Dieses Bild zeigt Nico Sneeuw

Nico Sneeuw

Herr Prof. Dr.-Ing.

Institutsleitung, Lehrstuhl Erdmessung, Prodekan

Kontakt

+49 711 685 83389
+49 711 685 83285

Geschwister-Scholl-Str. 24D
70174 Stuttgart
Deutschland
Raum: 5.305

  1. 2023

    1. Da Silva, E., Woolliams, E. R., Picot, N., Poisson, J.-C., Skourup, H., Moholdt, G., Fleury, S., Behnia, S., Favier, V., Arnaud, L., Aublanc, J., Fouqueau, V., Taburet, N., Renou, J., Yesou, H., Tarpanelli, A., Camici, S., Fredensborg Hansen, R. M., Nielsen, K., … Féménias, P. (2023). Towards Operational Fiducial Reference Measurement (FRM) Data for the Calibration and Validation of the Sentinel-3 Surface Topography Mission over Inland Waters, Sea Ice, and Land Ice. Remote Sensing, 15(19), Article 19. https://doi.org/10.3390/rs15194826
    2. Deng, X.-L., & Sneeuw, N. (2023). Analytical Solutions for Gravitational Potential up to Its Third-order Derivatives of a Tesseroid, Spherical Zonal Band, and Spherical Shell. Surveys in Geophysics. https://doi.org/10.1007/s10712-023-09774-z
    3. Lin, Y., Gao, C., Li, X., Rong, Y., Zhang, T., Li, L., Zhou, X., Cai, J., Sneeuw, N., & Yu, J. (2023). ATTRIBUTION ANALYSIS OF CLIMATE CHANGE AND HUMAN ACTIVITIES TO WATER VOLUME VARIATION IN LARGE LAKES. In International Archives of the ISPRS. ISPRS Geospacial Week 2023, Egypt.
    4. Sneeuw, N., Bergé-Nguyen, M., & Crétaux, J.-F. (2023). Physical Heights of Inland Lakes. X Hotine-Marussi Symposium on Mathematical Geodesy, 7. https://doi.org/10.1007/1345_2023_192
    5. Tourian, M. J., Saemian, P., Ferreira, V. G., Sneeuw, N., Frappart, F., & Papa, F. (2023). A copula-supported Bayesian framework for spatial downscaling of GRACE-derived terrestrial water storage flux. Remote Sensing of Environment, 295, 113685.
    6. Tourian, M. J., Papa, F., Elmi, O., Sneeuw, N., Kitambo, B., Tshimanga, R. M., Paris, A., & Calmant, S. (2023). Current availability and distribution of Congo Basin’s freshwater resources. Communications Earth & Environment, 4(1), Article 1. https://doi.org/10.1038/s43247-023-00836-z
    7. Wang, B., & Sneeuw, N. (2023). Crossover Adjustment of ICESat-2 Satellite Altimetry for the Arctic Region. Advances in Space Research. https://doi.org/10.1016/j.asr.2023.07.041
    8. Yi, S., Saemian, P., Sneeuw, N., & Tourian, M. J. (2023). Estimating runoff from pan-Arctic drainage basins for 2002–2019 using an improved runoff-storage relationship. Remote Sensing of Environment, 298, 1–23. https://doi.org/10.1016/j.rse.2023.113816
    9. Yi, S., Saemian, P., Sneeuw, N., & Tourian, M. J. (2023). Estimating runoff from pan-Arctic drainage basins for 2002–2019 using an improved runoff-storage relationship. Remote Sensing of Environment, 298, 113816. https://doi.org/10.1016/j.rse.2023.113816
    10. Yu, J., Rong, Y., Lin, Y., Li, X., Gao, C., Zhang, T., Zhou, X., Cai, J., & Sneeuw, N. (2023). Spatiotemporal dynamic impacts of Lake Victoria water volume variations on sustainable economic development. International Journal of Applied Earth Observation and Geoinformation, 123, 103475. https://doi.org/10.1016/j.jag.2023.103475
  2. 2022

    1. Camici, S., Tarpanelli, A., Brocca, L., Massari, C., Nielsen, K., Sneeuw, N., Tourian, M. J., Yi, S., Restano, M., & Benveniste, J. (2022). Satellite observations for runoff and river discharge estimation: STREAMRIDE approach&\#160$\mathsemicolon$. https://doi.org/10.5194/egusphere-egu22-9234
    2. Camici, S., Giuliani, G., Brocca, L., Massari, C., Tarpanelli, A., Hashemi Farahani, H., Sneeuw, N., Restano, M., & Benveniste, J. (2022). Synergy between satellite observations of soil moisture and water storage anomalies for runoff estimation. Geoscientific Model Development, 15, Article 15. https://doi.org/10.5194/gmd-15-6935-2022
    3. Liu, B., Zou, X., Yi, S., Sneeuw, N., Li, J., & Cai, J. (2022). Reconstructing GRACE-like time series of high mountain glacier mass anomalies. Remote Sensing of Environment, 280, 1–22. https://doi.org/10.1016/j.rse.2022.113177
    4. Saemian, P., Tourian, M. J., AghaKouchak, A., Madani, K., & Sneeuw, N. (2022). How much water did Iran lose over the last two decades? Journal of Hydrology: Regional Studies, 41, 101095. https://doi.org/10.1016/j.ejrh.2022.101095
    5. Sneeuw, N., Wang, B., Bao, J., Ke, S., & Tourian, M. (2022). Constraining river streamflow determination using bathymetry and slope from ICESat-2 satellite altimetry. Copernicus GmbH. https://doi.org/10.5194/egusphere-egu22-7475
    6. Tourian, M. J., Papa, F., Elmi, O., Sneeuw, N., Kitambo, B., Tshimanga, R., Paris, A., & Calmant, S. (2022). Current availability and distribution of Congo basin\textquotesingles freshwater resources. https://doi.org/10.21203/rs.3.rs-1325377/v1
    7. Tourian, M. J., Elmi, O., Shafaghi, Y., Behnia, S., Saemian, P., Schlesinger, R., & Sneeuw, N. (2022). HydroSat: geometric quantities of the global water cycle from geodetic satellites. Earth System Science Data, 14, 2463–2486. https://doi.org/10.5194/essd-14-2463-2022
    8. Yi, S., & Sneeuw, N. (2022). A novel spatial filter to reduce north--south striping noise in GRACE spherical harmonic coefficients. Journal of Geodesy, 96(4), Article 4. https://doi.org/10.1007/s00190-022-01614-z
  3. 2021

    1. Domeneghetti, A., Molari, G., Tourian, M., Tarpanelli, A., Behnia, S., Moramarco, T., Sneeuw, N., & Brath, A. (2021). Testing the use of single- and multi-mission satellite altimetry for the calibration of hydraulic models. Advances in Water Resources, 151, 103887. https://doi.org/10.1016/j.advwatres.2021.103887
    2. Elmi, O., Tourian, M. J., Bárdossy, A., & Sneeuw, N. (2021). Spaceborne river discharge from a nonparametric stochastic quantile mapping function. Water Resources Research, e2021WR030277. https://doi.org/10.1029/2021WR030277
    3. Liu, B., Zou, X., Yi, S., Sneeuw, N., Cai, J., & Li, J. (2021). Identifying and separating climate- and human-driven water storage anomalies using GRACE satellite data. Remote Sensing of Environment, 263, 112559. https://doi.org/10.1016/j.rse.2021.112559
    4. Liu, W., & Sneeuw, N. (2021). Aliasing of ocean tides in satellite gravimetry: a two-step mechanism. Journal of Geodesy, 95(134), Article 134. https://doi.org/doi.org/10.1007/s00190-021-01586-6
    5. Neto, A. R., Behnia, S., Tourian, M. J., da Costa, F. A., & Sneeuw, N. (2021). Satellite altimetry over small reservoirs in the Brazilian semiarid region. RBRH. https://doi.org/10.1590/2318-0331.262120210038
    6. Roohi, Sh., Sneeuw, N., Benveniste, J., Dinardo, S., Issawy, E. A., & Zhang, G. (2021). Evaluation of CryoSat-2 water level derived from different retracking scenarios over selected inland water bodies. Advances in Space Research, 68(2), Article 2. https://doi.org/10.1016/j.asr.2019.06.024
    7. Saemian, P., Hosseini-Moghari, S.-M., Fatehi, I., Shoarinezhad, V., Modiri, E., Tourian, M. J., Tang, Q., Nowak, W., Bárdossy, A., & Sneeuw, N. (2021). Comprehensive evaluation of precipitation datasets over Iran. Journal of Hydrology, 603, 1–23. https://doi.org/10.1016/j.jhydrol.2021.127054
    8. Tourian, M. J., Elmi, O., Shafaghi, Y., Behnia, S., Saemian, P., Schlesinger, R., & Sneeuw, N. (2021). HydroSat: a repository of global water cycle products from spaceborne geodetic sensors. Earth System Science Data Discussions, 2021, 1--42. https://doi.org/10.5194/essd-2021-174
    9. Vishwakarma, B. D., Zhang, J., & Sneeuw, N. (2021). Downscaling GRACE total water storage change using partial least squares regression. Scientific Data, 8(1), Article 1. https://doi.org/10.1038/s41597-021-00862-6
    10. Vishwakarma, B. D., Bates, P., Sneeuw, N., Westaway, R., & Bamber, J. (2021). Re-assessing global water storage trends from GRACE time series. Environmental Research Letters, 16, 1–9. https://doi.org/10.1088/1748-9326/abd4a9
    11. Yi, S., & Sneeuw, N. (2021). Filling the Data Gaps Within GRACE Missions Using Singular Spectrum Analysis. Journal of Geophysical Research: Solid Earth, 126(5), Article 5. https://doi.org/10.1029/2020jb021227
    12. Yin, Z., & Sneeuw, N. (2021). Modeling the gravitational field by using CFD techniques. Journal of Geodesy, 95(6), Article 6. https://doi.org/10.1007/s00190-021-01504-w
  4. 2020

    1. Cai, J., Dong, D., Sneeuw, N., & Yao, Y. (2020). Converted Total Least Squares Method and Gauss-Helmert Model with Applications to Coordinate Transformations. In P. Novák, M. Crespi, N. Sneeuw, & F. Sansò (Hrsg.), IX Hotine-Marussi Symposium on Mathematical Geodesy (S. 117--125). Springer International Publishing.
    2. Cambiotti, G., Douch, K., Cesare, S., Haagmans, R., Sneeuw, N., Anselmi, A., Marotta, A. M., & Sabadini, R. (2020). On Earthquake Detectability by the Next-Generation Gravity Mission. Surveys in Geophysics, 41(5), Article 5. https://doi.org/10.1007/s10712-020-09603-7
    3. Ghobadi-Far, K., Han, S.-C., Allgeyer, S., Tregoning, P., Sauber, J., Behzadpour, S., Mayer-Gürr, T., Sneeuw, N., & Okal, E. (2020). GRACE gravitational measurements of tsunamis after the 2004, 2010, and 2011 great earthquakes. Journal of Geodesy, 94(65), Article 65. https://doi.org/10.1007/s00190-020-01395-3
    4. Lin, Y., Li, X., Zhang, T., Chao, N., Yu, J., Cai, J., & Sneeuw, N. (2020). Water Volume Variations Estimation and Analysis Using Multisource Satellilte Data: A Case Study of Lake Victoria. Remote Sensing, 12(18), Article 18. https://doi.org/10.3390/rs12183052
    5. Saemian, P., Elmi, O., Vishwakarma, B., Tourian, M., & Sneeuw, N. (2020). Analyzing the Lake Urmia restoration progress using ground-based and spaceborne observations. Science of The Total Environment, 139857. https://doi.org/10.1016/j.scitotenv.2020.139857
    6. Tourian, M. J., Elmi, O., Behnia, S., & Sneeuw, N. (2020). Defining a retracking manifold within a radargram stack to improve satellite altimetric water level over coastal seas: A feasibility study. ESA 12th Coastal altimetry workshop, Frascati, Italy.
    7. Zhang, J., Tourian, M. J., & Sneeuw, N. (2020). Identification of ENSO signature in the boreal hydrological cycle through canonical correlation with sea surface temperature anomalies. International Journal of Climatology, 40, 6219–6241. https://doi.org/10.1002/joc.6573
  5. 2019

    1. Ghobadi-Far, K., Han, S.-C., Sauber, J., Lemoine, F., Behzadpour, S., Mayer-Gürr, T., Sneeuw, N., & Okal, E. (2019). Gravitational Changes of the Earth\textquotesingles Free Oscillation From Earthquakes: Theory and Feasibility Study Using GRACE Inter-satellite Tracking. Journal of Geophysical Research: Solid Earth. https://doi.org/10.1029/2019JB017530
    2. Iran Pour, S., Sneeuw, N., Weigelt, M., & Amiri-Simkooei, A. (2019). Orbit Optimization for Future Satellite Gravity Field Missions: Influence of the Time Variable Gravity Field Models in a Genetic Algorithm Approach. International Association of Geodesy Symposia. https://doi.org/10.1007/1345_2019_79
    3. Pail, R., Bamber, J., Biancale, R., Bingham, R., Braitenberg, C., Eicker, A., Flechtner, F., Gruber, T., Güntner, A., Heinzel, G., Horwath, M., Longuevergne, L., Müller, J., Panet, I., Savenije, H., Seneviratne, S., Sneeuw, N., van Dam, T., & Wouters, B. (2019). Mass variation observing system by high low inter-satellite links (MOBILE) – a new concept for sustained observation of mass transport from space. Journal of Geodetic Science, 9(1), Article 1. https://doi.org/10.1515/jogs-2019-0006
    4. Roohi, S., Sneeuw, N., Benveniste, J., Dinardo, S., Issawy, E., & Zhang, G. (2019). Evaluation of CryoSat-2 water level derived from different retracking scenarios over selected inland water bodies. Advances in Space Research, 1–16. https://doi.org/10.1016/j.asr.2019.06.024
    5. Yin, Z., & Sneeuw, N. (2019). Modeling the Gravitational Field by Using CFD Techniques. International Association of Geodesy Symposia, 1–8. https://doi.org/10.1007/1345_2019_72
  6. 2018

    1. Devaraju, B., & Sneeuw, N. (2018). The role of two-point functions in geodesy and their classification. In (Schw)Ehre, wem (Schw)Ehre gebührt : Festschrift zur Verabschiedung von Prof. Dr.-Ing. Dr. h.c. Bernhard Heck. Hrsg.: A. Heck (No. 1; Bd. 2018, Nummer 1, S. 49--55). KIT Scientific Publishing, Karlsruhe. https://doi.org/10.5445/KSP/1000080211
    2. Iran-Pour, S., Weigelt, M., Amiri-Simkooei, A.-R., & Sneeuw, N. (2018). Impact of groundtrack pattern of a single pair mission on the gravity recovery quality. Geosciences (MDPI), 8(9)(315), Article 315. https://doi.org/10.3390/geosciences8090315
    3. Lin, Y., Yu, J., Cai, J., Sneeuw, N., & Li, F. (2018). Spatio-Temporal Analysis of Wetland Changes Using a Kernel Extreme Learning Machine Approach. Remote Sensing, 10(7), Article 7. https://doi.org/10.3390/rs10071129
    4. Liu, W., Sneeuw, N., Iran Pour, S., Tourian, M. J., & Reubelt, T. (2018). A posteriori de-aliasing of ocean tide error in future double-pair satellite gravity missions. International Association of Geodesy Symposia, 147. https://doi.org/10.1007/1345_2016_259
    5. Liu, W., & Sneeuw, N. (2018). A triple-pair tandem constellation mitigating ocean tide aliasing.
    6. Tourian, M. J., Reager, J. T., & Sneeuw, N. (2018). The Total Drainable Water Storage of the Amazon River Basin: A First Estimate Using GRACE. Water Resources Research, 54(5), Article 5. https://doi.org/10.1029/2017wr021674
    7. Vishwakarma, B., Devaraju, B., & Sneeuw, N. (2018). What is the Spatial Resolution of GRACE Satellite Products for Hydrology? Remote Sensing, 10(852), Article 852. https://doi.org/10.3390/rs10000852
    8. Ye, Z., Tenzer, R., & Sneeuw, N. (2018). Comparison of methods for a 3-D density inversion from airborne gravity gradiometry. Studia Geophysica et Geodaetica, 62(1), Article 1. https://doi.org/10.1007/s11200-016-0492-6
    9. Yuan, P., Jiang, W., Wang, K., & Sneeuw, N. (2018). Effects of Spatiotemporal Filtering on the Periodic Signals and Noise in the GPS Position Time Series of the Crustal Movement Observation Network of China. Remote Sensing, 10(9), Article 9. https://doi.org/10.3390/rs10091472
  7. 2017

    1. Devaraju, B., & Sneeuw, N. (2017). The polar form of the spherical harmonic spectrum: implications for filtering GRACE data. Journal of Geodesy, 15. https://doi.org/10.1007/s00190-017-1037-7
    2. Jiang, W., Yuan, P., Chen, H., Cai, J., Li, Z., Chao, N., & Sneeuw, N. (2017). Annual variations of monsoon and drought detected by GPS: A case study in Yunnan, China. Scientific Reports, 7(Article no. 5874), Article Article no. 5874. https://doi.org/10.1038/s41598-017-06095-1
    3. Liu, W., Sneeuw, N., Iran Pour, S., Tourian, M. J., & Reubelt, T. (2017). A Posteriori De-aliasing of Ocean Tide Error in Future Double-Pair Satellite Gravity Missions. International Association of Geodesy Symposia, 1--7. https://doi.org/10.1007/1345_2016_259
    4. Sharifi, M. A., Seif, M. R., Baur, O., & Sneeuw, N. (2017). Gravity field recovery from orbit information using the Lagrange formalism. Annals of Geophysics, 60(3), Article 3. https://doi.org/10.4401/ag-7204
    5. Tourian, M. J., Elmi, O., Mohammadnejad, A., & Sneeuw, N. (2017). Estimating River Depth from SWOT-Type Observables Obtained by Satellite Altimetry and Imagery. Water, 9(10), Article 10. https://doi.org/10.3390/w9100753
    6. Tourian, M. J., Schwatke, C., & Sneeuw, N. (2017). River discharge estimation at daily resolution from satellite altimetry over an entire river basin. Journal of Hydrology, 546, 230--247. https://doi.org/10.1016/j.jhydrol.2017.01.009
    7. Vishwakarma, B. D., Horwath, M., Devaraju, B., Groh, A., & Sneeuw, N. (2017). A Data-Driven Approach for Repairing the Hydrological Catchment Signal Damage Due to Filtering of GRACE Products. Water Resources Research, 53(11), Article 11. https://doi.org/10.1002/2017WR021150
  8. 2016

    1. Elmi, O., Tourian, M. J., & Sneeuw, N. (2016). Dynamic river masks from multi-temporal satellite imagery: an automatic algorithm using graph cuts optimization.
    2. Ghobadi-Far, K., Sharifi, M. A., & Sneeuw, N. (2016). 2D Fourier series representation of gravitational functionals in spherical coordinates (No. 9). 90(9), Article 9. https://doi.org/10.1007/s00190-016-0916-7
    3. Li, H., Reubelt, T., Antoni, M., & Sneeuw, N. (2016). Gravity field error analysis for pendulum formations by a semi-analytical approach. 1--19. https://doi.org/10.1007/s00190-016-0958-x
    4. Liu, W., Sneeuw, N., Pour, S. I., Tourian, M. J., & Reubelt, T. (2016). A Posteriori De-aliasing of Ocean Tide Error in Future Double-Pair Satellite Gravity Missions. In International Symposium on Earth and Environmental Sciences for Future Generations (S. 103--109). Springer International Publishing. https://doi.org/10.1007/1345_2016_259
    5. Sneeuw, N., Li, J., Cai, J., Jiang, W., Xu, X., Chu, Y., Jin, T., Chao, N., Elmi, O., & Tourian, M. (2016). Current and Future Geodetic Satellite Missions for Global Change Monitoring.
    6. Tourian, M. J., Tarpanelli, A., Elmi, O., Qin, T., Brocca, L., Moramarco, T., & Sneeuw, N. (2016). Spatiotemporal densification of river water level time series by multimission satellite altimetry (No. 2). 52(2), Article 2. https://doi.org/10.1002/2015WR017654
    7. Tourian, M., Thor, R., & Sneeuw, N. (2016). Least-Squares Prediction of Runoff Over Ungauged Basins. In C. Rizos & P. Willis (Hrsg.), IAG 150 Years -- Proceedings of the IAG Scientific Assembly in Postdam, Germany, 2013 (Bd. 143, S. 257--261). Springer. https://doi.org/10.1007/1345_2015_170
    8. Vishwakarma, B. D., Devaraju, B., & Sneeuw, N. (2016). Minimizing the effects of filtering on catchment scale GRACE solutions (No. 8). 8, Article 8. https://doi.org/10.1002/2016WR018960
    9. Ye, Z., Tenzer, R., Sneeuw, N., Liu, L., & Wild-Pfeiffer, F. (2016). Generalized model for a Moho inversion from gravity and vertical gravity-gradient data (No. 1). 207(1), Article 1. https://doi.org/10.1093/gji/ggw251
  9. 2015

    1. Chen, Q., Weigelt, M., Sneeuw, N., & van Dam, T. (2015). On time-variable seasonal signals: comparison of SSA and Kalman filtering based approaches. In N. Sneeuw, P. Novák, M. Crespi, & F. Sansò (Hrsg.), VIII Hotine-Marussi Symposium on Mathematical Geodesy (Bd. 142, S. 75--80). Springer. https://doi.org/10.1007/1345_2015_4
    2. Devaraju, B., & Sneeuw, N. (2015). On the spatial resolution of homogeneous fillters on the sphere. In N. Sneeuw, P. Novák, M. Crespi, & F. Sansò (Hrsg.), VIII Hotine-Marussi Symposium on Mathematical Geodesy (Bd. 142, S. 67--73). Springer. https://doi.org/10.1007/1345_2015_5
    3. Elmi, O., Tourian, M. J., & Sneeuw, N. (2015, Juli). River discharge estimation using channel width from satellite imagery. 2015 IEEE International Geoscience and Remote Sensing Symposium (IGARSS). https://doi.org/10.1109/igarss.2015.7325867
    4. Ghobadi-Far, K., Sharifi, M., & Sneeuw, N. (2015). GOCE gradiometry data processing using the Rosborough approach (No. 12). 89(12), Article 12. https://doi.org/10.1007/s00190-015-0849-6
    5. Lorenz, C., Tourian, M. J., Devaraju, B., Sneeuw, N., & Kunstmann, H. (2015). Basin-scale runoff prediction: An E nsemble K alman F ilter framework based on global hydrometeorological data sets. Water Resources Research, 51(10), Article 10. https://doi.org/10.1002/2014wr016794
    6. Meyer, U., Dahle, C., Sneeuw, N., Jäggi, A., Beutler, G., & Bock, H. (2015). The effect of pseudo-stochastic orbit parameters on GRACE monthly gravity fields: Insights from lumped coefficients. In N. Sneeuw, P. Novák, M. Crespi, & F. Sansò (Hrsg.), VIII Hotine-Marussi Symposium on Mathematical Geodesy (Bd. 142, S. 177--183). Springer. https://doi.org/10.1007/1345_2015_67
    7. Roese-Koerner, L., Devaraju, B., Schuh, W. D., & Sneeuw, N. (2015). Describing the Quality of Inequality Constrained Estimates. In H. Kutterer, F. Seitz, H. Alkhatib, & M. Schmidt (Hrsg.), The 1st International Workshop on the Quality of Geodetic Observation and Monitoring System (QuGOMS’11) (Bd. 140, S. 15--20). Springer Verlag. https://doi.org/10.1007/978-3-319-10828-5_3
    8. Sneeuw, N., & Sharifi, M. A. (2015). Rosborough representation in satellite gravimetry. In N. Sneeuw, P. Novák, M. Crespi, & F. Sansò (Hrsg.), VIII Hotine-Marussi Symposium on Mathematical Geodesy, Rome, Italy (Bd. 142, S. 109--114). Springer. https://doi.org/10.1007/1345_2015_68
    9. Tourian, M. J., Elmi, O., Chen, Q., Devaraju, B., Roohi, Sh., & Sneeuw, N. (2015). A spaceborne multisensor approach to monitor the desiccation of Lake Urmia in Iran. Remote Sensing of Environment, 156, 349--360. https://doi.org/10.1016/j.rse.2014.10.006
    10. Tourian, M. J., Thor, R., & Sneeuw, N. (2015). Least-Squares Prediction of Runoff Over Ungauged Basins. In International Association of Geodesy Symposia (S. 257--261). Springer International Publishing. https://doi.org/10.1007/1345_2015_170
  10. 2014

    1. Cai, J., & Sneeuw, N. (2014). Stochastic modeling of GOCE gravitational tensor invariants. In F. Flechtner, N. Sneeuw, & W. D. Schuh (Hrsg.), GEOTECHNOLOGIEN Science Report (No. 20; Nummer 20, S. 115--121). Springer-Verlag Berlin Heidelberg. https://doi.org/10.1007/978-3-642-32135-1_15
    2. Kusche, J., Klemann, V., & Sneeuw, N. (2014). Mass Distribution and Mass Transport in the Earth System: Recent Scientific Progress Due to Interdisciplinary Research (No. 6). 35(6), Article 6. https://doi.org/10.1007/s10712-014-9308-9
    3. Lorenz, C., Kunstmann, H., Devaraju, B., Tourian, M. J., Sneeuw, N., & Riegger, J. (2014). Large-Scale Runoff from Landmasses: A Global Assessment of the Closure of the Hydrological and Atmospheric Water Balances (No. 6). 15(6), Article 6. https://doi.org/10.1175/jhm-d-13-0157.1
    4. Lorenz, C., Kunstmann, H., Devaraju, B., Tourian, M. J., Sneeuw, N., & Riegger, J. (2014). Large-Scale Runoff from Landmasses: A Global Assessment of the Closure of the Hydrological and Atmospheric Water Balances\ast. Journal of Hydrometeorology, 15(6), Article 6. https://doi.org/10.1175/jhm-d-13-0157.1
    5. Reubelt, T., Sneeuw, N., Iran Pour, S., Hirth, M., Fichter, W., Müller, J., Brieden, P., Flechtner, F., Raimondo, J.-C., Kusche, J., Elsaka, B., Gruber, T., Pail, R., Murböck, M., Doll, B., Sand, R., Wang, X., Klein, V., Lezius, M., … Pelivan, I. (2014). Future Gravity Field Satellite Missions. In F. Flechtner, N. Sneeuw, & W. D. Schuh (Hrsg.), Geotechnologien Science Report (No. 20; Nummer 20, S. 165--230). Springer Berlin Heidelberg. https://doi.org/10.1007/978-3-642-32135-1_21
    6. Reubelt, T., Baur, O., Weigelt, M., Roth, M., & Sneeuw, N. (2014). GOCE Long-Wavelength Gravity Field Recovery from 1s-Sampled Kinematic Orbits Using the Acceleration Approach. In U. Marti (Hrsg.), Gravity, Geoid and Height Systems (Bd. 141, S. 21--26). Springer International Publishing Switzerland. https://doi.org/10.1007/978-3-319-10837-7_3
    7. Reudink, R., Klees, R., Francis, O., Kusche, J., Schlesinger, R., Shabanloui, V., Sneeuw, N., & Timmen, L. (2014). High tilt susceptibility of the Scintrex CG-5 relative gravimeters (No. 6). 88(6), Article 6. https://doi.org/10.1007/s00190-014-0705-0
    8. Sneeuw, N., Li, J., Baur, O., Cai, J., Tourian, M. J., Elmi, O., Jiang, W., Chu, Y., Jin, T., Wirnsberger, H., Krauss, S., & Maier, A. (2014). Current and Future Geodetic Satellite Missions for Global Change Monitoring (No. ESA SP-724). ESA SP-724, Article ESA SP-724.
    9. Sneeuw, N., Lorenz, C., Devaraju, Band Tourian, M. J., Riegger, J., Kunstmann, H., & Bardossy, A. (2014). Estimating runoff using hydro-geodetic approaches: Status and challenges (No. 6). 35(6), Article 6. https://doi.org/10.1007/s10712-014-9300-4
    10. Sneeuw, N., Lorenz, C., Devaraju, B., Tourian, M. J., Riegger, J., Kunstmann, H., & Bárdossy, A. (2014). Estimating Runoff Using Hydro-Geodetic Approaches. Surveys in Geophysics, 35(6), Article 6. https://doi.org/10.1007/s10712-014-9300-4
    11. Su, Z., Ma, Y., van der Velde, R., Dente, L., Wang, L., Zeng, Y., Chen, X., Huang, Y., Menenti, M., Sobrino, J., Li, Z. L., Sneeuw, N., Wen, J., He, Y., Tang, B., & Zhong, L. (2014). CEOP-TPE -- Concerted Earth Observation and Prediction of Water and Energy Cycles in the Third Pole Environment (No. ESA SP-724). ESA SP-724, Article ESA SP-724.
    12. Tourian, M. J., Elmi, O., Chen, Q., Devaraju, B., Roohi, S., & Sneeuw, N. (2014). A spaceborne multisensor approach to monitor the desiccation of Lake Urmia in Iran. 156, 349--360. https://doi.org/10.1016/j.rse.2014.10.006
    13. Varga, P., Krumm, F. W., Grafarend, E. W., Sneeuw, N., Schreider, A. A., & Horváth, F. (2014). Evolution of the oceanic and continental crust during Neo-Proterozoic and Phanerozoic. 25, 255--263. https://doi.org/10.1007/s12210-014-0298-9
  11. 2013

    1. Chen, Q., Van Dam, T., Sneeuw, N., Collilieux, X., Weigelt, M., & Rebischung, P. (2013). Singular spectrum analysis for modeling seasonal signals from GPS time series. 72, 25--35. https://doi.org/10.1016/j.jog.2013.05.005
    2. Cramer, M., Schwieger, V., Fritsch, D., Keller, W., Kleusberg, A., & Sneeuw, N. (2013). Geoengine -- The University of Stuttgart International Master Program with more than 6 years of experience. Environment for Sustainability, 19. http://www.fig.net/resources/proceedings/fig_proceedings/fig2013/papers/ts01e/TS01E_cramer_schwieger_et_al_6689.pdf
    3. Elsaka, B., Raimondo, J. C., Brieden, P., Reubelt, T., Kusche, J., Flechtner, F., Iran Pour, S., Sneeuw, N., & Müller, J. (2013). Comparing seven candidate mission configurations for temporal gravity field retrieval through full-scale numerical simulation (No. 1). 88(1), Article 1. https://doi.org/10.1007/s00190-013-0665-9
    4. Iran Pour, S., Reubelt, T., & Sneeuw, N. (2013). Quality assessment of sub-Nyquist recovery from future gravity satellite missions (No. 5). 52(5), Article 5. https://doi.org/10.1016/j.asr.2013.05.026
    5. Roth, M., Sneeuw, N., & Keller, W. (2013). Euler Deconvolution of GOCE Gravity Gradiometry Data. In W. Nagel, D. Kröner, & M. Resch (Hrsg.), High Performance Computing in Science and Engineering ’12 (S. 503--515). Springer Berlin Heidelberg. https://doi.org/10.1007/978-3-642-33374-3_36
    6. Sneeuw, N., Devaraju, B., & Tourian, M. J. (2013). Die Vermessung der Welt -- aus dem All. In Der Traum vom Fliegen (No. 9; Nummer 9, S. 56--63). Universität Stuttgart. http://www.uni-stuttgart.de/hkom/publikationen/themenheft/09/index.html
    7. Tourian, M. J., Sneeuw, N., & Bárdossy, A. (2013). A quantile function approach to discharge estimation from satellite altimetry (ENVISAT) (No. 7). 49(7), Article 7. https://doi.org/10.1002/wrcr.20348
    8. Tourian, M. J., Sneeuw, N., & Bárdossy, A. (2013). A quantile function approach to discharge estimation from satellite altimetry (ENVISAT). Water Resources Research, 49(7), Article 7. https://doi.org/10.1002/wrcr.20348
    9. Viswakarama, B. D., Jain, K., Sneeuw, N., & Devaraju, B. (2013). Mumbai 2005, Bihar 2008 flood reflected in mass changes seen by GRACE satellites (No. 3). 41(3), Article 3. https://doi.org/10.1007/s12524-012-0256-x
    10. Weigelt, M., Sneeuw, N., Schrama, E. J. O., & Visser, P. N. A. M. (2013). An improved sampling rule for mapping geopotential functions of a planet from a near polar orbit (No. 2). 87(2), Article 2. https://doi.org/10.1007/s00190-012-0585-0
    11. Weigelt, M., Van Dam, T., Jäggi, A., Prange, L., Tourian, M. J., Keller, W., & Sneeuw, N. (2013). Time-variable gravity signal in Greenland revealed by high-low satellite-to-satellite tracking (No. 7). 118(7), Article 7. https://doi.org/10.1002/jgrb.50283
  12. 2012

    1. Baur, O., Reubelt, T., Weigelt, M., Roth, M., & Sneeuw, N. (2012). GOCE orbit analysis: Long-wavelength gravity field determination using the acceleration approach (No. 3). 50(3), Article 3. https://doi.org/10.1016/j.asr.2012.04.022
    2. Devaraju, B., & Sneeuw, N. (2012). Performance Analysis of Isotropic Spherical Harmonic Spectral Windows. In N. Sneeuw, P. Novák, M. Crespi, & F. Sansò (Hrsg.), Proceedings VII Hotine-Marussi Symposium on Mathematical Geodesy, Rome, Italy (Bd. 137, S. 105--110). Springer Berlin Heidelberg. https://doi.org/10.1007/978-3-642-22078-4-16
    3. Fersch, B., Kunstmann, H., Bárdossy, A., Devaraju, B., & Sneeuw, N. (2012). Continental-scale basin water storage variation from global and dynamically downscaled atmospheric water budgets in comparison with GRACE-derived observations (No. 5). 13(5), Article 5. https://doi.org/10.1175/jhm-d-11-0143.1
    4. Iran Pour, S., & Sneeuw, N. (2012). Properties and Applications of EOF-Based Filtering of GRACE Solutions. In N. Sneeuw, P. Novák, M. Crespi, & F. Sansò (Hrsg.), Proceedings VII Hotine-Marussi Symposium on Mathematical Geodesy, Rome, Italy (Bd. 137, S. 273--278). Springer Berlin Heidelberg. https://doi.org/10.1007/978-3-642-22078-4_41
    5. Reubelt, T., Sneeuw, N., & Grafarend, E. (2012). Comparison of kinematic orbit analysis methods for gravity field recovery. In N. Sneeuw, P. Novák, M. Crespi, & F. Sansò (Hrsg.), Proceedings VII Hotine-Marussi Symposium on Mathematical Geodesy, Rome, Italy (Bd. 137, S. 259--265). Springer Berlin Heidelberg. https://doi.org/10.1007/978-3-642-22078-4_39
    6. Riegger, J., Tourian, M., Devaraju, B., & Sneeuw, N. (2012). Analysis of GRACE uncertainties by hydrological and hydro-meteorological observations. 59--60, 16--27. https://doi.org/10.1016/j.jog.2012.02.001
    7. Roese-Koerner, L., Devaraju, B., Sneeuw, N., & Schuh, W. D. (2012). A stochastic framework for inequality constrained estimation (No. 11). 86(11), Article 11. https://doi.org/10.1007/s00190-012-0560-9
    8. Sneeuw, N. (2012). Inclination Functions: Orthogonality and Other Properties. In N. Sneeuw, P. Novák, M. Crespi, & F. Sansò (Hrsg.), Proceedings VII Hotine-Marussi Symposium on Mathematical Geodesy, Rome, Italy (Bd. 137, S. 267--271). Springer Berlin Heidelberg. https://doi.org/10.1007/978-3-642-22078-4_40
    9. Tourian, M., Sneeuw, N., Riegger, J., & Bárdossy, A. (2012). A new method to derive river discharge from satellite altimetry (ENVISAT). Geoscience and Remote Sensing Symposium (IGARSS), 2012, 5250--5253. https://doi.org/10.1109/IGARSS.2012.6352425
    10. Tourian, M. J., Sneeuw, N., Riegger, J., & Bardossy, A. (2012, Juli). A new method to derive river discharge from satellite altimetry (ENVISAT). 2012 IEEE International Geoscience and Remote Sensing Symposium. https://doi.org/10.1109/igarss.2012.6352425
    11. Varga, P., Krumm, F., Doglioni, C., Grafarend, E., Panza, G. F., Riguzzi, F., Schreider, A. A., & Sneeuw, N. (2012). Did a change in tectonic regime occur between the Phanerozoic and earlier Epochs? (No. 2). 23(2), Article 2. https://doi.org/10.1007/s12210-012-0172-6
  13. 2011

    1. Anselmi, A., Cesare, S., Visser, P., Van Dam, T., Sneeuw, N., Gruber, T., Altés, B., Christophe, B., Cossu, F., Ditmar, P. G., Murböck, M., Parisch, M., Renard, M., Reubelt, T., Sechi, G., & Texieira Da Encarnacao, J. G. (2011). Assessment of a next generation gravity mission to monitor the variations of Earth’s gravity field (No. Thales Alenia Space report SD-RP-AI-0721; Nummer Thales Alenia Space report SD-RP-AI-0721).
    2. Baur, O., & Sneeuw, N. (2011). Assessing Greenland ice mass loss by means of point-mass modeling: a viable methodology (No. 9). 85(9), Article 9. https://doi.org/10.1007/s00190-011-0463-1
    3. Lin, Y., Zhang, S., Cai, J., & Sneeuw, N. (2011). Application of wavelet support vector regression on SAR data de-noising (No. 4). 22(4), Article 4. https://doi.org/10.3969/j
    4. Reubelt, T., Sneeuw, N., & Iran Pour, S. (2011). Quick-look gravity field analysis of formation scenarios selection. In Geotechnologien -- Science Report No. 17 (S. 126--133). Helmholtz-Zentrum Potsdam, Deutsches GeoForschungsZentrum GFZ. https://doi.org/10.2312/GFZ.gt.17.19
    5. Tourian, M., Riegger, J., Sneeuw, N., & Devaraju, B. (2011). Outlier identification and correction for GRACE aggregated data. 55, 627--640. https://doi.org/10.1007/s11200-009-9007-z
    6. van der Wal, W., Wang, L., Visser, P., Sneeuw, N., & Vermeersen, B. (2011). Evaluating GOCE data near a mid-ocean ridge and possible application to crustal structure in Scandinavia. In L. Ouwehand (Hrsg.), Proceedings of 4th International GOCE User Workshop, Munich, Germany (No. ESA SP-696; Nummer ESA SP-696). ESA Communications -- ESTEC, Noordwijk, The Netherlands. http://esamultimedia.esa.int/multimedia/publications/SP-696/toc_SP696.pdf
    7. Visser, P. N. A. M., Schrama, E. J. O., Sneeuw, N., & Weigelt, M. (2011). Dependency of Resolvable Gravitational Spatial Resolution on Space-Borne Observation Techniques. In S. Kenyon, M. C. Pacino, & U. Marti (Hrsg.), Geodesy for Planet Earth, Proceedings of the 2009 IAG Symposium, Buenos Aires, Argentina (Bd. 136, S. 373--379). Springer-Verlag Berlin Heidelberg. https://doi.org/10.1007/978-3-642-20338-1_45
    8. Weigelt, M., Baur, O., Reubelt, T., Sneeuw, N., & Roth, M. (2011). Long wavelength gravity field determination from GOCE using the acceleration approach. Proceedings of 4th GOCE User Workshop, ESA, Munich, Germany, ESA SP-696, Article ESA SP-696.
    9. Zou, X., Cai, J., Sneeuw, N., & Li, J. (2011). Numerical study on the mixed model in the GOCE polar gap problem (No. 3). 14(3), Article 3. https://doi.org/10.1007/s11806-011-0532-x
  14. 2010

    1. Baur, O., Sneeuw, N., Cai, J., & Roth, M. (2010). GOCE data analysis: realization of the invariants approach in a high performance computing environment. Proceedings of the ESA Living Planet Symposium, Bergen, Norway, ESA SP-686.
    2. Baur, O., Cai, J., & Sneeuw, N. (2010). Spectral approaches to solving the polar gap problem. In F. Flechtner, T. Gruber, A. Güntner, M. Mandea, M. Rothacher, T. Schöne, & J. Wickert (Hrsg.), System Earth via Geodetic-Geophysical Space Techniques, (S. 243--253). Springer Berlin Heidelberg. https://doi.org/10.1007/978-3-642-10228-8_19
    3. Cai, J., Baur, O., & Sneeuw, N. (2010). GOCE gravity field determination by means of rotational invariants: first experiences. In GEOTECHNOLOGIEN Science Report: Öbservation of the System Earth from Space" (Bd. 17, S. 62--69).
    4. Reubelt, T., Sneeuw, N., & Sharifi, M. A. (2010). Future Mission Design Options for Spatio-Temporal Geopotential Recovery. In S. P. Mertikas (Hrsg.), Gravity, Geoid and Earth Observation. International Association of Geodesy Symposia, IAG Commission 2: Gravity Field, Chania, Crete, Greece (Bd. 135, S. 163--170). Springer-Verlag Berlin Heidelbergs. https://doi.org/10.1007/978-3-642-10634-7_22
    5. Visser, P. N. A. M., Sneeuw, N., Reubelt, T., Losch, M., & Van Dam, T. (2010). Space-borne gravimetric satellite constellations and ocean tides: aliasing effects (No. 2). 181(2), Article 2. https://doi.org/10.1111/j.1365-246x.2010.04557.x
    6. Weigelt, M., Sneeuw, N., & Keller, W. (2010). Evaluation of EGM2008 by Comparison with Global and Local Gravity Solutions from CHAMP. In S. P. Mertikas (Hrsg.), Gravity, Geoid and Earth Observation (Bd. 135, S. 497--504). Springer-Verlag Berlin Heidelberg. https://doi.org/10.1007/978-3-642-10634-7
    7. Zeile, O., Lachenmann, M., Baumstark, E., Mohr, A., Bock, D., Laufer, R., Sneeuw, N., & Röser, H. P. (2010). Analysis of orbital lifetime and observation conditions of small lunar satellites (Nos. 3--4). 66(3--4), Article 3--4. https://doi.org/10.1016/j.actaastro.2009.07.008
  15. 2009

    1. Weigelt, M., Sideris, M. G., & Sneeuw, N. (2009). On the influence of the ground track on the gravity field recovery from high-low satellite-to-satellite tracking missions: CHAMP monthly gravity field recovery using the energy balance approach revisited (No. 12). 83(12), Article 12. https://doi.org/10.1007/s00190-009-0330-5
  16. 2008

    1. Baur, O., Sneeuw, N., & Grafarend, E. (2008). Methodology and use of tensor invariants for satellite gravity recovery (No. 4). 82(4), Article 4. https://doi.org/10.1007/s00190-007-0178-5
    2. Devaraju, B., Sneeuw, N., Kindt, H., & Riegger, J. (2008). Estimating GRACE monthly water storage change consistent with hydrology by assimilating hydrological information. In S. P. Mertikas (Hrsg.), Proceedings of the IAG symposium on Gravity, Geoid, and Earth Observation 2008, Chania, Crete, Greece (Bd. 135, S. 603–610). Springer Berlin Heidelberg. https://doi.org/10.1007/978-3-642-10634-7_80
    3. Sneeuw, N., Sharifi, M. A., & Schaub, H. (2008). Formation Flight Stability in a Gravitational Field. In K. Fletcher (Hrsg.), Proceedings of the 3rd International Symposium on Formation Flying, Missions and Technologies, Nordwijk, The Netherlands: Bd. ESA SP-654. ESA Communication Production Office.
    4. Sneeuw, N., Sharifi, M. A., & Keller, W. 29. 5.-2. 6. 2006). (2008). Gravity Recovery from Formation Flight Missions. In P. Xu, J. Liu, & A. Dermanis (Hrsg.), VI Hotine-Marussi Symposium on Theoretical and Computational Geodesy, Wuhan, PR China (Bd. 132, S. 29--34). Springer Verlag. https://doi.org/10.1007/978-3-540-74584-6_5
    5. Van Dam, T., Visser, P., Sneeuw, N., Losch, M., Gruber, T., Bamber, J., Bierkens, M., King, M., & Smit, M. (2008). Monitoring and Modelling Individual Sources of Mass Distribution and Transport in the earth System by Means of Satellites.
    6. Xu, C., Sneeuw, N., & Sideris, M. G. (2008). The Torus Approach in Spaceborne Gravimetry. In P. Xu, J. Liu, & A. Dermanis (Hrsg.), VI Hotine-Marussi Symposium on Theoretical and Computational Geodesy, Wuhan, PR China (Bd. 132, S. 23--28). Springer Verlag. https://doi.org/10.1007/978-3-540-74584-6_4
  17. 2007

    1. Sharifi, M., Sneeuw, N., & Keller, W. (2007). Gravity recovery capability of four generic satellite formations. In A. Kiliçoglu & R. Forsberg (Hrsg.), Gravity field of the Earth: General Command of Mapping: Bd. 18 (special issue) (S. 211--216).
    2. Siemes, C., Schuh, W., Cai, J., Sneeuw, N., & Baur, O. (2007). GOCE data processing: the numerical challenge of data gaps. In GEOTECHNOLOGIEN Science Report No 11 (S. 99--105).
    3. Sneeuw, N., & Kusche, J. (2007). Preface. Special issue: Satellite Gravimetry and Inverse Problems (Nos. 1--3). 81(1--3), Article 1--3. https://doi.org/10.1007/s00190-006-0119-8
    4. Xu, C., Sneeuw, N., & Sideris, M. (2007). Joint SST and SGG Gravity Field Solutions Using the Torus Approach. In A. Kiliçoglu & R. Forsberg (Hrsg.), Gravity field of the Earth: General Command of Mapping: Bd. 18 (special issue) (S. 169--174).
    5. Xu, C., Weigelt, M., Sideris, M., & Sneeuw, N. (2007). Spaceborne gravimetry and gravity field recovery (Nos. 3--4). 53(3--4), Article 3--4. https://doi.org/10.5589/q07-008
  18. 2006

    1. Baur, O., & Sneeuw, N. (2006). Slepian Approach Revisited: New Studies to Overcome the Polar Gap. Proc. 3rd GOCE User Workshop, Frascati, Italy, ESA SP-627, Article ESA SP-627. http://earth.esa.int/goce06/GOCEabstractbook3.pdf
    2. Xu, C., Sideris, M., & Sneeuw, N. (2006). Gravity Field Recovery from Spaceborne Gravimetry.
  19. 2005

    1. Gruber, C., Tsoulis, D., & Sneeuw, N. (2005). CHAMP accelerometer calibration by means of the equation of motion and an a-priori gravity model (No. 2). 130(2), Article 2. http://geodaesie.info/zfv/heftbeitrag/1271
    2. Sneeuw, N., Flury, J., & Rummel, R. (2005). Science requirements on future missions and simulated mission scenarios (No. 1). 94(1), Article 1. https://doi.org/10.1007/s11038-004-7605-x
    3. Tsoulis, D., Gruber, C., & Sneeuw, N. (2005). A novel approach for the calibration of the CHAMP accelerometer using short data spans (No. 2). 64(2), Article 2.
Zum Seitenanfang