Publikationen

Liste aller Publikationen am Geodätischen Institut ab 1996

Die begutachteten Veröffentlichungen sind geordnet nach dem Erscheinungsjahr.

Eine persönliche Veröffentlichsliste von einzelnen Institutsangehörigen (inklusive der Präsentationen) kann auf der entsprechenden Teamseite eingesehen werden.

  1. 2025

    1. Schneider, N., Michel, V., & Sneeuw, N. (2025). High-dimensional experiments for the downward continuation using LRFMP algorithm. GEM - International Journal on Geomathematics. https://doi.org/10.1007/s13137-024-00255-y
  2. 2024

    1. Elmi, O., Tourian, M. J., Saemian, P., & Sneeuw, N. (2024). Remote Sensing-Based Extension of GRDC Discharge Time Series - A Monthly Product with Uncertainty Estimates. Scientific Data, 11(1), Article 1. https://doi.org/10.1038/s41597-024-03078-6
    2. Foster, J., & Thomas, B. E. O. (2024). Ship-based GNSS Contribution to Tsunami Warning in Europe and the Mediterranean. zfv – Zeitschrift für Geodäsie,  Geoinformation und Landmanagement, 4, Article 4. https://doi.org/10.12902/zfv-0482-2024
    3. Foster, J. (2024). Space Geodetic Sensing of Atmospheric Water Vapor and Its Application. https://doi.org/10.1007/978-3-031-59306-2_29
    4. Jaramillo, F., Aminjafari, S., Castellazzi, P., Fleischmann, A., Fluet-Chouinard, E., Hashemi, H., Hubinger, C., Martens, H. R., Papa, F., Schöne, T., Tarpanelli, A., Virkki, V., Wang-Erlandsson, L., Abarca-del Rio, R., Borsa, A., Destouni, G., Di Baldassarre, G., Moore, M.-L., Posada-Marín, J. A., … Salazar, J. F. (2024). The Potential of Hydrogeodesy to Address Water-Related and Sustainability Challenges. https://doi.org/10.1029/2023WR037020
    5. Li, F., Kusche, J., Sneeuw, N., Siebert, S., Gerdener, H., Wang, Z., Chao, N., Chen, G., & Tian, K. (2024). Forecasting Next Year’s Global Land Water Storage Using GRACE Data. https://doi.org/10.1029/2024GL109101
    6. Pinot, B., Mimoun, D., Murdoch, N., Onodera, K., Johnson, C., Mittelholz, A., Drilleau, M., Stott, A., Pou, L., de Raucourt, S., Lognonné, P., Widmer-Schnidrig, R., Lange, L., Panning, M., & Banerdt, B. (2024). The In Situ Evaluation of the SEIS Noise Model. Space Science Reviews, 220(3), Article 3. https://doi.org/10.1007/s11214-024-01056-3
    7. Saemian, P., Tourian, M. J., Elmi, O., Sneeuw, N., & AghaKouchak, A. (2024). A Probabilistic Approach to Characterizing Drought Using Satellite Gravimetry. Water Resources Research, 60(8), Article 8. https://doi.org/10.1029/2023wr036873
    8. Saemian, P., Elmi, O., Stroud, M., Riggs, R., Kitambo, B. M., Papa, F., Allen, G. H., & Tourian, M. J. (2024). Satellite Altimetry-based Extension of global-scale in situ river discharge Measurements (SAEM). https://doi.org/10.5194/essd-2024-406
    9. Svennevig, K., Hicks, S. P., Forbriger, T., Lecocq, T., Widmer-Schnidrig, R., Mangeney, A., Hibert, C., Korsgaard, N. J., Lucas, A., Satriano, C., Anthony, R. E., Mordret, A., Schippkus, S., Rysgaard, S., Boone, W., Gibbons, S. J., Cook, K. L., Glimsdal, S., Løvholt, F., … Wirtz, B. (2024). A rockslide-generated tsunami in a Greenland fjord rang Earth for 9 days. https://doi.org/10.1126/science.adm9247
    10. Thomas, B. E. O., Foster, J., & Louartani, T. (2024). Spatial and temporal coverage of the cargo ship network for GNSS-based tsunami detection. The International Hydrographic Review, 30, 46–61. https://doi.org/10.58440/ihr-30-1-a05
    11. Tourian, M. J., Elmi, O., Khalili, S., & Engels, J. (2024). Improving inland water altimetry through Bin-Space-Time (BiST) retracking: A Bayesian approach to incorporate spatio-temporal information. https://doi.org/10.22541/au.172322847.76228757/v1
    12. Yong, L. W., Foster, J. H., Smith-Konter, B. R., & Frazer, L. N. (2024). A Century of Deformation and Stress Change on Kīlauea’s Décollement. Journal of Geophysical Research: Solid Earth, 129(11), Article 11. https://doi.org/10.1029/2024JB028714
  3. 2023

    1. Brooks, B. A., Goldberg, D., DeSanto, J., Ericksen, T. L., Webb, S. C., Nooner, S. L., Chadwell, C. D., Foster, J., Minson, S., Witter, R., Haeussler, P., Freymueller, J., Barnhart, W., & Nevitt, J. (2023). Rapid shallow megathrust afterslip from the 2021 M8.2 Chignik, Alaska earthquake revealed by seafloor geodesy. Science Advances, 9(17), Article 17. https://doi.org/10.1126/sciadv.adf9299
    2. Brotzer, A., Igel, H., Stutzmann, E., Montagner, J.-P., Bernauer, F., Wassermann, J., Widmer-Schnidrig, R., Lin, C.-J., Kiselev, S., Vernon, F., & Schreiber, K. U. (2023). Characterizing the Background Noise Level of Rotational Ground Motions on Earth. Seismological Research Letters, 95(3), Article 3. https://doi.org/10.1785/0220230202
    3. Da Silva, E., Woolliams, E. R., Picot, N., Poisson, J.-C., Skourup, H., Moholdt, G., Fleury, S., Behnia, S., Favier, V., Arnaud, L., Aublanc, J., Fouqueau, V., Taburet, N., Renou, J., Yesou, H., Tarpanelli, A., Camici, S., Fredensborg Hansen, R. M., Nielsen, K., … Féménias, P. (2023). Towards Operational Fiducial Reference Measurement (FRM) Data for the Calibration and Validation of the Sentinel-3 Surface Topography Mission over Inland Waters, Sea Ice, and Land Ice. Remote Sensing, 15(19), Article 19. https://doi.org/10.3390/rs15194826
    4. Deng, X.-L., & Sneeuw, N. (2023). Analytical Solutions for Gravitational Potential up to Its Third-order Derivatives of a Tesseroid, Spherical Zonal Band, and Spherical Shell. Surveys in Geophysics. https://doi.org/10.1007/s10712-023-09774-z
    5. Durand, M., Gleason, C. J., Pavelsky, T. M., de Prata Moraes Frasson, R., Turmon, M., David, C. H., Altenau, E. H., Tebaldi, N., Larnier, K., Monnier, J., Malaterre, P. O., Oubanas, H., Allen, G. H., Astifan, B., Brinkerhoff, C., Bates, P. D., Bjerklie, D., Coss, S., Dudley, R., … Wang, J. (2023). A framework for estimating global river discharge from the Surface Water and Ocean Topography satellite mission. Water Resources Research, n/a(n/a), Article n/a. https://doi.org/10.1029/2021WR031614
    6. Elmi, O., & Tourian, M. J. (2023). Retrieving time series of river water extent from global inland water data sets. Journal of Hydrology, 617, 128880. https://doi.org/10.1016/j.jhydrol.2022.128880
    7. Kitambo, B. M., Papa, F., Paris, A., Tshimanga, R. M., Frappart, F., Calmant, S., Elmi, O., Fleischmann, A. S., Becker, M., Tourian, M. J., Jucá Oliveira, R. A., & Wongchuig, S. (2023). A long-term monthly surface water storage dataset for the Congo basin from 1992 to 2015. Earth System Science Data, 15(7), Article 7. https://doi.org/10.5194/essd-15-2957-2023
    8. Pirooznia, M., Naeeni, M. R., & Tourian, M. J. (2023). Modeling total surface current in the Persian Gulf and the Oman Sea by combination of geodetic and hydrographic observations and assimilation with in situ current meter data. Acta Geophysica. https://doi.org/10.1007/s11600-022-00985-3
    9. Safaeian, S., Falahatkar, S., & Tourian, M. J. (2023). Satellite observation of atmospheric CO2 and water storage change over Iran. Scientific Reports, 13(1), Article 1. https://doi.org/10.1038/s41598-023-28961-x
    10. Silva, E. D., Woolliams, E., Picot, N., Poisson, J.-C., Skourup, H., Moholdt, G., Fleury, S., Behnia, S., Favier, V., laurent arnaud, Aublanc, J., Fouqueau, V., Taburet, N., Renou, J., Yesou, H., TARPANELLI, A., CAMICI, S., Hansen, R. M. F., Nielsen, K., … Féménias, P. (2023). Towards Operational Fiducial Reference Measurement (FRM) Data for the Calibration and Validation of the Sentinel-3 Surface Topography Mission over Inland Waters, Sea Ice, and Land Ice. Remote Sensing. https://doi.org/10.3390/rs15194826
    11. Tourian, M. J., Saemian, P., Ferreira, V. G., Sneeuw, N., Frappart, F., & Papa, F. (2023). A copula-supported Bayesian framework for spatial downscaling of GRACE-derived terrestrial water storage flux. Remote Sensing of Environment, 295, 113685. https://doi.org/10.1016/j.rse.2023.113685
    12. Tourian, M. J., Papa, F., Elmi, O., Sneeuw, N., Kitambo, B., Tshimanga, R. M., Paris, A., & Calmant, S. (2023). Current availability and distribution of Congo Basin’s freshwater resources. Communications Earth & Environment, 4(1), Article 1. https://doi.org/10.1038/s43247-023-00836-z
    13. Wang, B., & Sneeuw, N. (2023). Crossover Adjustment of ICESat-2 Satellite Altimetry for the Arctic Region. Advances in Space Research. https://doi.org/10.1016/j.asr.2023.07.041
    14. Yi, S., Saemian, P., Sneeuw, N., & Tourian, M. J. (2023). Estimating runoff from pan-Arctic drainage basins for 2002–2019 using an improved runoff-storage relationship. Remote Sensing of Environment, 298, 1–23. https://doi.org/10.1016/j.rse.2023.113816
    15. Yi, S., Saemian, P., Sneeuw, N., & Tourian, M. J. (2023). Estimating runoff from pan-Arctic drainage basins for 2002–2019 using an improved runoff-storage relationship. Remote Sensing of Environment, 298, 113816. https://doi.org/10.1016/j.rse.2023.113816
    16. Yu, J., Rong, Y., Lin, Y., Li, X., Gao, C., Zhang, T., Zhou, X., Cai, J., & Sneeuw, N. (2023). Spatiotemporal dynamic impacts of Lake Victoria water volume variations on sustainable economic development. International Journal of Applied Earth Observation and Geoinformation, 123, 103475. https://doi.org/10.1016/j.jag.2023.103475
  4. 2022

    1. Antoni, M. (2022). A review of different mascon approaches for regional gravity field modelling since 1968. History of Geo- and Space Sciences, 13(2), Article 2. https://doi.org/10.5194/hgss-13-205-2022
    2. Behling, R., Roessner, S., Foerster, S., Saemian, P., Tourian, M. J., Portele, T. C., & Lorenz, C. (2022). Interrelations of vegetation growth and water scarcity in Iran revealed by satellite time series. Scientific Reports, 12(1), Article 1. https://doi.org/10.1038/s41598-022-24712-6
    3. Camici, S., Tarpanelli, A., Brocca, L., Massari, C., Nielsen, K., Sneeuw, N., Tourian, M. J., Yi, S., Restano, M., & Benveniste, J. (2022). Satellite observations for runoff and river discharge estimation: STREAMRIDE approach&\#160$\mathsemicolon$. https://doi.org/10.5194/egusphere-egu22-9234
    4. Camici, S., Giuliani, G., Brocca, L., Massari, C., Tarpanelli, A., Hashemi Farahani, H., Sneeuw, N., Restano, M., & Benveniste, J. (2022). Synergy between satellite observations of soil moisture and water storage anomalies for runoff estimation. Geoscientific Model Development, 15, Article 15. https://doi.org/10.5194/gmd-15-6935-2022
    5. Elmi, O., & Tourian, M. J. (2022). Retrieving time series of river water extent from global inland water data sets. Journal of Hydrology, 128880. https://doi.org/10.1016/j.jhydrol.2022.128880
    6. Ghajarnia, N., Akbari, M., Saemian, P., Ehsani, M. R., Hosseini-Moghari, S.-M., Azizian, A., Kalantari, Z., Behrangi, A., Tourian, M. J., Klöve, B., & Haghighi, A. T. (2022). Evaluating the Evolution of ECMWF Precipitation Products Using Observational Data for Iran: From ERA40 to ERA5. Earth and Space Science, 9(10), Article 10. https://doi.org/10.1029/2022EA002352
    7. Ghajarnia, N., Akbari, M., Saemian, P., Ehsani, M. R., Hosseini-Moghari, S.-M., Azizian, A., Kalantari, Z., Behrangi, A., Tourian, M. J., Klöve, B., & Haghighi, A. T. (2022). Evaluating the Evolution of ECMWF Precipitation Products Using Observational Data for Iran: From ERA40 to ERA5. https://doi.org/10.31223/x5bp6p
    8. Ghorbanpour, A. K., Kisekka, I., Afshar, A., Hessels, T., Taraghi, M., Hessari, B., Tourian, M. J., & Duan, Z. (2022). Crop Water Productivity Mapping and Benchmarking Using Remote Sensing and Google Earth Engine Cloud Computing. Remote Sensing. https://doi.org/10.3390/rs14194934
    9. Gou, J., & Tourian, M. J. (2022). RiwiSAR-SWH: A data-driven method for estimating significant wave height using Sentinel-3 SAR altimetry. Advances in Space Research. https://doi.org/10.1016/J.ASR.2021.12.019
    10. Huang, Q., Schmerr, N. C., King, S. D., Kim, D., Rivoldini, A., Plesa, A.-C., Samuel, H., Maguire, R. R., Karakostas, F., Lekić, V., Charalambous, C., Collinet, M., Myhill, R., Antonangeli, D., Drilleau, M., Bystricky, M., Bollinger, C., Michaut, C., Gudkova, T., … Banerdt, W. B. (2022). Seismic detection of a deep mantle discontinuity within Mars by InSight. Proceedings of the National Academy of Sciences, 119(42), Article 42. https://doi.org/10.1073/pnas.2204474119
    11. Kitambo, B., Papa, F., Paris, A., Tshimanga, R. M., Calmant, S., Fleischmann, A. S., Frappart, F., Becker, M., Tourian, M. J., Prigent, C., & Andriambeloson, J. (2022). A combined use of in situ and satellite-derived  observations to characterize surface hydrology  and its variability in the Congo River basin. Hydrology and Earth System Sciences, 26(7), Article 7. https://doi.org/10.5194/hess-26-1857-2022
    12. Liu, B., Zou, X., Yi, S., Sneeuw, N., Li, J., & Cai, J. (2022). Reconstructing GRACE-like time series of high mountain glacier mass anomalies. Remote Sensing of Environment, 280, 1–22. https://doi.org/10.1016/j.rse.2022.113177
    13. Pirooznia, M., Raoofian Naeeni, M., Atabati, A., & Tourian, M. J. (2022). Improving the Modeling of Sea Surface Currents in the Persian Gulf and the Oman Sea Using Data Assimilation of Satellite Altimetry and Hydrographic Observations. Remote Sensing, 14(19), Article 19. https://doi.org/10.3390/rs14194901
    14. Saemian, P., Tourian, M. J., AghaKouchak, A., Madani, K., & Sneeuw, N. (2022). How much water did Iran lose over the last two decades? Journal of Hydrology: Regional Studies. https://doi.org/10.1016/J.EJRH.2022.101095
    15. Sneeuw, N., Wang, B., Bao, J., Ke, S., & Tourian, M. (2022). Constraining river streamflow determination using bathymetry and slope from ICESat-2 satellite altimetry. https://doi.org/10.5194/egusphere-egu22-7475
    16. Tourian, M. J., Papa, F., Elmi, O., Sneeuw, N., Kitambo, B., Tshimanga, R., Paris, A., & Calmant, S. (2022). Current availability and distribution of Congo basin\textquotesingles freshwater resources. https://doi.org/10.21203/rs.3.rs-1325377/v1
    17. Tourian, M. J., Elmi, O., Shafaghi, Y., Behnia, S., Saemian, P., Schlesinger, R., & Sneeuw, N. (2022). HydroSat: geometric quantities of the global water cycle from geodetic satellites. Earth System Science Data. https://doi.org/10.5194/essd-14-2463-2022
    18. Yi, S., & Sneeuw, N. (2022). A novel spatial filter to reduce north--south striping noise in GRACE spherical harmonic coefficients. Journal of Geodesy, 96(4), Article 4. https://doi.org/10.1007/s00190-022-01614-z
  5. 2021

    1. Abedini, A., Keller, W., & Amiri-Simkooei, A. (2021). Estimation of surface density changes using a mascon method in GRACE-like missions. Journal of Earth System Science, 130(1), Article 1. https://doi.org/10.1007/s12040-020-01535-5
    2. Abedini, A., Keller, W., & Amiri-Simkooei, A. R. (2021). On the performance of equiangular mascon solution in GRACE-like missions. Annals of Geophysics, 64(2), Article 2. https://doi.org/10.4401/ag-8621
    3. Brooks, B. A., Protti, M., Ericksen, T., Bunn, J., Vega, F., Cochran, E. S., Duncan, C., Avery, J., Minson, S. E., Chaves, E., Baez, J. C., Foster, J., & Glennie, C. L. (2021). Robust Earthquake Early Warning at a Fraction of the Cost: ASTUTI Costa Rica. AGU Advances, 2(3), Article 3. https://doi.org/10.1029/2021AV000407
    4. Domeneghetti, A., Molari, G., Tourian, M. J., Tarpanelli, A., Behnia, S., Moramarco, T., Sneeuw, N., & Brath, A. (2021). Testing the Use of Single- and Multi-mission Satellite Altimetry for the Calibration of Hydraulic Models. Advances in Water Resources. https://doi.org/10.1016/J.ADVWATRES.2021.103887
    5. Durand, M., Gleason, C. J., Pavelsky, T. M., Frasson, R. P. de M., Turmon, M. J., David, C. H., Altenau, E. H., Tebaldi, N., Larnier, K., Monnier, J., & et al. (2021). A framework for estimating global river discharge from the Surface Water and Ocean Topography satellite mission. Earth and Space Science Open Archive, 43. https://doi.org/10.1002/essoar.10508946.1
    6. Elmi, O., Tourian, M. J., Bárdossy, A., & Sneeuw, N. (2021). Spaceborne River Discharge From a Nonparametric Stochastic Quantile Mapping Function. Water Resources Research, 57(12), Article 12. https://doi.org/10.1029/2021wr030277
    7. Elmi, O., Tourian, M. J., Bárdossy, A., & Sneeuw, N. (2021). Spaceborne river discharge from a nonparametric stochastic quantile mapping function. Water Resources Research, e2021WR030277. https://doi.org/10.1029/2021WR030277
    8. Gou, J., & Tourian, M. J. (2021). RiwiSAR-SWH: A data-driven method for estimating significant wave height using Sentinel-3 SAR altimetry. Advances in Space Research. https://doi.org/10.1016/j.asr.2021.12.019
    9. Khan, A., Ceylan, S., van Driel, M., Giardini, D., Lognonné, P., Samuel, H., Schmerr, N. C., Stähler, S. C., Duran, A. C., Huang, Q., Kim, D., Broquet, A., Charalambous, C., Clinton, J. F., Davis, P. M., Drilleau, M., Karakostas, F., Lekic, V., McLennan, S. M., … Banerdt, W. B. (2021). Upper mantle structure of Mars from InSight seismic data. Science, 373(6553), Article 6553. https://doi.org/10.1126/science.abf2966
    10. Kitambo, B., Papa, F., Paris, A., Tshimanga, R., Calmant, S., Fleischmann, A. S., Frappart, F., Becker, M., Tourian, M. J., Prigent, C., & Andriambeloson, J. (2021). A combined use of in situ and satellite-derived observations to characterize surface hydrology and its variability in the Congo River Basin. Hydrology and Earth System Sciences Discussions, 2021, 1--47. https://doi.org/10.5194/hess-2021-315
    11. Liu, B., Zou, X., Yi, S., Sneeuw, N., Cai, J., & Li, J. (2021). Identifying and separating climate- and human-driven water storage anomalies using GRACE satellite data. Remote Sensing of Environment, 263, 112559. https://doi.org/10.1016/j.rse.2021.112559
    12. Liu, W., & Sneeuw, N. (2021). Aliasing of ocean tides in satellite gravimetry: a two-step mechanism. Journal of Geodesy, 95(134), Article 134. https://doi.org/doi.org/10.1007/s00190-021-01586-6
    13. Neto, A. R., Behnia, S., Tourian, M. J., da Costa, F. A., & Sneeuw, N. (2021). Satellite altimetry over small reservoirs in the Brazilian semiarid region. RBRH. https://doi.org/10.1590/2318-0331.262120210038
    14. Roger, J., Pelletier, B., Duphil, M., Lefèvre, J., Aucan, J., Lebellegard, P., Thomas, B., Bachelier, C., & Varillon, D. (2021). The M_w 7.5 Tadine (Maré, Loyalty Islands) earthquake and related tsunami of 5 December 2018: seismotectonic context and numerical modeling. Natural Hazards and Earth System Sciences, 21(11), Article 11. https://doi.org/10.5194/nhess-21-3489-2021
    15. Roohi, Sh., Sneeuw, N., Benveniste, J., Dinardo, S., Issawy, E. A., & Zhang, G. (2021). Evaluation of CryoSat-2 water level derived from different retracking scenarios over selected inland water bodies. Advances in Space Research, 68(2), Article 2. https://doi.org/10.1016/j.asr.2019.06.024
    16. Saemian, P., Hosseini-Moghari, S.-M., Fatehi, I., Shoarinezhad, V., Modiri, E., Tourian, M. J., Tang, Q., Nowak, W., Bárdossy, A., & Sneeuw, N. (2021). Comprehensive evaluation of precipitation datasets over Iran. Journal of Hydrology, 603, 1–23. https://doi.org/10.1016/j.jhydrol.2021.127054
    17. Sharifi, A., Mirchi, A., Pirmoradian, R., Mirabbasi, R., Tourian, M. J., Haghighi, A. T., & Madani, K. (2021). Battling Water Limits to Growth: Lessons from Water Trends in the Central Plateau of Iran. Environmental Management. https://doi.org/10.1007/S00267-021-01447-0
    18. Thomas, B. E. O., Roger, J., Gunnell, Y., Sabinot, C., & Aucan, J. (2021). A low-cost toolbox for high-resolution vulnerability and hazard-perception mapping in view of tsunami risk mitigation: Application to New Caledonia. International Journal of Disaster Risk Reduction, 62(102350), 62(102350), Article 102350. https://doi.org/10.1016/j.ijdrr.2021.102350
    19. Tourian, M. J., Elmi, O., Shafaghi, Y., Behnia, S., Saemian, P., Schlesinger, R., & Sneeuw, N. (2021). HydroSat: a repository of global water cycle products from spaceborne geodetic sensors. Earth System Science Data Discussions, 2021, 1--42. https://doi.org/10.5194/essd-2021-174
    20. Vishwakarma, B. D., Zhang, J., & Sneeuw, N. (2021). Downscaling GRACE total water storage change using partial least squares regression. Scientific Data, 8(1), Article 1. https://doi.org/10.1038/s41597-021-00862-6
    21. Vishwakarma, B. D., Bates, P., Sneeuw, N., Westaway, R., & Bamber, J. (2021). Re-assessing global water storage trends from GRACE time series. Environmental Research Letters, 16, 1–9. https://doi.org/10.1088/1748-9326/abd4a9
    22. Yi, S., & Sneeuw, N. (2021). Filling the Data Gaps Within GRACE Missions Using Singular Spectrum Analysis. Journal of Geophysical Research: Solid Earth, 126(5), Article 5. https://doi.org/10.1029/2020jb021227
    23. Yin, Z., & Sneeuw, N. (2021). Modeling the gravitational field by using CFD techniques. Journal of Geodesy, 95(6), Article 6. https://doi.org/10.1007/s00190-021-01504-w
  6. 2020

    1. Banfield, D., Spiga, A., SEISteam, & Widmer-Schnidrig, R. (2020). The atmosphere of Mars as observed by InSight. Nature Geoscience, 13, 190–198. https://doi.org/10.1038/s41561-020-0534-0
    2. Cambiotti, G., Douch, K., Cesare, S., Haagmans, R., Sneeuw, N., Anselmi, A., Marotta, A. M., & Sabadini, R. (2020). On Earthquake Detectability by the Next-Generation Gravity Mission. Surveys in Geophysics, 41(5), Article 5. https://doi.org/10.1007/s10712-020-09603-7
    3. Ferreira, V. G., Yong, B., Tourian, M. J., Ndehedehe, C. E., Shen, Z., Seitz, K., & Dannouf, R. (2020). Characterization of the hydro-geological regime of Yangtze River basin using remotely-sensed and modeled products. Science of The Total Environment, 718, 137354. https://doi.org/10.1016/j.scitotenv.2020.137354
    4. Garcia, R. F., Kenda, B., Kawamura, T., Spiga, A., Murdoch, N., Lognonné, P. H., Widmer-Schnidrig, R., Compaire, N., Orhand-Mainsant, G., Banfield, D., & Banerdt, W. B. (2020). Pressure Effects on the SEIS-InSight Instrument, Improvement of Seismic Records, and Characterization of Long Period Atmospheric Waves From Ground Displacements. Journal of Geophysical Research: Planets, 125(7), Article 7. https://doi.org/10.1029/2019JE006278
    5. Ghobadi-Far, K., Han, S.-C., Allgeyer, S., Tregoning, P., Sauber, J., Behzadpour, S., Mayer-Gürr, T., Sneeuw, N., & Okal, E. (2020). GRACE gravitational measurements of tsunamis after the 2004, 2010, and 2011 great earthquakes. Journal of Geodesy, 94(65), Article 65. https://doi.org/10.1007/s00190-020-01395-3
    6. Horowitz, C. J., & Widmer-Schnidrig, R. (2020). Gravimeter Search for Compact Dark Matter Objects Moving in the Earth. Phys. Rev. Lett., 124(5), Article 5. https://doi.org/10.1103/PhysRevLett.124.051102
    7. Hosseini-Moghari, S.-M., Araghinejad, S., Tourian, M. J., Ebrahimi, K., & Döll, P. (2020). Quantifying the impacts of human water use and climate variations on recent drying of Lake Urmia basin: the value of different sets of spaceborne and in situ data for calibrating a global hydrological model. Hydrology and Earth System Sciences, 24(4), Article 4. https://doi.org/10.5194/hess-24-1939-2020
    8. Lin, Y., Li, X., Zhang, T., Chao, N., Yu, J., Cai, J., & Sneeuw, N. (2020). Water Volume Variations Estimation and Analysis Using Multisource Satellilte Data: A Case Study of Lake Victoria. Remote Sensing, 12(18), Article 18. https://doi.org/10.3390/rs12183052
    9. Lognonné, P., Banerdt, W. B., SEISteam, & Widmer-Schnidrig, R. (2020). Constraints on the shallow elastic and anelastic structure of Mars from InSight seismic data. Nature Geoscience, 13, 213–220. https://doi.org/10.1038/s41561-020-0536-y
    10. Saemian, P., Elmi, O., Vishwakarma, B. D., Tourian, M. J., & Sneeuw, N. (2020). Analyzing the Lake Urmia restoration progress using ground-based and spaceborne observations. Science of The Total Environment, 739, 139857. https://doi.org/10.1016/j.scitotenv.2020.139857
    11. Scholz, J.-R., Widmer-Schnidrig, R., Davis, P., Lognonné, P., Pinot, B., Garcia, R. F., Hurst, K., Pou, L., Nimmo, F., Barkaoui, S., de Raucourt, S., Knapmeyer-Endrun, B., Knapmeyer, M., Orhand-Mainsant, G., Compaire, N., Cuvier, A., Beucler, É., Bonnin, M., Joshi, R., … Banerdt, W. B. (2020). Detection, Analysis, and Removal of Glitches From InSight\textquotesingles Seismic Data From Mars. Earth and Space Science, 7(11), Article 11. https://doi.org/10.1029/2020ea001317
    12. Stähler, S. C., Widmer-Schnidrig, R., Scholz, J.-R., van Driel, M., Mittelholz, A., Hurst, K., Johnson, C. L., Lemmon, M. T., Lorenz, R. D., Lognonné, P., Müller, N. T., Pou, L., Spiga, A., Banfield, D., Ceylan, S., Charalambous, C., Clinton, J., Giardini, D., Nimmo, F., … Banerdt, W. B. (2020). Geophysical observations of Phobos transits by InSight. Geophysical Research Letters, n/a(n/a), Article n/a. https://doi.org/10.1029/2020GL089099
    13. Yi, S., Song, C., Heki, K., Kang, S., Wang, Q., & Chang, L. (2020). Satellite-observed monthly glacier and snow mass changes in southeast Tibet: implication for substantial meltwater contribution to the Brahmaputra. The Cryosphere, 14(7), Article 7. https://doi.org/10.5194/tc-14-2267-2020
    14. Zaki, N. A., Haghighi, A. T., Rossi, P. M., Tourian, M. J., Bakhshaee, A., & Kløve, B. (2020). Evaluating Impacts of Irrigation and Drought on River, Groundwater and a Terminal Wetland in the Zayanderud Basin, Iran. Water. https://doi.org/10.3390/w12051302
    15. Zhang, J., Tourian, M. J., & Sneeuw, N. (2020). Identification of ENSO signature in the boreal hydrological cycle through canonical correlation with sea surface temperature anomalies. International Journal of Climatology, 40, 6219–6241. https://doi.org/10.1002/joc.6573
  7. 2019

    1. Abou Zaki, N., Torabi Haghighi, A., M. Rossi, P., J. Tourian, M., & Kløve, B. (2019). Monitoring Groundwater Storage Depletion Using Gravity Recovery and Climate Experiment (GRACE) Data in Bakhtegan Catchment, Iran. Water, 11(7), Article 7. https://doi.org/10.3390/w11071456
    2. Arabsahebi, R., Voosoghi, B., & Tourian, M. J. (2019). A denoising–classification–retracking method to improve spaceborne estimates of the water level–surface–volume relation over the Urmia Lake in Iran. International Journal of Remote Sensing, 41(2), Article 2. https://doi.org/10.1080/01431161.2019.1643938
    3. Arabsahebi, R., Voosoghi, B., & Tourian, M. J. (2019). A denoising–classification–retracking method to improve spaceborne estimates of the water level–surface–volume relation over the Urmia Lake in Iran. International Journal of Remote Sensing, 1--28. https://doi.org/10.1080/01431161.2019.1643938
    4. Ashraf, S., AghaKouchak, A., Nazemi, A., Mirchi, A., Sadegh, M., Moftakhari, H. R., Hassanzadeh, E., Miao, C. Y., Madani, K., Mousavi Baygi, M., Anjileli, H., Arab, D. R., Norouzi, H., Mazdiyasni, O., Azarderakhsh, M., Alborzi, A., Tourian, M. J., Mehran, A., Farahmand, A., & Mallakpour, I. (2019). Compounding effects of human activities and climatic changes on surface water availability in Iran. Climatic Change, 152(3–4), Article 3–4. https://doi.org/10.1007/s10584-018-2336-6
    5. Babadi, M., Sattari, M., & Pour, S. I. (2019). Exploring the potential of full waveform airborne LiDAR features and its fusion with RGB image in classification of a sparsely forested area. ISPRS - International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, XLII-4/W18, 147--152. https://doi.org/10.5194/isprs-archives-XLII-4-W18-147-2019
    6. Ghobadi-Far, K., Han, S.-C., Sauber, J., Lemoine, F., Behzadpour, S., Mayer-Gürr, T., Sneeuw, N., & Okal, E. (2019). Gravitational Changes of the Earth\textquotesingles Free Oscillation From Earthquakes: Theory and Feasibility Study Using GRACE Inter-satellite Tracking. Journal of Geophysical Research: Solid Earth. https://doi.org/10.1029/2019JB017530
    7. Hosseini-Moghari, S. M., Araghinejad, S., Ebrahimi, K., & Tourian, M. J. (2019). Introducing modified total storage deficit index (MTSDI) for drought monitoring using GRACE observations. Ecological Indicators, 101, 465--475. https://doi.org/10.1016/j.ecolind.2019.01.002
    8. Lognonné, P., SEISteam, & Widmer-Schnidrig, R. (2019). SEIS: Insight’s Seismic Experiment for Internal Structure of Mars. Space Sci Rev, 215(12), Article 12. https://doi.org/10.1007/s11214-018-0574-6
    9. Pail, R., Bamber, J., Biancale, R., Bingham, R., Braitenberg, C., Eicker, A., Flechtner, F., Gruber, T., Güntner, A., Heinzel, G., Horwath, M., Longuevergne, L., Müller, J., Panet, I., Savenije, H., Seneviratne, S., Sneeuw, N., van Dam, T., & Wouters, B. (2019). Mass variation observing system by high low inter-satellite links (MOBILE) – a new concept for sustained observation of mass transport from space. Journal of Geodetic Science, 9(1), Article 1. https://doi.org/10.1515/jogs-2019-0006
    10. Ringler, A. T., Steim, J., Wilson, D. C., Widmer-Schnidrig, R., & Anthony, R. E. (2019). Improvements in seismic resolution and current limitations in the Global Seismographic Network. Geophysical Journal International, 220(1), Article 1. https://doi.org/10.1093/gji/ggz473
    11. Roohi, S., Sneeuw, N., Benveniste, J., Dinardo, S., Issawy, E., & Zhang, G. (2019). Evaluation of CryoSat-2 water level derived from different retracking scenarios over selected inland water bodies. Advances in Space Research, 1–16. https://doi.org/10.1016/j.asr.2019.06.024
    12. Sabzehee, F., Nafisi, V., Pour, S. I., & Vishwakarma, B. D. (2019). Analysis of the precipitation climate signal using empirical mode decomposition (EMD) over the Caspian catchment area. ISPRS - International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, XLII-4/W18, 923--929. https://doi.org/10.5194/isprs-archives-XLII-4-W18-923-2019
    13. Sabzehee, F., Nafisi, V., Pour, S. I., & Vishwakarma, B. D. (2019). Investigation of the correlation between GRACE TWS and soil moisture in Sarakhs catchment. ISPRS - International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, XLII-4/W18, 931--934. https://doi.org/10.5194/isprs-archives-XLII-4-W18-931-2019
    14. Tarpanelli, A., Santi, E., Tourian, M. J., Filippucci, P., Amarnath, G., & Brocca, L. (2019). Daily River Discharge Estimates by Merging Satellite Optical Sensors and Radar Altimetry Through Artificial Neural Network. IEEE Transactions on Geoscience and Remote Sensing, 57(1), Article 1. https://doi.org/10.1109/tgrs.2018.2854625
    15. Trimeche, A., Battelier, B., Becker, D., Bertoldi, A., Bouyer, P., Braxmaier, C., Charron, E., Corgier, R., Cornelius, M., Douch, K., & others. (2019). Concept study and preliminary design of a cold atom interferometer for space gravity gradiometry. arXiv preprint arXiv:1903.09828.
    16. Wang, S., Xu, W., Xu, C., Yin, Z., Bürgmann, R., Liu, L., & Jiang, G. (2019). Changes in Groundwater Level Possibly Encourage Shallow Earthquakes in Central Australia: The 2016 Petermann Ranges Earthquake. Geophysical Research Letters, 46(6), Article 6. https://doi.org/10.1029/2018GL080510
    17. Xu, G., Xu, C., Wen, Y., & Yin, Z. (2019). Coseismic and Postseismic Deformation of the 2016 MW 6.2 Lampa Earthquake, Southern Peru, Constrained by Interferometric Synthetic Aperture Radar. Journal of Geophysical Research: Solid Earth, 0(0), Article 0. https://doi.org/10.1029/2018JB016572
    18. Yin, Z., & Sneeuw, N. (2019). Modeling the Gravitational Field by Using CFD Techniques. International Association of Geodesy Symposia, 1–8. https://doi.org/10.1007/1345_2019_72
    19. Zaki, N. A., Haghighi, A. T., Rossi, P. M., Tourian, M. J., & Kløve, B. (2019). Monitoring Groundwater Storage Depletion Using Gravity Recovery and Climate Experiment (GRACE) Data in Bakhtegan Catchment, Iran. Water, 11(7), Article 7. https://doi.org/10.3390/w11071456
  8. 2018

    1. Abou Zaki, N., Torabi Haghighi, A., Rossi, P. M., Tourian, M. J., & Klove, B. (2018). Monitoring Groundwater Storage Depletion Using Gravity Recovery and Climate Experiment (GRACE) Data in the Semi-Arid Catchments. Hydrology and Earth System Sciences Discussions, 1--21. https://doi.org/10.5194/hess-2018-471
    2. Arabsahebi, R., Voosoghi, B., & Tourian, M. J. (2018). An estimation of tropospheric corrections using GPS and synoptic data: Improving Urmia Lake water level time series from Jason-2 and SARAL/AltiKa satellite altimetry. Advances in Space Research. https://doi.org/10.1016/j.asr.2018.02.013
    3. Arabsahebi, R., Voosoghi, B., & Tourian, M. J. (2018). The Inflection-Point Retracking Algorithm: Improved Jason-2 Sea Surface Heights in the Strait of Hormuz. Marine Geodesy. https://doi.org/10.1080/01490419.2018.1448029
    4. Ashraf, S., AghaKouchak, A., Nazemi, A., Mirchi, A., Sadegh, M., Moftakhari, H. R., Hassanzadeh, E., Miao, C.-Y., Madani, K., Baygi, M. M., Anjileli, H., Arab, D. R., Norouzi, H., Mazdiyasni, O., Azarderakhsh, M., Alborzi, A., Tourian, M. J., Mehran, A., Farahmand, A., & Mallakpour, I. (2018). Compounding effects of human activities and climatic changes on surface water availability in Iran. Climatic Change, 152(3–4), Article 3–4. https://doi.org/10.1007/s10584-018-2336-6
    5. Devaraju, B., & Sneeuw, N. (2018). The role of two-point functions in geodesy and their classification. In (Schw)Ehre, wem (Schw)Ehre gebührt : Festschrift zur Verabschiedung von Prof. Dr.-Ing. Dr. h.c. Bernhard Heck. Hrsg.: A. Heck (No. 1; Bd. 2018, Nummer 1, S. 49--55). KIT Scientific Publishing, Karlsruhe. https://doi.org/10.5445/KSP/1000080211
    6. Dutta, A., Engels, J., & Hahn, M. (2018). Segmentation of Laser Point Clouds in Urban Areas by a Modified Normalized Cut Method. IEEE Transactions on Pattern Analysis & Machine Intelligence. https://doi.org/10.1109/TPAMI.2018.2869744
    7. Iran-Pour, S., Weigelt, M., Amiri-Simkooei, A.-R., & Sneeuw, N. (2018). Impact of groundtrack pattern of a single pair mission on the gravity recovery quality. Geosciences (MDPI), 8(9)(315), Article 315. https://doi.org/10.3390/geosciences8090315
    8. Lin, Y., Yu, J., Cai, J., Sneeuw, N., & Li, F. (2018). Spatio-Temporal Analysis of Wetland Changes Using a Kernel Extreme Learning Machine Approach. Remote Sensing, 10(7), Article 7. https://doi.org/10.3390/rs10071129
    9. Mink, R., Dutta, A., Peteinatos, G. G., Sökefeld, M., Engels, J. J., Hahn, M., & Gerhards, R. (2018). Multi-Temporal Site-Specific Weed Control of Cirsium arvense (L.) Scop. and Rumex crispus L. in Maize and Sugar Beet Using Unmanned Aerial Vehicle Based Mapping. Agriculture, 8(5), Article 5. https://EconPapers.repec.org/RePEc:gam:jagris:v:8:y:2018:i:5:p:65-:d:143816
    10. Schlesinger, R., & Cieslack, M. (2018). Simultane Messungen mit zehn Scintrex-CG-5-Gravimetern im stationären Parallelbetrieb. avn, 125(8–9), Article 8–9. https://gispoint.de/artikelarchiv/avn/2018/avn-8-92018/4577-simultane-messungen-mit-zehn-scintrex-cg-5-gravimetern-im-stationaeren-parallelbetrieb.html
    11. Shepherd, A., & team, I. (2018). Mass balance of the Antarctic Ice Sheet from 1992 to 2017. Nature, 558(7709), Article 7709. https://doi.org/10.1038/s41586-018-0179-y
    12. Tarpanelli, A., Santi, E., Tourian, M. J., Filippucci, P., Amarnath, G., & Brocca, L. (2018). Daily River Discharge Estimates by Merging Satellite Optical Sensors and Radar Altimetry Through Artificial Neural Network. IEEE Transactions on Geoscience and Remote Sensing, 1--13. https://doi.org/10.1109/TGRS.2018.2854625
    13. Tourian, M. J., Reager, J. T., & Sneeuw, N. (2018). The Total Drainable Water Storage of the Amazon River Basin: A First Estimate Using GRACE. Water Resources Research, 54(5), Article 5. https://doi.org/10.1029/2017wr021674
    14. Vishwakarma, B., Devaraju, B., & Sneeuw, N. (2018). What is the Spatial Resolution of GRACE Satellite Products for Hydrology? Remote Sensing, 10(852), Article 852. https://doi.org/10.3390/rs10000852
    15. Wang, S., Xu, C., Xu, W., Yin, Z., Wen, Y., & Jiang, G. (2018). The 2017 M w 6.6 Poso Earthquake: Implications for Extrusion Tectonics in Central Sulawesi. Seismological Research Letters, 90(2A), Article 2A.
    16. Ye, Z., Tenzer, R., & Sneeuw, N. (2018). Comparison of methods for a 3-D density inversion from airborne gravity gradiometry. Studia Geophysica et Geodaetica, 62(1), Article 1. https://doi.org/10.1007/s11200-016-0492-6
    17. Yuan, P., Jiang, W., Wang, K., & Sneeuw, N. (2018). Effects of Spatiotemporal Filtering on the Periodic Signals and Noise in the GPS Position Time Series of the Crustal Movement Observation Network of China. Remote Sensing, 10(9), Article 9. https://doi.org/10.3390/rs10091472
  9. 2017

    1. Devaraju, B., & Sneeuw, N. (2017). The polar form of the spherical harmonic spectrum: implications for filtering GRACE data. Journal of Geodesy, 15. https://doi.org/10.1007/s00190-017-1037-7
    2. Jiang, W., Yuan, P., Chen, H., Cai, J., Li, Z., Chao, N., & Sneeuw, N. (2017). Annual variations of monsoon and drought detected by GPS: A case study in Yunnan, China. Scientific Reports, 7(Article no. 5874), Article Article no. 5874. https://doi.org/10.1038/s41598-017-06095-1
    3. Sadegh, M., Love, C., Farahmand, A., Mehran, A., Tourian, M. J., & AghaKouchak, A. (2017). Multi-Sensor Remote Sensing of Drought from Space. In V. Lakshmi (Hrsg.), Remote Sensing of Hydrological Extremes (S. 219--247). Springer International Publishing. https://doi.org/10.1007/978-3-319-43744-6_11
    4. Sharifi, M. A., Seif, M. R., Baur, O., & Sneeuw, N. (2017). Gravity field recovery from orbit information using the Lagrange formalism. Annals of Geophysics, 60(3), Article 3. https://doi.org/10.4401/ag-7204
    5. Sjöberg, L. E., Grafarend, E. W., & Joud, M. S. S. (2017). The zero gravity curve and surface and radii for geostationary and geosynchronous satellite orbits. Journal of Geodetic Science, 7(1), Article 1. https://doi.org/10.1515/jogs-2017-0005
    6. Tarpanelli, A., Domeneghetti, A., Getirana, A., Elmi, O., Tourian, M. J., & Barbetta, S. (2017). The synergistic use of multiple sensors for hydrological purposes. In J. Benveniste, S. Vignudelli, & A. G. Kostianoy (Hrsg.), Inland altimetry. Springer-Verlag Berlin Heidelberg.
    7. Tourian, M. J., Elmi, O., Mohammadnejad, A., & Sneeuw, N. (2017). Estimating River Depth from SWOT-Type Observables Obtained by Satellite Altimetry and Imagery. Water, 9(10), Article 10. https://doi.org/10.3390/w9100753
    8. Tourian, M. J., Schwatke, C., & Sneeuw, N. (2017). River discharge estimation at daily resolution from satellite altimetry over an entire river basin. Journal of Hydrology, 546, 230--247. https://doi.org/10.1016/j.jhydrol.2017.01.009
    9. Varga, P., Grafarend, E., & Engels, J. (2017). Relation of Different Type Love–Shida Numbers Determined with the Use of Time-Varying Incremental Gravitational Potential. Pure and Applied Geophysics, 175(5), Article 5. https://doi.org/10.1007/s00024-017-1532-z
    10. Varga, P., & Grafarend, E. W. (2017). Influence of Tidal Forces on the Triggering of Seismic Events. Pure and Applied Geophysics. https://doi.org/10.1007/s00024-017-1563-5
    11. Vishwakarma, B. D., Horwath, M., Devaraju, B., Groh, A., & Sneeuw, N. (2017). A Data-Driven Approach for Repairing the Hydrological Catchment Signal Damage Due to Filtering of GRACE Products. Water Resources Research, 53(11), Article 11. https://doi.org/10.1002/2017WR021150
    12. Xu, X., Zhao, Y., Reubelt, T., & Tenzer, R. (2017). A GOCE only gravity model GOSG01S and the validation of GOCE related satellite gravity models. Geodesy and Geodynamics, 8(4), Article 4. https://doi.org/10.1016/j.geog.2017.03.013
  10. 2016

    1. Elmi, O., Tourian, M. J., & Sneeuw, N. (2016). Dynamic river masks from multi-temporal satellite imagery: an automatic algorithm using graph cuts optimization.
    2. Ghobadi-Far, K., Sharifi, M. A., & Sneeuw, N. (2016). 2D Fourier series representation of gravitational functionals in spherical coordinates (No. 9). 90(9), Article 9. https://doi.org/10.1007/s00190-016-0916-7
    3. Li, H., Reubelt, T., Antoni, M., & Sneeuw, N. (2016). Gravity field error analysis for pendulum formations by a semi-analytical approach. 1--19. https://doi.org/10.1007/s00190-016-0958-x
    4. Tourian, M. J., Tarpanelli, A., Elmi, O., Qin, T., Brocca, L., Moramarco, T., & Sneeuw, N. (2016). Spatiotemporal densification of river water level time series by multimission satellite altimetry (No. 2). 52(2), Article 2. https://doi.org/10.1002/2015WR017654
    5. Vishwakarma, B. D., Devaraju, B., & Sneeuw, N. (2016). Minimizing the effects of filtering on catchment scale GRACE solutions (No. 8). 8, Article 8. https://doi.org/10.1002/2016WR018960
    6. Ye, Z., Tenzer, R., Sneeuw, N., Liu, L., & Wild-Pfeiffer, F. (2016). Generalized model for a Moho inversion from gravity and vertical gravity-gradient data (No. 1). 207(1), Article 1. https://doi.org/10.1093/gji/ggw251
  11. 2015

    1. Ghobadi-Far, K., Sharifi, M., & Sneeuw, N. (2015). GOCE gradiometry data processing using the Rosborough approach (No. 12). 89(12), Article 12. https://doi.org/10.1007/s00190-015-0849-6
    2. Grafarend, E. W., Klapp, M., & Martinec, Z. (2015). Spacetime modeling of the Earth’s gravity field by ellipsoidal harmonics. In W. Freeden, Z. M. Nashed, & T. Sonar (Hrsg.), Handbook of Geomathematics (2nd edition, S. 381--456). Springer Verlag, Berlin-Heidelberg.
    3. Grafarend, E. W., & You, R.-J. (2015). Fourth order Taylor-Kármán structured covariance tensor for gravity gradient predictions by means of the Hankel transformation (No. 2). 6(2), Article 2. https://doi.org/10.1007/s13137-015-0071-y
    4. Grafarend, E. W. (2015). The reference figure of the rotating Earth in geometry and gravity space and an attempt to generalize the celebrated Runge-Walsh approximation theorem for irregular surfaces (No. 2). 6(2), Article 2. https://doi.org/10.1007/s13137-014-0068-y
    5. Grafarend, E. W. (2015). Theory of Map Projections: From Riemann Manifolds to Riemann Manifolds. In W. Freeden, Z. M. Nashed, & T. Sonar (Hrsg.), Handbook of Geomathematics (S. 1--69). Springer Verlag, Berlin-Heidelberg 2015. https://doi.org/10.1007/978-3-642-27793-1_53-1
    6. Keller, W., & You, R.-J. (2015). Rosborough approach for the determination of regional time variability of the gravity field from satellite gradiometry data (No. 2). 6(2), Article 2. https://doi.org/10.1007/s13137-015-0077-5
    7. Keller, W. (2015). Satellite-to-Satellite Tracking (Low-Low/High-Low SST). In W. Freeden, Z. Nashed, & T. Sonar (Hrsg.), Handbook of Geomathematics (S. 171--210). Springer-Verlag, Berlin Heidelberg.
    8. Lorenz, C., Tourian, M. J., Devaraju, B., Sneeuw, N., & Kunstmann, H. (2015). Basin-scale runoff prediction: An E nsemble K alman F ilter framework based on global hydrometeorological data sets. Water Resources Research, 51(10), Article 10. https://doi.org/10.1002/2014wr016794
    9. Tourian, M. J., Elmi, O., Chen, Q., Devaraju, B., Roohi, Sh., & Sneeuw, N. (2015). A spaceborne multisensor approach to monitor the desiccation of Lake Urmia in Iran. Remote Sensing of Environment, 156, 349--360. https://doi.org/10.1016/j.rse.2014.10.006
  12. 2014

    1. Baur, O., Bock, H., Höck, E., Jäggi, A., Krauss, S., Mayer-Gürr, T., Reubelt, T., Siemes, C., & Zehentner, N. (2014). Comparison of GOCE-GPS gravity fields derived by different approaches (No. 10). 88(10), Article 10. https://doi.org/10.1007/s00190-014-0736-6
    2. Cai, J., & Sneeuw, N. (2014). Stochastic modeling of GOCE gravitational tensor invariants. In F. Flechtner, N. Sneeuw, & W. D. Schuh (Hrsg.), GEOTECHNOLOGIEN Science Report (No. 20; Nummer 20, S. 115--121). Springer-Verlag Berlin Heidelberg. https://doi.org/10.1007/978-3-642-32135-1_15
    3. Keller, W., & You, R. J. (2014). Adaptation of the torus and Rosborough approach to radial base functions (No. 2). 58(2), Article 2. https://doi.org/10.1007/s11200-013-0157-7
    4. Kusche, J., Klemann, V., & Sneeuw, N. (2014). Mass Distribution and Mass Transport in the Earth System: Recent Scientific Progress Due to Interdisciplinary Research (No. 6). 35(6), Article 6. https://doi.org/10.1007/s10712-014-9308-9
    5. Lorenz, C., Kunstmann, H., Devaraju, B., Tourian, M. J., Sneeuw, N., & Riegger, J. (2014). Large-Scale Runoff from Landmasses: A Global Assessment of the Closure of the Hydrological and Atmospheric Water Balances (No. 6). 15(6), Article 6. https://doi.org/10.1175/jhm-d-13-0157.1
    6. Lorenz, C., Kunstmann, H., Devaraju, B., Tourian, M. J., Sneeuw, N., & Riegger, J. (2014). Large-Scale Runoff from Landmasses: A Global Assessment of the Closure of the Hydrological and Atmospheric Water Balances\ast. Journal of Hydrometeorology, 15(6), Article 6. https://doi.org/10.1175/jhm-d-13-0157.1
    7. Reubelt, T., Sneeuw, N., Iran Pour, S., Hirth, M., Fichter, W., Müller, J., Brieden, P., Flechtner, F., Raimondo, J.-C., Kusche, J., Elsaka, B., Gruber, T., Pail, R., Murböck, M., Doll, B., Sand, R., Wang, X., Klein, V., Lezius, M., … Pelivan, I. (2014). Future Gravity Field Satellite Missions. In F. Flechtner, N. Sneeuw, & W. D. Schuh (Hrsg.), Geotechnologien Science Report (No. 20; Nummer 20, S. 165--230). Springer Berlin Heidelberg. https://doi.org/10.1007/978-3-642-32135-1_21
    8. Reudink, R., Klees, R., Francis, O., Kusche, J., Schlesinger, R., Shabanloui, V., Sneeuw, N., & Timmen, L. (2014). High tilt susceptibility of the Scintrex CG-5 relative gravimeters (No. 6). 88(6), Article 6. https://doi.org/10.1007/s00190-014-0705-0
    9. Riegger, J., & Tourian, M. J. (2014). Characterization of runoff-storage relationships by satellite gravimetry and remote sensing (No. 4). 50(4), Article 4. https://doi.org/10.1002/2013wr013847
    10. Sneeuw, N., Lorenz, C., Devaraju, Band Tourian, M. J., Riegger, J., Kunstmann, H., & Bardossy, A. (2014). Estimating runoff using hydro-geodetic approaches: Status and challenges (No. 6). 35(6), Article 6. https://doi.org/10.1007/s10712-014-9300-4
    11. Sneeuw, N., Lorenz, C., Devaraju, B., Tourian, M. J., Riegger, J., Kunstmann, H., & Bárdossy, A. (2014). Estimating Runoff Using Hydro-Geodetic Approaches. Surveys in Geophysics, 35(6), Article 6. https://doi.org/10.1007/s10712-014-9300-4
    12. Tourian, M. J., Elmi, O., Chen, Q., Devaraju, B., Roohi, S., & Sneeuw, N. (2014). A spaceborne multisensor approach to monitor the desiccation of Lake Urmia in Iran. 156, 349--360. https://doi.org/10.1016/j.rse.2014.10.006
    13. Varga, P., Krumm, F. W., Grafarend, E. W., Sneeuw, N., Schreider, A. A., & Horváth, F. (2014). Evolution of the oceanic and continental crust during Neo-Proterozoic and Phanerozoic. 25, 255--263. https://doi.org/10.1007/s12210-014-0298-9
  13. 2013

    1. Antoni, M., & Keller, W. (2013). Closed solution of the Hill differential equation for short arcs and a local mass anomaly in the central body (No. 2). 115(2), Article 2. https://doi.org/10.1007/s10569-012-9454-7
    2. Chen, Q., Van Dam, T., Sneeuw, N., Collilieux, X., Weigelt, M., & Rebischung, P. (2013). Singular spectrum analysis for modeling seasonal signals from GPS time series. 72, 25--35. https://doi.org/10.1016/j.jog.2013.05.005
    3. Elsaka, B., Raimondo, J. C., Brieden, P., Reubelt, T., Kusche, J., Flechtner, F., Iran Pour, S., Sneeuw, N., & Müller, J. (2013). Comparing seven candidate mission configurations for temporal gravity field retrieval through full-scale numerical simulation (No. 1). 88(1), Article 1. https://doi.org/10.1007/s00190-013-0665-9
    4. Iran Pour, S., Reubelt, T., & Sneeuw, N. (2013). Quality assessment of sub-Nyquist recovery from future gravity satellite missions (No. 5). 52(5), Article 5. https://doi.org/10.1016/j.asr.2013.05.026
    5. Krawinkel, T., Hücker, D., Schikschneit, C., Beermann, K., Flury, J., Vey, S., Antoni, M., & Feldmann-Westendorff, U. (2013). Sub-cm-Konsistenz von nivellierten Normalhöhen, GNSS-Positionen und Quasigeoid im Testgebiet Harz. 138, 201--209. http://geodaesie.info/zfv/heftbeitrag/1568
    6. Najibi, N., Abedini, A., & Najibi, H. (2013). Analysis of Sea Ice Leads in Baffin Island Sea Using Spaced Based Infrared Remote Sensing Data and Mathematical Hydrological Models (No. 1). 1, Article 1.
    7. Najibi, N., Abedini, A., & Sheibani, R. A. (2013). Harmonic Decomposition Tidal Analysis and Prediction Based on Astronomical Arguments and Nodal Corrections in Persian Gulf, Iran (No. 7). 5(7), Article 7. http://maxwellsci.com/print/rjees/v5-381-392.pdf
    8. Sahami Shirazi, A., Clawson, J., Hassanpour, Y., Tourian, M. J., Schmidt, A., Chi, E. H., Borazio, M., & van Laerhoven, K. (2013). Already Up? Using Mobile Phones to Track & Share Sleep Behavior (No. 9). 71(9), Article 9. https://doi.org/10.1016/j.ijhcs.2013.03.001
    9. Tourian, M. J., Sneeuw, N., & Bárdossy, A. (2013). A quantile function approach to discharge estimation from satellite altimetry (ENVISAT) (No. 7). 49(7), Article 7. https://doi.org/10.1002/wrcr.20348
    10. Tourian, M. J., Sneeuw, N., & Bárdossy, A. (2013). A quantile function approach to discharge estimation from satellite altimetry (ENVISAT). Water Resources Research, 49(7), Article 7. https://doi.org/10.1002/wrcr.20348
    11. Viswakarama, B. D., Jain, K., Sneeuw, N., & Devaraju, B. (2013). Mumbai 2005, Bihar 2008 flood reflected in mass changes seen by GRACE satellites (No. 3). 41(3), Article 3. https://doi.org/10.1007/s12524-012-0256-x
    12. Weigelt, M., Sneeuw, N., Schrama, E. J. O., & Visser, P. N. A. M. (2013). An improved sampling rule for mapping geopotential functions of a planet from a near polar orbit (No. 2). 87(2), Article 2. https://doi.org/10.1007/s00190-012-0585-0
    13. Weigelt, M., Van Dam, T., Jäggi, A., Prange, L., Tourian, M. J., Keller, W., & Sneeuw, N. (2013). Time-variable gravity signal in Greenland revealed by high-low satellite-to-satellite tracking (No. 7). 118(7), Article 7. https://doi.org/10.1002/jgrb.50283
  14. 2012

    1. Baur, O., Reubelt, T., Weigelt, M., Roth, M., & Sneeuw, N. (2012). GOCE orbit analysis: Long-wavelength gravity field determination using the acceleration approach (No. 3). 50(3), Article 3. https://doi.org/10.1016/j.asr.2012.04.022
    2. Fersch, B., Kunstmann, H., Bárdossy, A., Devaraju, B., & Sneeuw, N. (2012). Continental-scale basin water storage variation from global and dynamically downscaled atmospheric water budgets in comparison with GRACE-derived observations (No. 5). 13(5), Article 5. https://doi.org/10.1175/jhm-d-11-0143.1
    3. Grafarend, E. (2012). The transition from three-dimensional embedding to two-dimensional Euler-Lagrange deformation tensor of the second kind: variation of curvature measures (No. 8). 169(8), Article 8. https://doi.org/10.1007/s00024-011-0419-7
    4. Moghtased-Azar, K., Tavakoli, F., Nankoli, H. R., & Grafarend, E. (2012). Multivariate statistical analysis of deformation tensors: independent vs. correlated tensor observations (No. 4). 56(4), Article 4. https://doi.org/10.1007/s11200-011-9024-6
    5. Riegger, J., Tourian, M., Devaraju, B., & Sneeuw, N. (2012). Analysis of GRACE uncertainties by hydrological and hydro-meteorological observations. 59--60, 16--27. https://doi.org/10.1016/j.jog.2012.02.001
    6. Roese-Koerner, L., Devaraju, B., Sneeuw, N., & Schuh, W. D. (2012). A stochastic framework for inequality constrained estimation (No. 11). 86(11), Article 11. https://doi.org/10.1007/s00190-012-0560-9
    7. Varga, P., Krumm, F., Doglioni, C., Grafarend, E., Panza, G. F., Riguzzi, F., Schreider, A. A., & Sneeuw, N. (2012). Did a change in tectonic regime occur between the Phanerozoic and earlier Epochs? (No. 2). 23(2), Article 2. https://doi.org/10.1007/s12210-012-0172-6
    8. Varga, P., Krumm, F., Riguzzi, F., Doglioni, C., Süle, B., Wang, K., & Panza, G. F. (2012). Global pattern of earthquakes and seismic energy distributions: Insights for the mechanisms of plate tectonics. 530--531, 80--86. https://doi.org/10.1016/j.tecto.2011.10.014
  15. 2011

    1. Baur, O., & Sneeuw, N. (2011). Assessing Greenland ice mass loss by means of point-mass modeling: a viable methodology (No. 9). 85(9), Article 9. https://doi.org/10.1007/s00190-011-0463-1
    2. Grafarend, E., & Kühnel, W. (2011). A minimal atlas for the rotation group SO(3) (No. 1). 2(1), Article 1. https://doi.org/10.1007/s13137-011-0018-x
    3. Grafarend, E. (2011). Space gradiometry: tensor-valued ellipsoidal harmonics, the datum problem and application of the Lusternik-Schnirelmann category to construct a minimum atlas (No. 2). 1(2), Article 2. https://doi.org/10.1007/s13137-011-0013-2
    4. Keller, W., & Hajkova, J. (2011). Representation of planar integral-transformations by 4-D wavelet decomposition (No. 6). 85(6), Article 6. https://doi.org/10.1007/s00190-010-0440-0
    5. Keller, W., & Borkowski, A. (2011). Wavelet based buildings segmentation in airborne laser scanning data sets (No. 2). 60(2), Article 2. https://doi.org/10.2478/v10277-012-0010-0
    6. Lin, Y., Zhang, S., Cai, J., & Sneeuw, N. (2011). Application of wavelet support vector regression on SAR data de-noising (No. 4). 22(4), Article 4. https://doi.org/10.3969/j
    7. Tourian, M., Riegger, J., Sneeuw, N., & Devaraju, B. (2011). Outlier identification and correction for GRACE aggregated data. 55, 627--640. https://doi.org/10.1007/s11200-009-9007-z
    8. Zou, X., Cai, J., Sneeuw, N., & Li, J. (2011). Numerical study on the mixed model in the GOCE polar gap problem (No. 3). 14(3), Article 3. https://doi.org/10.1007/s11806-011-0532-x
  16. 2010

    1. Ardalan, A., Karimi, R., & Grafarend, E. (2010). A New Reference Equipotential Surface, and Reference Ellipsoid for the Planet Mars (No. 1). 106(1), Article 1. https://doi.org/10.1007/s11038-009-9342-7
    2. Baur, O., Cai, J., & Sneeuw, N. (2010). Spectral approaches to solving the polar gap problem. In F. Flechtner, T. Gruber, A. Güntner, M. Mandea, M. Rothacher, T. Schöne, & J. Wickert (Hrsg.), System Earth via Geodetic-Geophysical Space Techniques, (S. 243--253). Springer Berlin Heidelberg. https://doi.org/10.1007/978-3-642-10228-8_19
    3. Grafarend, E. (2010). Spacetime gradiometry: tensor-valued ellipsoidal harmonics, the datum problem and an application of the Lusternik-Schnirelmann Category to construct a minimum atlas. In M. E. Contadakis (Hrsg.), The apple of knowledge. In honor of Prof. em. D. N. Arabelos (S. 121--145). ZHTH, Thessalonoki, Greece.
    4. Grafarend, E., Martinec, Z., & Klapp, M. (2010). Spacetime modelling of the Earth’s gravity field by ellipsoidal harmonics. In W. Freeden, M. Z. Nashed, & T. Sonar (Hrsg.), Handbook of Geomathematics: 1st ed., part 3 (S. 159--252). Springer Heidelberg. https://doi.org/10.1007/978-3-642-01546-5_7
    5. Richter, B., Engels, J., & Grafarend, E. (2010). Transformation of amplitudes and frequencies of precession and nutation of the Earth’s rotation vector to amplitudes and frequencies of diurnal pole motion (No. 1). 84(1), Article 1. https://doi.org/10.1007/s00190-009-0339-9
    6. Visser, P. N. A. M., Sneeuw, N., Reubelt, T., Losch, M., & Van Dam, T. (2010). Space-borne gravimetric satellite constellations and ocean tides: aliasing effects (No. 2). 181(2), Article 2. https://doi.org/10.1111/j.1365-246x.2010.04557.x
    7. Zeile, O., Lachenmann, M., Baumstark, E., Mohr, A., Bock, D., Laufer, R., Sneeuw, N., & Röser, H. P. (2010). Analysis of orbital lifetime and observation conditions of small lunar satellites (Nos. 3--4). 66(3--4), Article 3--4. https://doi.org/10.1016/j.actaastro.2009.07.008
  17. 2009

    1. Antoni, M., Borkowski, A., Keller, W., & Owczarek, M. (2009). Verification of localized GRACE solutions by the Polish quasiqeoid (No. 2). 58(2), Article 2.
    2. Ardala, A. A., & Tourian, M. J. (2009). A new tidal model for the Persian Gulf and Oman Sea based on satellite altimetry and coastal tidal gauge observations. Journal of the Earth and Space Physics, 36(3), Article 3. http://www.sid.ir/FileServer/JF/67513890302
    3. Austen, G., & Keller, W. (2009). Singularity free formulations of the geodetic boundary value problem in gravity space (No. 7). 83(7), Article 7. https://doi.org/10.1007/s00190-008-0278-x
    4. Awange, J. L., Sharifi, M. A., Baur, O., Keller, W., Featherstone, W. E., & Kuhn, M. (2009). GRACE hydrological monitoring of Australia: current limitations and future prospects (No. 1). 54(1), Article 1. https://doi.org/10.1080/14498596.2009.9635164
    5. Baur, O., Kuhn, M., & Featherstone, W. E. (2009). GRACE-derived ice-mass variations over Greenland by accounting for leakage effects (No. B6). 114(B6), Article B6. https://doi.org/10.1029/2008JB006239
    6. Baur, O. (2009). Tailored least-squares solvers implementation for high-performance gravity field research (No. 3). 35(3), Article 3. https://doi.org/10.1016/j.cageo.2008.09.004
    7. Cai, J., Grafarend, E., & Hu, C. (2009). The total optimal criterion in solving the mixed integer linear model with GNSS carrier phase observations (No. 3). 13(3), Article 3. https://doi.org/10.1007/s10291-008-0115-y
    8. Kuhn, M., Featherstone, W. E., Makarynskyy, O., & Keller, W. (2009). Deglaciation-Induced Spatially Variable Sea-level Change: A Simple-Model Case Study for the Greenland and Antarctic Ice Sheets. https://doi.org/10.1260/1759-3131.1.2.67
    9. Moghtased-Azar, K., & Grafarend, E. (2009). Surface deformation analysis of dense GPS networks based on intrinsic geometry: deterministic and stochastic aspects (No. 5). 83(5), Article 5. https://doi.org/10.1007/s00190-008-0252-7
    10. Weigelt, M., Sideris, M. G., & Sneeuw, N. (2009). On the influence of the ground track on the gravity field recovery from high-low satellite-to-satellite tracking missions: CHAMP monthly gravity field recovery using the energy balance approach revisited (No. 12). 83(12), Article 12. https://doi.org/10.1007/s00190-009-0330-5
    11. Xu, C., Ding, K., Cai, J., & Grafarend, E. (2009). Methods of determining weight scaling factors for geodetic-geophysical joint inversion (No. 1). 47(1), Article 1. https://doi.org/10.1016/j.jog.2008.06.005
  18. 2008

    1. Antoni, M., Keller, W., & Weigelt, M. (2008). Regionale Schwerefeldmodellierung durch Slepian- und radiale Basisfunktionen (No. 2). 133(2), Article 2. http://geodaesie.info/zfv/heftbeitrag/597
    2. Baur, O., Austen, G., & Kusche, J. (2008). Efficient GOCE satellite gravity field recovery based on LSQR (No. 4). 82(4), Article 4. https://doi.org/10.1007/s00190-007-0171-z
    3. Baur, O., Sneeuw, N., & Grafarend, E. (2008). Methodology and use of tensor invariants for satellite gravity recovery (No. 4). 82(4), Article 4. https://doi.org/10.1007/s00190-007-0178-5
    4. Cai, J., Wang, J., Wu, J., Hu, C., Grafarend, E., & Chen, J. (2008). Horizontal deformation rate analysis based on multi-epoch GPS measurements in Shanghai (No. 4). 134(4), Article 4. https://doi.org/10.1061/(asce)0733-9453(2008)134:4(132)
    5. Ivins, E. R., & Wolf, D. (2008). Glacial isostatic adjustment: new developments from advanced observing systems and modelling (Nos. 3--5). 46(3--5), Article 3--5. https://doi.org/10.1016/j.jog.2008.06.002
    6. Paláncz, B., Zaletnyik, P., Awange, J. L., & Grafarend, E. (2008). Dixon resultant’s solution of systems of geodetic polynomial equations (No. 8). 82(8), Article 8. https://doi.org/10.1007/s00190-007-0199-0
    7. Wu, J., Cai, J., Hu, C., Xiao, F., & Liu, C. (2008). A quaternary prototype for spatiotemporal analysis of permanent scatter interferometry. XXXVII Part B7, 157--160. http://www.isprs.org/proceedings/XXXVII/congress/7_pdf/2_WG-VII-2/16.pdf
  19. 2007

    1. Cai, J., & Grafarend, E. (2007). Statistical analysis of geodetic deformation (strain rate) derived from the space geodetic measurements of BIFROST Project in Fennoscandia (No. 2). 43(2), Article 2. https://doi.org/10.1016/j.jog.2006.09.010
    2. Cai, J., & Grafarend, E. (2007). Statistical analysis of the eigenspace components of the two-dimensional, symmetric rank-two strain rate tensor derived from the space geodetic measurements (ITRF92-ITRF2000 data sets) in central Mediterranean and Western Europe (No. 2). 168(2), Article 2. https://doi.org/10.1111/j.1365-246X.2006.03153.x
    3. Fleming, K., Martinec, Z., & Wolf, D. (2007). Glacial-isostatic adjustment and the viscosity structure underlying Vatnajökull (No. 4). 164(4), Article 4. https://doi.org/10.1007/s00024-007-0187-6
    4. Hagedoorn, J. M., Wolf, D., & Martinec, Z. (2007). An estimate of global mean sea-level rise inferred from tide-gauge measurements using glacial-isostatic models consistent with the relative sea-level record (No. 4). 164(4), Article 4. https://doi.org/10.1007/s00024-007-0186-
    5. Klemann, V., & Wolf, D. (2007). Using fuzzy logic for the analysis of sea-level indicators with respect to glacial-isostatic adjustment: an application to the Richmond-Gulf region, Hudson Bay (No. 4). 164(4), Article 4. https://doi.org/10.1007/s00024-007-0191-x
    6. Paláncz, B., Awange, J., & Grafarend, E. (2007). Computer algebra solution of the GPS N-points problem (No. 4). 11(4), Article 4. https://doi.org/10.1007/s10291-007-0066-8
    7. Sneeuw, N., & Kusche, J. (2007). Preface. Special issue: Satellite Gravimetry and Inverse Problems (Nos. 1--3). 81(1--3), Article 1--3. https://doi.org/10.1007/s00190-006-0119-8
    8. Wolf, D., & Fernandez, J. (2007). Deformation and Gravity Change: Indicators of Isostasy, Tectonics, Volcanism and Climate Change (No. 4). 164(4), Article 4. https://doi.org/10.1007/s00024-007-0195-6
    9. Xu, C., Weigelt, M., Sideris, M., & Sneeuw, N. (2007). Spaceborne gravimetry and gravity field recovery (Nos. 3--4). 53(3--4), Article 3--4. https://doi.org/10.5589/q07-008
  20. 2006

    1. Grafarend, E., Finn, G., & Ardalan, A. (2006). Ellipsoidal Vertical Deflections and Ellipsoidal Gravity Disturbance: Case Studies (No. 1). 50(1), Article 1. https://doi.org/10.1007/s11200-006-0001-4
    2. Götzelmann, M., Keller, W., & Reubelt, T. (2006). Gross error compensation for gravity field analysis based on kinematic orbit data (No. 4). 80(4), Article 4. https://doi.org/10.1007/s00190-006-0061-9
    3. Najafi-Alamdari, M., Emadi, S., & Moghtased-Azar, K. (2006). The ellipsoidal correction to the Stokes kernel for precise geoid determination (No. 12). 80(12), Article 12. https://doi.org/10.1007/s00190-006-0050-z
    4. Novák, P., Austen, G., Sharifi, M. A., & Grafarend, E. (2006). Mapping Earth’s gravitation using GRACE data. In Observation of the Earth System from Space (S. 149--165). Springer Berlin Heidelberg. https://doi.org/10.1007/3-540-29522-4_11
    5. Novák, P., & Grafarend, E. (2006). The Effect of topographical and atmospheric masses on spaceborne gravimetric and gradiometric data (No. 4). 50(4), Article 4. https://doi.org/10.1007/s11200-006-0035-7
    6. Reubelt, T., Götzelmann, M., & Grafarend, E. (2006). Harmonic Analysis of the Earth’s Gravitational Field from Kinematic CHAMP Orbits based on Numerically Derived Satellite Accelerations. In J. Flury, R. Rummel, C. Reigber, M. Rothacher, G. Boedecker, & U. Schreiber (Hrsg.), Observation of the Earth System from Space (S. 27--42). Springer Berlin Heidelberg. https://doi.org/10.1007/3-540-29522-4_3
    7. Wang, J., Keller, W., & Sharifi, M. A. (2006). Comparison of Availability of GALILEO, GPS and Combined GALILEO/GPS Navigation Systems. 41, 3--15. https://doi.org/10.2478/v10018-007-0001-9
    8. Wolf, D., Klemann, V., Wünsch, J., & Zhang, F. P. (2006). A reanalysis and reinterpretation of geodetic and geological evidence of glacial-isostatic adjustment in the Churchill region, Hudson Bay (No. 1). 27(1), Article 1. https://doi.org/10.1007/s10712-005-0641-x
  21. 2005

    1. Awange, J., & Grafarend, E. (2005). From Space Angles to Point Position using Sylvester Resultant. 112, 265--269. http://gispoint.de/artikelarchiv/avn/2005/avn-ausgabe-072005/2117-from-space-angles-to-point-position-using-sylvester-resultant.html
    2. Awange, J., Fukuda, F., Takemoto, S., & Grafarend, E. (2005). Role of algebra in modern day Geodesy. In F. Sansò (Hrsg.), A Window on the Future of Geodesy (Bd. 128, S. 524--529). Springer Berlin Heidelberg. https://doi.org/10.1007/3-540-27432-4_89
    3. Awange, J., Grafarend, E., Fukuda, F., & Takemoto, S. (2005). The application of commutative algebra to geodesy: two examples (No. 1). 79(1), Article 1. https://doi.org/10.1007/s00190-005-0446-1
    4. Baur, O., & Grafarend, E. (2005). Orbital Rotations of a Satellite. Case Study: GOCE (No. 2). 40(2), Article 2.
    5. Borkowski, A., & Keller, W. (2005). Global and local methods for tracking the intersection curve between two surfaces (No. 1). 79(1), Article 1. https://doi.org/10.1007/s00190-005-0437-2
    6. Bölling, K., & Grafarend, E. (2005). Ellipsoidal Spectral Properties of the Earth’s Gravitational Potential and its First and Second Derivatives (No. 6). 79(6), Article 6. https://doi.org/10.1007/s00190-005-0465-y
    7. Cai, J., Grafarend, E., & Schaffrin, B. (2005). Statistical inference of the eigenspace components of a two-dimensional, symmetric rank-two random tensor (No. 7). 78(7), Article 7. https://doi.org/10.1007/s00190-004-0405-2
    8. Grafarend, E., Awange, J., Takemoto, S., & Fukuda, Y. (2005). A combinatorial scatter approach to the overdetermined three-dimensional intersection problem. LXIII, 235--248.
    9. Grafarend, E. (2005). Harmonic Maps (No. 10). 78(10), Article 10. https://doi.org/10.1007/s00190-004-0422-1
    10. Gruber, C., Tsoulis, D., & Sneeuw, N. (2005). CHAMP accelerometer calibration by means of the equation of motion and an a-priori gravity model (No. 2). 130(2), Article 2. http://geodaesie.info/zfv/heftbeitrag/1271
    11. Keller, W., & Sharifi, M. (2005). Satellite Gradiometry Using a Satellite Pair (No. 9). 78(9), Article 9. https://doi.org/10.1007/s00190-004-0426-x
    12. Klemann, V., & Wolf, D. (2005). The eustatic reduction of shorteline diagrams: implications for the inference of relaxation-rate spectra and the viscosity stratification below Fennoscandia (No. 1). 162(1), Article 1. https://doi.org/10.1111/j.1365-246X.2005.02637.x
    13. Kumar, P., Kind, R., Hanka, W., Wylegalla, K., Reigber, C., Yuan, X., Woelbern, I., Schwintzer, P., Fleming, K., Dahl-Jensen, T., Larsen, T., Schweitzer, J., Priestley, K., Gudmundsson, O., & Wolf, D. (2005). The lithosphere-asthenosphere boundary in the North-West Atlantic region (Nos. 1--2). 236(1--2), Article 1--2. https://doi.org/10.1016/j.epsl.2005.05.029
    14. Martinec, Z., & Wolf, D. (2005). Inverting the Fennoscandian relaxation-time spectrum in terms of an axisymmetric viscosity distribution with a lithospheric root (No. 2). 39(2), Article 2. https://doi.org/10.1016/j.jog.2004.08.007
    15. Mäkinen, J., Engfeldt, A., Harsson, B., Ruotsalainen, H., Strykowski, G., Oja, T., & Wolf, D. (2005). The Fennoscandian land uplift gravity lines: status 2004. In C. Jekeli, L. Bastos, & J. Fernandes (Hrsg.), Gravity, Geoid and Space Missions (Bd. 129, S. 328--332). Springer Berlin Heidelberg. https://doi.org/10.1007/3-540-26932-0_57
    16. Novák, P., & Grafarend, E. (2005). Ellipsoidal representation of the topographical potential and its vertical gradient (No. 1). 78(1), Article 1. https://doi.org/10.1007/s00190-005-0435-4
    17. Sneeuw, N., Flury, J., & Rummel, R. (2005). Science requirements on future missions and simulated mission scenarios (No. 1). 94(1), Article 1. https://doi.org/10.1007/s11038-004-7605-x
    18. Tsoulis, D., Gruber, C., & Sneeuw, N. (2005). A novel approach for the calibration of the CHAMP accelerometer using short data spans (No. 2). 64(2), Article 2.
  22. 2004

    1. Amiri-Simkooei, A., & Sharifi, M. (2004). Approach for Equivalent Accuracy Design of Different Types of Observations (No. 1). 130(1), Article 1. https://doi.org/10.1061/(ASCE)0733-9453(2004)130:1(1)
    2. Ardalan, A., & Grafarend, E. (2004). High-resolution regional geoid computation without applying Stokes’s formula: a case study of the Iranian geoid (No. 1). 78(1), Article 1. https://doi.org/10.1007/s00190-004-0385-2
    3. Awange, J., Fukuda, Y., & Grafarend, E. (2004). Exact solution of the nonlinear 7-parameter datum transformation by Groebner basis (No. 2). 63(2), Article 2.
    4. Cai, J., & Grafarend, E. (2004). The Analysis of the Eigenspace Components of the Strain Rate Tensor in Central Mediterranean and Western Europe, 1992--2000. 6, 06239.
    5. Kösters, F., Käse, R., Fleming, K., & Wolf, D. (2004). Denmark Strait overflow for last glacial maximum to Holocene conditions (No. 2). 19(2), Article 2. https://doi.org/10.1029/2003PA000972
    6. Vajda, P., Vanícek, P., Novák, P., & Meurers, B. (2004). On evaluation of Newton integrals in geodetic coordinates: Exact formulation and spherical approximation (No. 4). 34(4), Article 4. http://www2.unb.ca/gge/Research/GRL/GeodesyGroup/Publications/documents/On%20evaluation%20of%20Newton%20integrals.pdf
    7. Varga, P., Engels, J., & Grafarend, E. (2004). Temporal variations of the polar moment of inertia and the second-degree geopotential (No. 3). 78(3), Article 3. https://doi.org/10.1007/s00190-004-0388-z
  23. 2003

    1. Abolghasem, A., & Grafarend, E. (2003). Finite Element Analysis of Quasi-Static Earthquake Displacement Fields Observed by GPS (No. 9). 77(9), Article 9. https://doi.org/10.1007/s00190-003-0341-6
    2. Awange, J., & Grafarend, E. (2003). Closed Form Solution of the Overdetermined Nonlinear 7 Parameter Datum Transformation (No. 110). 110, Article 110. https://www.wichmann-verlag.de/images/stories/avn/artikelarchiv/2003/04/44a6676cc9c.pdf
    3. Awange, J., Grafarend, E., & Fukuda, Y. (2003). Closed Form Solution of the Triple Three-Dimensional Intersection Problem (No. 6). 128(6), Article 6. http://geodaesie.info/zfv/heftbeitrag/1435
    4. Awange, J., Grafarend, E., Fukuda, Y., & Takemoto, S. (2003). Direct Polynomial Approach to Nonlinear Distance (Ranging) Problems (No. 5). 55(5), Article 5. https://doi.org/10.1186/BF03351754
    5. Awange, J., & Grafarend, E. (2003). Explicit Solution of the Overdetermined Three-Dimensional Resection Problem (No. 11). 76(11), Article 11. https://doi.org/10.1007/s00190-002-0287-0
    6. Awange, J., & Grafarend, E. (2003). Groebner-Basis Solution of the Three-Dimensional Resection Problem (P4P) (No. 5). 77(5), Article 5. https://doi.org/10.1007/s00190-003-0328-3
    7. Awange, J., & Grafarend, E. (2003). Multipolynomial Resultant Solution of the 3D Resection Problem (P4P). LXII, 79--102.
    8. Awange, J., & Grafarend, E. (2003). Polynomial Optimization of the 7-Parameter Datum Transformation Problem when Only Three Stations in Both Systems are Given (No. 4). 128(4), Article 4. http://geodaesie.info/zfv/heftbeitrag/1418
    9. Awange, J., Fukuda, Y., Takemoto, S., Ateya, I., & Grafarend, E. (2003). Ranging Algebraically With More Observations Than Unknowns. 55, 387--394. https://doi.org/10.1186/bf03351772
    10. Awange, J., Grafarend, E., Fukuda, Y., & Takemoto, S. (2003). Resultants approach to the triple three-dimensional intersection problem (No. 4). 49(4), Article 4. https://www.jstage.jst.go.jp/pub/images/icon_tool_pdf_free.png
    11. Borkowski, A., & Keller, W. (2003). Modelling of Irregularly Sampled Surfaces by two-dimensional Snakes (No. 9). 77(9), Article 9. https://doi.org/10.1007/s00190-003-0354-1
    12. Grafarend, E., & Martinec, Z. (2003). Comments on “Solution of the Dirichlet and Stokes exterior boundary problems for the Earth’s ellipsoid” by V.V. Brovar, Z.S. Kopeikina, M.V. Pavlova Journal of Geodesy (2001) 74: 767–772 (No. 5). 77(5), Article 5. https://doi.org/10.1007/s00190-002-0301-6
    13. Grafarend, E., & Voosoghi, B. (2003). Intrinsic Deformation Analysis of the Earth’s Surface Based on Displacement Fields Derived from Space Geodetic Measurements. Case Studies: Present-Day Deformation Patterns of Europe and of the Mediterranean Area (ITRF Data Sets) (No. 5). 77(5), Article 5. https://doi.org/10.1007/s00190-003-0329-2
    14. Grafarend, E., & Awange, J. (2003). Nonlinear analysis of the three-dimensional datum transformation conformal group C7(3) (Nos. 1--2). 77(1--2), Article 1--2. https://doi.org/10.1007/s00190-002-0299-9
    15. Lou, L., & Grafarend, E. (2003). GPS Integer Ambiguity Resolution by Various Decorrelation Methods (No. 3). 128(3), Article 3. http://geodaesie.info/zfv/heftbeitrag/1409
    16. Marinkovic, P., Grafarend, E., & Reubelt, T. (2003). Space Gravity Spectroscopy: The Benefits of Taylor-Karman Structured Criterion Matrices. 1, 113--120. https://doi.org/10.5194/adgeo-1-113-2003
    17. Novák, P., Kern, M., Schwarz, K., & Heck, B. (2003). Evaluation of band-limited topographical effects in airborne gravimetry (No. 11). 76(11), Article 11. https://doi.org/10.1007/s00190-002-0282-5
    18. Novák, P. (2003). Geoid determination using one-step integration (No. 3). 77(3), Article 3. https://doi.org/10.1007/s00190-003-0314-9
    19. Novák, P., Kern, M., Schwarz, K., Sideris, M., Heck, B., Ferguson, S., Hammada, Y., & Wei, M. (2003). On geoid determination from airborne gravity (No. 9). 76(9), Article 9. https://doi.org/10.1007/s00190-002-0284-3
    20. Novák, P., Bruton, A., Bayoud, F., Kern, M., & Schwarz, K. (2003). On numerical and data requirements for topographical reduction of airborne gravity in geoid determination and resource exploration. LXII, 103--124.
    21. Novák, P. (2003). Optimal model for geoid determination from airborne gravity (No. 1). 47(1), Article 1. https://doi.org/10.1023/A:1022274821011
    22. Reubelt, T., Austen, G., & Grafarend, E. (2003). Harmonic Analysis of the Earth’s Gravitational Field by Means of Semi-Continuous Ephemerides of a Low Earth Orbiting GPS-Tracked Satellite. Case Study: CHAMP (No. 5). 77(5), Article 5. https://doi.org/10.1007/s00190-003-0322-9
    23. Reubelt, T., Austen, G., & Grafarend, E. (2003). Space Gravity Spectroscopy -- Determination of the Earth’s Gravitational Field by Means of Newton Interpolated LEO Ephemeris. Case Studies on Dynamic (CHAMP Rapid Science Orbit) and Kinematic Orbits. 1, 127--135. https://doi.org/10.5194/adgeo-1-127-2003
    24. Tenzer, R., Vanícek, P., & Novák, P. (2003). Far-zone contributions to topographical effects in the Stokes-Helmert method of the geoid determination (No. 3). 47(3), Article 3. https://doi.org/10.1023/A:1024799131709
    25. Vanícek, P., Novák, P., Craymer, M., & Pagiatakis, S. (2003). On the correct determination of transformation parameters of the horizontal geodetic datum (No. 4). 56(4), Article 4. ftp://ftp.glonass-iac.ru/REPORTS/OLD/NRCAN/Vanicek.pdf
  24. 2002

    1. Ardalan, A., Grafarend, E., & Ihde, J. (2002). Molodensky potential telluroid based on a minimum-distance map. Case study: the quasi-geoid of East Germany in the World Geodetic Datum 2000 (No. 3). 76(3), Article 3. https://doi.org/10.1007/s00190-001-0238-1
    2. Ardalan, A., Grafarend, E., & Kakkuri, J. (2002). National height datum, the Gauss-Listing geoid level value w0 and its time variation (Baltic Sea Level Project: epochs 1990.8, 1993.8, 1997.4) (No. 1). 76(1), Article 1. https://doi.org/10.1007/s001900100211
    3. Awange, J., & Grafarend, E. (2002). Algebraic solution of GPS pseudo-ranging equations (No. 4). 5(4), Article 4. https://doi.org/10.1007/PL00012909
    4. Awange, J., & Grafarend, E. (2002). Linearized Least Squares and nonlinear Gauss-Jacobi combinatorial algorithm applied to the 7-parameter datum transformation C7(3) problem. 127, 109--116. http://geodaesie.info/sites/default/files/privat/zfv_2002_2_Awange_Grafarend.pdf
    5. Awange, J., & Grafarend, E. (2002). Nonlinear adjustment of GPS observations of type pseudo-ranges (No. 4). 5(4), Article 4. https://doi.org/10.1007/PL00012914
    6. Awange, J., & Grafarend, E. (2002). Sylvester resultant solution of the planar ranging problem (No. 4). 109(4), Article 4. https://www.wichmann-verlag.de/images/stories/avn/artikelarchiv/2002/04/40179bdc42a.pdf
    7. Grafarend, E., & Schwarze, V. S. (2002). Das Global Positioning System. 1, 39--44. http://www.pro-physik.de/details/articlePdf/1108837/issue.html
    8. Grafarend, E., & Shan, J. (2002). GPS Solutions: closed forms, critical and special configurations of P4P (No. 3). 5(3), Article 3. https://doi.org/10.1007/PL00012897
    9. Grafarend, E. (2002). Sensitive control of high-speed-railway tracks, Part I: Local representation of the clothoid. 109, 61--70. http://gispoint.de/artikelarchiv/1990-sensitive-control-of-high-speed-railway-tracks.html
    10. Grafarend, E. (2002). Sensitive control of high-speed-railway tracks, Part II: Minimal distance mapping of a point close to the clothoid. 109, 85--94. http://gispoint.de/artikelarchiv/avn/2002/avn-ausgabe-032002/1985-sensitive-control-of-high-speed-railway-tracks.html
    11. Hähnle, J., & Grafarend, E. (2002). Erstellung eines digitalen Höhenmodells (DHM) mit Dreiecks-Bézier-Flächen. 127, 193--199. http://geodaesie.info/sites/default/files/privat/zfv_2002_3_Haehnle_Grafarend.pdf
    12. Krumm, F., & Grafarend, E. (2002). Datum-free Deformation Analysis of ITRF networks (No. 3). 37(3), Article 3.
    13. Martinec, Z., & Grafarend, E. (2002). Separability conditions for the vector Helmholtz equation. 61, 53--61.
    14. Novák, P., & Heck, B. (2002). Downward continuation and geoid determination based on band-limited airborne gravity data (No. 5). 76(5), Article 5. https://doi.org/10.1007/s00190-002-0252-y
    15. Novák, P. (2002). The use of airborne gravimetry for precise geoid determination (No. 5). 5(5), Article 5.
    16. Schäfer, C., & Grafarend, E. (2002). On the determination of gravitational information from GPS-tracked satellite missions (No. 2). 37(2), Article 2.
  25. 2001

    1. Grafarend, E., & Ardalan, A. (2001). Ellipsoidal geoidal undulations (ellipsoidal Bruns formula): case studies (No. 9). 75(9), Article 9. https://doi.org/10.1007/s001900100212
    2. Grafarend, E., & Ardalan, A. (2001). Somigliana-Pizzetti gravity: the international gravity formula accurate to the sub-nanoGal level (No. 7). 75(7), Article 7. https://doi.org/10.1007/PL00004005
    3. Grafarend, E. (2001). The spherical horizontal and spherical vertical boundary value problem -- vertical deflections and geoidal undulations -- the completed Meissl diagram (No. 7). 75(7), Article 7. https://doi.org/10.1007/s001900100186
    4. Grafarend, E., & Hanke, S. (2001). The terrain correction in a moving tangent space (No. 3). 45(3), Article 3. https://doi.org/10.1023/A:1022088927779
    5. Martinec, Z., Thoma, M., & Wolf, D. (2001). Material versus local incompressibility and its influence on glacial-isostatic adjustment (No. 1). 144(1), Article 1. https://doi.org/10.1046/j.1365-246x.2001.01230.x
  26. 2000

    1. Ardalan, A., & Awange, J. L. (2000). Compatibility of the NMEA GGA with GPS receivers (No. 3). 3(3), Article 3. https://doi.org/10.1007/PL00012797
    2. Gilbert, A., & Keller, W. (2000). Deconvolution with wavelets and vaguelettes (Nos. 3--4). 74(3--4), Article 3--4. https://doi.org/10.1007/s001900050288
    3. Grafarend, E., & Awange, J. L. (2000). Determination of vertical deflections by GPS/LPS measurements (No. 8). 125(8), Article 8.
    4. Grafarend, E. (2000). Mixed integer-real valued adjustment (IRA) problems (No. 2). 4(2), Article 2. https://doi.org/10.1007/PL00012840
    5. Grafarend, E., Engels, J., & Varga, P. (2000). The temporal variation of the spherical and Cartesian multipoles of the gravity field (No. 7). 74(7), Article 7. https://doi.org/10.1007/s001900000114
    6. Grafarend, E. (2000). The time-varying gravitational potential field of a massive, deformable body (No. 3). 44(3), Article 3. https://doi.org/10.1023/A:1022108420086
    7. Grafarend, E., Hendricks, A., & Gilbert, A. (2000). Transformation of conformal coordinates of type Gauß-Krüger or UTM from a local datum (regional, National, European) to a global datum (WGS84, ITRF96) Part II: Case studies (No. 6). 107(6), Article 6. http://gispoint.de/artikelarchiv/avn/2000/avn-ausgabe-062000/1883-transformation-of-conformal-coordinates-of-type-gauss-krueger-or-utm-from-a-local-datum-regional-national-european-to-a-global-datum-wgs-84-itrf-96-part-ii-case-studies.html
  27. 1999

    1. Grafarend, E., Ardalan, A., & Sideris, M. G. (1999). The spheroidal fixed-free two-boundary-value problem for geoid determination (the spheroidal Bruns’ transform) (No. 10). 73(10), Article 10. https://doi.org/10.1007/s001900050263
    2. Grafarend, E., & Ardalan, A. (1999). World Geodetic Datum 2000 (No. 11). 73(11), Article 11. https://doi.org/10.1007/s001900050272
    3. Grafarend, E., & Engels, J. (1999). zwei polare geodätische Bezugssysteme: Der Referenzrahmen der mittleren Oberflächenvortizität und der Tisserand-Referenzrahmen. In M. Schneider (Hrsg.), Mitteilungen des Bundesamtes für Kartographie und Geodäsie (S. 100--109).
    4. Heß, D., & Keller, W. (1999). Gradiometrie mit GRACE, Teil I. 124, 137--144.
    5. Heß, D., & Keller, W. (1999). Gradiometrie mit GRACE, Teil II. 124, 205--211.
    6. Schwarze, V. S. (1999). Satellite geodesy on curved space-time manifolds (No. 11). 73(11), Article 11. https://doi.org/10.1007/s001900050270
  28. 1998

    1. Grafarend, E., & Syffus, R. (1998). Map projections of project surveying objects and architectural structures, Part 3, projective geometry of the parabolic mirror or the paraboloid with boundary. 123, 93--97.
    2. Grafarend, E., & Syffus, R. (1998). Map projections of project surveying objects and architectural structures, Part 4, projective geometry of the church tower or the onion. 123, 128--132.
    3. Grafarend, E., & Syffus, R. (1998). Optimal Mercator projection and the optimal polycylindric projection of conformal type -- case study Indonesia (No. 5). 72(5), Article 5. https://doi.org/10.1007/s001900050165
    4. Grafarend, E., & Krumm, F. (1998). The Abel-Poisson kernel and the Abel-Poisson integral in a moving tangent space (No. 7). 72(7), Article 7. https://doi.org/10.1007/s001900050179
    5. Grafarend, E., & Syffus, R. (1998). The solution of the Korn-Lichtenstein equations of conformal mapping: the direct generation of ellipsoidal Gauss-Krüger conformal coordinates or the Transverse Mercator Projection (No. 5). 72(5), Article 5. https://doi.org/10.1007/s001900050167
    6. Grafarend, E., & Syffus, R. (1998). Transformation of conformal coordinates from a local datum (regional, National, European) to a global datum (WGS 84) Part I: The transformation equations. 105, 134--141.
    7. Grafarend, E., & Okeke, F. (1998). Transformation of conformal coordinates of type mercator from a global datum (WGS 84) to a local datum (regional, national) (No. 3). 21(3), Article 3. https://doi.org/10.1080/01490419809388133
    8. Okeke, F., & Krumm, F. (1998). Graph, graph spectra and partitioning algorithms in a geodetic network structural analysis and adjustment (No. 1). 57(1), Article 1.
    9. Sabadini, R., & Vermeersen, L. L. A. (1998). Mantle Layering and Long-term rotational response of the Earth to glacial cycles. In P. Wu (Hrsg.), Dynamics of the Ice Age Earth: A modern perspective (Bde. 3--4, S. 489--496). Trans Tech Publications Ltd, Ütikon-Zürich, Switzerland.
    10. Vermeersen, L. L. A., & Sabadini, R. (1998). Effects of compressibility and stratification on viscoelastic relaxation: The analytical perspective. In P. Wu (Hrsg.), Dynamics of the Ice Age Earth: A modern perspective (Bde. 3--4, S. 123--134). Trans Tech Publications Ltd, Ütikon-Zürich, Switzerland.
  29. 1997

    1. Grafarend, E., & Shan, S. (1997). Closed-form solution of P4P or the three-dimensional resection problem in terms of Möbius barycentric coordinates (No. 4). 71(4), Article 4. https://doi.org/10.1007/s001900050089
    2. Grafarend, E., & Shan, S. (1997). Closed-form solution to the twin P4P or the combined three dimensional resection-intersection problem in terms of Möbius barycentric coordinates (No. 4). 71(4), Article 4. https://doi.org/10.1007/s001900050090
    3. Grafarend, E., & Krumm, F. (1997). Comments and reply regarding Grafarend and Krumm (1996): The Stokes and Vening-Meinesz functionals in a moving tangent space (No. 11). 71(11), Article 11. https://doi.org/10.1007/s001900050138
    4. Grafarend, E., & Shan, S. (1997). Estimable quantities in projective networks, Part I. 122, 218--226.
    5. Grafarend, E., & Syffus, R. (1997). Map projections of project surveying objects and architectural structures, Part 1: Projective geometry of the pneu or torus T2A,B with boundary. 122, 457--465.
    6. Grafarend, E., & Syffus, R. (1997). Map projections of project surveying objects and architectural studies, Part 2: Projective geometry of the cooling tower of the hyperboloid IH2. 122, 560--566.
    7. Grafarend, E., & Syffus, R. (1997). Mixed cylindric map projections of the ellipsoid of revolution (No. 11). 71(11), Article 11. https://doi.org/10.1007/s001900050136
    8. Grafarend, E., & Martinec, Z. (1997). Solution to the Stokes boundary-value problem on an ellipsoid of revolution (No. 2). 41(2), Article 2. https://doi.org/10.1023/A:1023380427166
    9. Grafarend, E., & Syffus, R. (1997). Strip transformation of conformal coordinates of type Gauß-Krüger and UTM. 104.
    10. Grafarend, E., & Syffus, R. (1997). The Hammer projection of the ellipsoid of revolution (azimuthal, transverse, rescaled equiareal) (No. 12). 71(12), Article 12. https://doi.org/10.1007/s001900050140
    11. Grafarend, E., Engels, J., & Varga, P. (1997). The spacetime gravitational field of a deformable body (No. 1). 72(1), Article 1. https://doi.org/10.1007/s001900050144
    12. Grafarend, E., & Ardalan, A. (1997). W_0: an estimate in the Finnish Height Datum N 60, epoch 1993.4, from twenty-five GPS points of the Baltic Sea Level Project (No. 11). 71(11), Article 11. https://doi.org/10.1007/s001900050134
    13. Grafarend, E. (1997). Field lines of gravity, their curvature and torsion, the Lagrange and the Hamilton equations of the plumbline (No. 5). 40(5), Article 5. https://doi.org/10.4401/ag-3859
    14. Keller, W. (1997). A Wavelet-Vaguelette Analysis of Geodetic Integral Formulae. In J. Segawa, H. Fujimoto, & K. Okubo (Hrsg.), Gravity, Geoid and Marine Geodesy (Bd. 117, S. 557--564). Springer Berlin Heidelberg. https://doi.org/10.1007/978-3-662-03482-8_74
    15. Keller, W. (1997). Anwendung von Wavelets in der Verarbeitung geowissenschaftlicher Daten. 122, 334--339.
    16. Keller, W. (1997). Application of Boundary Value Techniques to Satellite Gradiometry. In F. Sansó & R. Rummel (Hrsg.), Geodetic Boundary Value Problems in View of the One Centimeter Geoid (Bd. 65, S. 542--558). Springer Berlin Heidelberg. https://doi.org/10.1007/BFb0011716
    17. Keller, W. (1997). Schnelle Algorithmen zur diskreten Wavelet Transformation. 122, 126--135.
    18. Martinec, Z., & Grafarend, E. (1997). Construction of Green’s function to the external Dirichlet boundary value problem for the Laplace equation on an ellipsoid of revolution (No. 9). 71(9), Article 9. https://doi.org/10.1007/s001900050124
    19. Martinec, Z., & E, G. (1997). Solution of the Stokes Boundary-Value Problem on an Ellipsoid of Revolution (No. 2). 41(2), Article 2. https://doi.org/10.1023/A:1023380427166
    20. Sabadini, R., & Vermeersen, L. L. A. (1997). Ice-age cycles: Earth’s rotation instabilities and sealevel changes (No. 23). 24(23), Article 23. https://doi.org/10.1029/97GL03161
    21. Sabadini, R., & Vermeersen, L. L. A. (1997). Influence of lithospheric and mantle layering on global post-seismic deformation (No. 16). 24(16), Article 16. https://doi.org/10.1029/97GL01979
    22. Vermeersen, L. L. A., & Sabadini, R. (1997). A new class of stratified viscoelastic models by analytical techniques (No. 3). 129(3), Article 3. https://doi.org/10.1111/j.1365-246X.1997.tb04492.x
    23. Vermeersen, L. L. A., Fournier, A., & Sabadini, R. (1997). Changes in rotation induced by Pleistocene ice masses with stratified analytical Earth models (No. B12). 102(B12), Article B12. https://doi.org/10.1029/97JB01738
  30. 1996

    1. Bian, S. (1996). Topography Supported GPS Leveling. 121, 109--113.
    2. Bláha, T., Hirsch, M., Keller, W., & Scheinert, M. (1996). Application of a spherical FFT approach in airborne gravimetry (No. 11). 70(11), Article 11. https://doi.org/10.1007/BF00867145
    3. Engels, J., Grafarend, E., & Sorcik, P. (1996). The gravitational field of topographic-isostatic masses and the hypothesis of mass condensation II-the topographic-isostatic geoid (No. 1). 17(1), Article 1. https://doi.org/10.1007/BF01904474
    4. Grafarend, E., Krarup, T., & Syffus, R. (1996). An algorithm for the inverse of a multivariate homogeneous polynomial of degree n (No. 5). 70(5), Article 5. https://doi.org/10.1007/BF00867348
    5. Grafarend, E., & Kampmann, G. (1996). C_10(3): The ten parameter conformal group as a datum transformation in threedimensional Euclidian space. 121, 68--77.
    6. Grafarend, E., & Varga, P. (1996). Distribution of the lunisolar tidal elastic stress tensor components within the Earth’s mantle (Nos. 3--4). 93(3--4), Article 3--4. https://doi.org/10.1016/0031-9201(95)03067-0
    7. Grafarend, E., & Xu, P. (1996). Probability distribution of eigenspectra and eigendirections of a twodimensional, symmetric rank two random tensor (No. 7). 70(7), Article 7. https://doi.org/10.1007/BF01090817
    8. Grafarend, E., & Krumm, F. (1996). The Stokes and Vening-Meinesz functionals in a moving tangent space (No. 11). 70(11), Article 11. https://doi.org/10.1007/BF00867148
    9. Grafarend, E. W., & Shan, J. (1996). A closed-form solution of the nonlinear pseudoranging equations (GPS) (No. 28). 31(28), Article 28.
    10. Keller, W. (1996). Inversion of STEP-observation equation using Banach’s fixed-point principle. In B. H. Jacobsen, K. Mosegaard, & P. Sibani (Hrsg.), Inverse Methods: Interdisciplinary Elements of Methodology, Computation, and Applications (S. 247--253). Springer Berlin Heidelberg. https://doi.org/10.1007/BFb0011783
    11. Keller, W. (1996). Kontinuierliche Wavelet Transformation. 121, 563--572.
    12. Shan, J. (1996). Object Reconstruction without Interior Orientation (No. B3). 31(B3), Article B3. http://www.isprs.org/proceedings/XXXI/congress/part3/786_XXXI-part3.pdf
    13. Vermeersen, L. L. A., Sabadini, R., & Spada, G. (1996). Analytical visco-elastic relaxation models (No. 7). 23(7), Article 7. https://doi.org/10.1029/96GL00620
    14. Vermeersen, L. L. A., Sabadini, R., & Spada, G. (1996). Compressible rotational deformation (No. 3). 126(3), Article 3. https://doi.org/10.1111/j.1365-246X.1996.tb04700.x
    15. Vermeersen, L. L. A., & Sabadini, R. (1996). Significance of the fundamental mantle rotational relaxation mode in polar wander simulations (No. 2). 127(2), Article 2. https://doi.org/10.1111/j.1365-246X.1996.tb04717.x
Zum Seitenanfang