. Reubelt, T., Sneeuw, N., Visser, P., Van Dam, T., & Losch, M. (2009). Future satellite missions for time-variable geopotential recovery. http://meetingorganizer.copernicus.org/EGU2009/EGU2009-10285.pdf
    14. Sneeuw, N. (2009). Inclination functions: orthogonality and other properties.
    15. Sneeuw, N., Schrama, E. J. O., Visser, P. N. A. M., & Weigelt, M. (2009). Spatial resolution from repeat orbit configurations: the Colombo-Nyquist rule revisited. http://meetingorganizer.copernicus.org/EGU2009/EGU2009-2664.pdf
    16. Tourian, M. J., Sneeuw, N., & Bárdossy, A. (2009). Controls on satellite altimetry over non-ocean surfaces for hydrological purposes. http://meetingorganizer.copernicus.org/EGU2009/EGU2009-2713.pdf
    17. Weigelt, M., Sideris, M. G., & Sneeuw, N. (2009). On the influence of the ground track on the gravity field recovery from high-low satellite-to-satellite tracking missions: CHAMP monthly gravity field recovery using the energy balance approach revisited (12). 83(12), Article 12. https://doi.org/10.1007/s00190-009-0330-5
  16. 2008

    1. Baur, O., Sneeuw, N., & Grafarend, E. (2008). Methodology and use of tensor invariants for satellite gravity recovery (4). 82(4), Article 4. https://doi.org/10.1007/s00190-007-0178-5
    2. Cai, J., Sneeuw, N., Zou, X., & Baur, O. (2008). The study of the combination approaches in solving the polar gap problems.
    3. Devaraju, B., Sneeuw, N., Kindt, H., Riegger, J., & Lorenz, C. (2008). Constraining monthly GRACE solutions with hydrological mass estimates.
    4. Devaraju, B., Sneeuw, N., Kindt, H., & Riegger, J. (2008). Estimating GRACE monthly water storage change consistent with hydrology.
    5. Devaraju, B., Sneeuw, N., Kindt, H., & Riegger, J. (2008). Estimating GRACE monthly water storage change consistent with hydrology by assimilating hydrological information. In S. P. Mertikas (Ed.), Proceedings of the IAG symposium on Gravity, Geoid, and Earth Observation 2008, Chania, Crete, Greece (Vol. 135, pp. 603–610). Springer Berlin Heidelberg. https://doi.org/10.1007/978-3-642-10634-7_80
    6. Devaraju, B., & Sneeuw, N. (2008). Impact on filtering on the spatial covariance structure of GRACE.
    7. Reubelt, T., & Sneeuw, N. (2008). Raum-Zeit-Auflösung und künftige Satellitenkonfigurationen.
    8. Sharifi, M. A., Sneeuw, N., Baur, O., & Reubelt, T. (2008). Repeat orbit design using genetic algorithms.
    9. Sneeuw, N., Sharifi, M. A., & Schaub, H. (2008). Formation Flight Stability in a Gravitational Field. In K. Fletcher (Ed.), Proceedings of the 3rd International Symposium on Formation Flying, Missions and Technologies, Nordwijk, The Netherlands: Vol. ESA SP-654. ESA Communication Production Office.
    10. Sneeuw, N., Sharifi, M. A., & Keller, W. 29. 5.-2. 6. 2006). (2008). Gravity Recovery from Formation Flight Missions. In P. Xu, J. Liu, & A. Dermanis (Eds.), VI Hotine-Marussi Symposium on Theoretical and Computational Geodesy, Wuhan, PR China (Vol. 132, pp. 29--34). Springer Verlag. https://doi.org/10.1007/978-3-540-74584-6_5
    11. Van Dam, T., Visser, P., Sneeuw, N., Losch, M., Gruber, T., Bamber, J., Bierkens, M., King, M., & Smit, M. (2008). Monitoring and Modelling Individual Sources of Mass Distribution and Transport in the earth System by Means of Satellites.
    12. Weigelt, M., Sneeuw, N., & Keller, W. (2008). Evaluation of PGM2007A by comparison with globally and locally estimated gravity solutions from CHAMP.
    13. Xu, C., Sneeuw, N., & Sideris, M. G. (2008). The Torus Approach in Spaceborne Gravimetry. In P. Xu, J. Liu, & A. Dermanis (Eds.), VI Hotine-Marussi Symposium on Theoretical and Computational Geodesy, Wuhan, PR China (Vol. 132, pp. 23--28). Springer Verlag. https://doi.org/10.1007/978-3-540-74584-6_4
    14. Zou, X., Li, J., Sneeuw, N., & Cai, J. (2008). Developments in satellite gravity data analysis at Wuhan University.
  17. 2007

    1. Devaraju, B., & Sneeuw, N. (2007). Stochastic averaging of GRACE data.
    2. Sharifi, M., Sneeuw, N., & Keller, W. (2007). Gravity recovery capability of four generic satellite formations. In A. Kiliçoglu & R. Forsberg (Eds.), Gravity field of the Earth: General Command of Mapping: Vol. 18 (special issue) (pp. 211--216).
    3. Siemes, C., Schuh, W., Cai, J., Sneeuw, N., & Baur, O. (2007). GOCE data processing: the numerical challenge of data gaps. In GEOTECHNOLOGIEN Science Report No 11 (pp. 99--105).
    4. Sneeuw, N., & Kusche, J. (2007). Preface. Special issue: Satellite Gravimetry and Inverse Problems (1--3). 81(1--3), Article 1--3. https://doi.org/10.1007/s00190-006-0119-8
    5. Weigelt, M., Van Der Wal, W., Sneeuw, N., Keller, W., & Baur, O. (2007). Time variable gravity field recovery in local areas by means of Slepian functions.
    6. Xu, C., Sneeuw, N., & Sideris, M. (2007). Joint SST and SGG Gravity Field Solutions Using the Torus Approach. In A. Kiliçoglu & R. Forsberg (Eds.), Gravity field of the Earth: General Command of Mapping: Vol. 18 (special issue) (pp. 169--174).
    7. Xu, C., Weigelt, M., Sideris, M., & Sneeuw, N. (2007). Spaceborne gravimetry and gravity field recovery (3--4). 53(3--4), Article 3--4. https://doi.org/10.5589/q07-008
  18. 2006

    1. Baur, O., & Sneeuw, N. (2006). Slepian Approach Revisited: New Studies to Overcome the Polar Gap.
    2. Devaraju, B., Braun, A., & Sneeuw, N. (2006). Vertical crustal deformation analysis with the Canadian precise levelling network in Eastern Canada for the purpose of defining a kinematic vertical datum for Canada.
    3. Weigelt, M., Sideris, M., & Sneeuw, N. (2006). Comparison and Combination of CHAMP and GRACE Data for Gravity Field Analysis.
    4. Weigelt, M., Sideris, M., & Sneeuw, N. (2006). High-latitude local gravity field recovery from CHAMP with least-squares collocation. https://orbilu.uni.lu/bitstream/10993/14406/1/Weigelt2006a.pdf
    5. Xu, C., Sideris, M., & Sneeuw, N. (2006). Gravity Field Recovery from Spaceborne Gravimetry.
    6. Xu, C., Sneeuw, N., & Sideris, M. (2006). Joint SST and SGG Gravity Field Solution Using Torus Approach.
    7. Xue, Y., & Sneeuw, N. (2006). Ein stabiler Algorithmus zur Berechnung von Legendre-Funktionen hohen Grades.
  19. 2005

    1. Gruber, C., Tsoulis, D., & Sneeuw, N. (2005). CHAMP accelerometer calibration by means of the equation of motion and an a-priori gravity model (2). 130(2), Article 2. http://geodaesie.info/zfv/heftbeitrag/1271
    2. Sneeuw, N., Flury, J., & Rummel, R. (2005). Science requirements on future missions and simulated mission scenarios (1). 94(1), Article 1. https://doi.org/10.1007/s11038-004-7605-x
    3. Tsoulis, D., Gruber, C., & Sneeuw, N. (2005). A novel approach for the calibration of the CHAMP accelerometer using short data spans (2). 64(2), Article 2.
To the top of the page