Publikationen

Liste aller Publikationen am Geodätischen Institut ab 1996

Die begutachteten Veröffentlichungen sind geordnet nach dem Erscheinungsjahr.

Eine persönliche Veröffentlichsliste von einzelnen Institutsangehörigen (inklusive der Präsentationen) kann auf der entsprechenden Teamseite eingesehen werden.

  1. 2019

    1. Antoni, Markus. (2019). Calculus with Curvilinear Coordinates -- Problems and Solutions. https://doi.org/10.1007/978-3-030-00416-3
    2. Wang, S., Xu, W., Xu, C., Yin, Z., Bürgmann, R., Liu, L., & Jiang, G. (2019). Changes in Groundwater Level Possibly Encourage Shallow Earthquakes in Central Australia: The 2016 Petermann Ranges Earthquake. Geophysical Research Letters, 46(6), 3189–3198. https://doi.org/10.1029/2018GL080510
    3. Xu, G., Xu, C., Wen, Y., & Yin, Z. (2019). Coseismic and Postseismic Deformation of the 2016 MW 6.2 Lampa Earthquake, Southern Peru, Constrained by Interferometric Synthetic Aperture Radar. Journal of Geophysical Research: Solid Earth, 0(0). https://doi.org/10.1029/2018JB016572
  2. 2018

    1. Dutta, A., Engels, J., & Hahn, M. (2018). Segmentation of Laser Point Clouds in Urban Areas by a Modified Normalized Cut Method. IEEE Transactions on Pattern Analysis & Machine Intelligence. https://doi.org/10.1109/TPAMI.2018.2869744
    2. Grafarend, E. (2018). The Global World of A. Dermanis and an attempt to use System Dynamics for the analysis of Polar-Motion (PDM) and Length of Day Variations (LOD). Quod Erat Demonstrandum - In Quest of the Ultimate Geodetic Insight, Special Issue for Professor Emeritus Athanasios Dermanis, 1--36.
    3. Iran-Pour, S., Weigelt, M., Amiri-Simkooei, A.-R., & Sneeuw, N. (2018). Impact of groundtrack pattern of a single pair mission on the gravity recovery quality. Geosciences (MDPI), 8(9)(315). https://doi.org/10.3390/geosciences8090315
    4. Lin, Yi, Yu, J., Cai, J., Sneeuw, N., & Li, F. (2018). Spatio-Temporal Analysis of Wetland Changes Using a Kernel Extreme Learning Machine Approach. Remote Sensing, 10(7), 1129. https://doi.org/10.3390/rs10071129
    5. Mink, R., Dutta, A., Peteinatos, G. G., Sökefeld, M., Engels, J. J., Hahn, M., & Gerhards, R. (2018). Multi-Temporal Site-Specific Weed Control of Cirsium arvense (L.) Scop. and Rumex crispus L. in Maize and Sugar Beet Using Unmanned Aerial Vehicle Based Mapping. Agriculture, 8(5), 1–14. Retrieved from https://EconPapers.repec.org/RePEc:gam:jagris:v:8:y:2018:i:5:p:65-:d:143816
    6. Schlesinger, R., & Cieslack, M. (2018). Simultane Messungen mit zehn Scintrex-CG-5-Gravimetern im stationären Parallelbetrieb. Avn, 125(8–9), 274–283. Retrieved from https://gispoint.de/artikelarchiv/avn/2018/avn-8-92018/4577-simultane-messungen-mit-zehn-scintrex-cg-5-gravimetern-im-stationaeren-parallelbetrieb.html
    7. Shepherd, A., & team, I. (2018). Mass balance of the Antarctic Ice Sheet from 1992 to 2017. Nature, 558(7709), 219--222. https://doi.org/10.1038/s41586-018-0179-y
    8. Tarpanelli, Angelica, Santi, E., Tourian, M. J., Filippucci, P., Amarnath, G., & Brocca, L. (2018). Daily River Discharge Estimates by Merging Satellite Optical Sensors and Radar Altimetry Through Artificial Neural Network. IEEE Transactions on Geoscience and Remote Sensing, 1--13. https://doi.org/10.1109/TGRS.2018.2854625
    9. Tourian, M. J., Reager, J. T., & Sneeuw, N. (2018). The Total Drainable Water Storage of the Amazon River Basin: A First Estimate Using GRACE. Water Resources Research, 54(5), 3290--3312. https://doi.org/10.1029/2017wr021674
    10. Vishwakarma, B., Devaraju, B., & Sneeuw, N. (2018). What is the Spatial Resolution of GRACE Satellite Products for Hydrology? Remote Sensing, 10(852), 17 pages. https://doi.org/10.3390/rs10000852
    11. Wang, S., Xu, C., Xu, W., Yin, Z., Wen, Y., & Jiang, G. (2018). The 2017 M w 6.6 Poso Earthquake: Implications for Extrusion Tectonics in Central Sulawesi. Seismological Research Letters, 90(2A), 649--658.
    12. Ye, Z., Tenzer, R., & Sneeuw, N. (2018). Comparison of methods for a 3-D density inversion from airborne gravity gradiometry. Studia Geophysica et Geodaetica, 62(1), 1--16. https://doi.org/10.1007/s11200-016-0492-6
    13. Yuan, P., Jiang, W., Wang, K., & Sneeuw, N. (2018). Effects of Spatiotemporal Filtering on the Periodic Signals and Noise in the GPS Position Time Series of the Crustal Movement Observation Network of China. Remote Sensing, 10(9), 1472. https://doi.org/10.3390/rs10091472
  3. 2017

    1. Devaraju, Balaji, & Sneeuw, N. (2017). The polar form of the spherical harmonic spectrum: implications for filtering GRACE data. Journal of Geodesy, 15. https://doi.org/10.1007/s00190-017-1037-7
    2. Jiang, W., Yuan, P., Chen, H., Cai, J., Li, Z., Chao, N., & Sneeuw, N. (2017). Annual variations of monsoon and drought detected by GPS: A case study in Yunnan, China. Scientific Reports, 7(Article no. 5874), 1--10. https://doi.org/10.1038/s41598-017-06095-1
    3. Liu, W., Sneeuw, N., Iran Pour, S., Tourian, M. J., & Reubelt, T. (2017). A Posteriori De-aliasing of Ocean Tide Error in Future Double-Pair Satellite Gravity Missions. International Association of Geodesy Symposia, 1--7. https://doi.org/10.1007/1345_2016_259
    4. Sadegh, M., Love, C., Farahmand, A., Mehran, A., Tourian, M. J., & AghaKouchak, A. (2017). Multi-Sensor Remote Sensing of Drought from Space. In V. Lakshmi (Ed.), Remote Sensing of Hydrological Extremes (pp. 219--247; By V. Lakshmi). https://doi.org/10.1007/978-3-319-43744-6_11
    5. Sharifi, Mohammad Ali, Seif, M. R., Baur, O., & Sneeuw, N. (2017). Gravity field recovery from orbit information using the Lagrange formalism. Annals of Geophysics, 60(3). https://doi.org/10.4401/ag-7204
    6. Sjöberg, L. E., Grafarend, E. W., & Joud, M. S. S. (2017). The zero gravity curve and surface and radii for geostationary and geosynchronous satellite orbits. Journal of Geodetic Science, 7(1), 43--50. https://doi.org/10.1515/jogs-2017-0005
    7. Tarpanelli, A., Domeneghetti, A., Getirana, A., Elmi, O., Tourian, M. J., & Barbetta, S. (2017). The synergistic use of multiple sensors for hydrological purposes. In J. Benveniste, S. Vignudelli, & A. G. Kostianoy (Eds.), Inland altimetry (By J. Benveniste, S. Vignudelli, & A. G. Kostianoy). Springer-Verlag Berlin Heidelberg.
    8. Tourian, MJ, Elmi, O., Mohammadnejad, A., & Sneeuw, N. (2017). Estimating River Depth from SWOT-Type Observables Obtained by Satellite Altimetry and Imagery. Water, 9(10), 753. https://doi.org/10.3390/w9100753
    9. Tourian, Mohammad J., Schwatke, C., & Sneeuw, N. (2017). River discharge estimation at daily resolution from satellite altimetry over an entire river basin. Journal of Hydrology, 546, 230--247. https://doi.org/10.1016/j.jhydrol.2017.01.009
    10. Varga, Peter, Grafarend, E., & Engels, J. (2017). Relation of Different Type Love–Shida Numbers Determined with the Use of Time-Varying Incremental Gravitational Potential. Pure and Applied Geophysics, 175(5), 1643--1648. https://doi.org/10.1007/s00024-017-1532-z
    11. Varga, Péter, & Grafarend, E. (2017). Influence of Tidal Forces on the Triggering of Seismic Events. Pure and Applied Geophysics, 175(5), 1649--1657. https://doi.org/10.1007/s00024-017-1563-5
    12. Vishwakarma, B. D., Horwath, M., Devaraju, B., Groh, A., & Sneeuw, N. (2017). A Data-Driven Approach for Repairing the Hydrological Catchment Signal Damage Due to Filtering of GRACE Products. Water Resources Research, 53(11), 9824--9844. https://doi.org/10.1002/2017WR021150
    13. Xu, X., Zhao, Y., Reubelt, T., & Tenzer, R. (2017). A GOCE only gravity model GOSG01S and the validation of GOCE related satellite gravity models. Geodesy and Geodynamics, 8(4), 260--272. https://doi.org/10.1016/j.geog.2017.03.013
  4. 2016

    1. Elmi, O., Tourian, M. J., & Sneeuw, N. (2016). Dynamic river masks from multi-temporal satellite imagery: an automatic algorithm using graph cuts optimization.
    2. Ghobadi-Far, K., Sharifi, M. A., & Sneeuw, N. (2016). 2D Fourier series representation of gravitational functionals in spherical coordinates. 90(9), 871--881. https://doi.org/10.1007/s00190-016-0916-7
    3. Li, H., Reubelt, T., Antoni, M., & Sneeuw, N. (2016). Gravity field error analysis for pendulum formations by a semi-analytical approach. 1--19. https://doi.org/10.1007/s00190-016-0958-x
    4. Sneeuw, N., Li, J., Cai, J., Jiang, W., Xu, X., Chu, Y., … Tourian, M. (2016). Current and Future Geodetic Satellite Missions for Global Change Monitoring. China Dragon Programme III, Chengdu, PR China.
    5. Tourian, M J, Tarpanelli, A., Elmi, O., Qin, T., Brocca, L., Moramarco, T., & Sneeuw, N. (2016). Spatiotemporal densification of river water level time series by multimission satellite altimetry. 52(2), 1140--1159. https://doi.org/10.1002/2015WR017654
    6. Tourian, MJ, Thor, R., & Sneeuw, N. (2016). Least-Squares Prediction of Runoff Over Ungauged Basins. In Chris Rizos & P. Willis (Eds.), IAG 150 Years -- Proceedings of the IAG Scientific Assembly in Postdam, Germany, 2013 (pp. 257--261; By Chris Rizos & P. Willis). https://doi.org/10.1007/1345_2015_170
    7. Vishwakarma, B. D., Devaraju, B., & Sneeuw, N. (2016). Minimizing the effects of filtering on catchment scale GRACE solutions. (8), 5868--5890. https://doi.org/10.1002/2016WR018960
    8. Ye, Z., Tenzer, R., Sneeuw, N., Liu, L., & Wild-Pfeiffer, F. (2016). Generalized model for a Moho inversion from gravity and vertical gravity-gradient data. 207(1), 111--128. https://doi.org/10.1093/gji/ggw251
  5. 2015

    1. Chen, Q., Weigelt, M., Sneeuw, N., & van Dam, T. (2015). On time-variable seasonal signals: comparison of SSA and Kalman filtering based approaches. In N. Sneeuw, P. Novák, M. Crespi, & F. Sansò (Eds.), VIII Hotine-Marussi Symposium on Mathematical Geodesy (pp. 75--80; By N. Sneeuw, P. Novák, M. Crespi, & F. Sansò). https://doi.org/10.1007/1345_2015_4
    2. Devaraju, B, & Sneeuw, N. (2015). On the spatial resolution of homogeneous fillters on the sphere. In N. Sneeuw, P. Novák, M. Crespi, & F. Sansò (Eds.), VIII Hotine-Marussi Symposium on Mathematical Geodesy (pp. 67--73; By N. Sneeuw, P. Novák, M. Crespi, & F. Sansò). https://doi.org/10.1007/1345_2015_5
    3. Ghobadi-Far, K., Sharifi, M., & Sneeuw, N. (2015). GOCE gradiometry data processing using the Rosborough approach. 89(12), 1245--1261. https://doi.org/10.1007/s00190-015-0849-6
    4. Grafarend, E W, Klapp, M., & Martinec, Z. (2015). Spacetime modeling of the Earth’s gravity field by ellipsoidal harmonics. In Willi Freeden, Z. M. Nashed, & T. Sonar (Eds.), Handbook of Geomathematics (2nd edition, pp. 381--456; By Willi Freeden, Z. M. Nashed, & T. Sonar). Springer Verlag, Berlin-Heidelberg.
    5. Grafarend, Erik W, & You, R.-J. (2015). Fourth order Taylor-Kármán structured covariance tensor for gravity gradient predictions by means of the Hankel transformation. 6(2), 319--342. https://doi.org/10.1007/s13137-015-0071-y
    6. Grafarend, Erik W. (2015a). The reference figure of the rotating Earth in geometry and gravity space and an attempt to generalize the celebrated Runge-Walsh approximation theorem for irregular surfaces. 6(2), 101--140. https://doi.org/10.1007/s13137-014-0068-y
    7. Grafarend, Erik W. (2015b). Theory of Map Projections: From Riemann Manifolds to Riemann Manifolds. In Willi Freeden, Z. M. Nashed, & T. Sonar (Eds.), Handbook of Geomathematics (pp. 1--69; By Willi Freeden, Z. M. Nashed, & T. Sonar). https://doi.org/10.1007/978-3-642-27793-1_53-1
    8. Keller, Wolfgang, & You, R.-J. (2015). Rosborough approach for the determination of regional time variability of the gravity field from satellite gradiometry data. 6(2), 295--318. https://doi.org/10.1007/s13137-015-0077-5
    9. Keller, Wolfgang. (2015). Satellite-to-Satellite Tracking (Low-Low/High-Low SST). In Willi Freeden, Z. Nashed, & T. Sonar (Eds.), Handbook of Geomathematics (pp. 171--210; By Willi Freeden, Z. Nashed, & T. Sonar). Springer-Verlag, Berlin Heidelberg.
    10. Lorenz, Christof, Tourian, M. J., Devaraju, B., Sneeuw, N., & Kunstmann, H. (2015). Basin-scale runoff prediction: An Ensemble Kalman Filter framework based on global hydrometeorological data sets. 51(10), 8450--8475. https://doi.org/10.1002/2014WR016794
    11. Meyer, U., Dahle, C., Sneeuw, N., Jäggi, A., Beutler, G., & Bock, H. (2015). The effect of pseudo-stochastic orbit parameters on GRACE monthly gravity fields: Insights from lumped coefficients. In N. Sneeuw, P. Novák, M. Crespi, & F. Sansò (Eds.), VIII Hotine-Marussi Symposium on Mathematical Geodesy (pp. 177--183; By N. Sneeuw, P. Novák, M. Crespi, & F. Sansò). https://doi.org/10.1007/1345_2015_67
    12. Roese-Koerner, L., Devaraju, B., Schuh, W. D., & Sneeuw, N. (2015). Describing the Quality of Inequality Constrained Estimates. In H. Kutterer, F. Seitz, H. Alkhatib, & M. Schmidt (Eds.), The 1st International Workshop on the Quality of Geodetic Observation and Monitoring System (QuGOMS’11) (pp. 15--20; By H. Kutterer, F. Seitz, H. Alkhatib, & M. Schmidt). https://doi.org/10.1007/978-3-319-10828-5_3
    13. Sneeuw, N., & Sharifi, M. A. (2015). Rosborough representation in satellite gravimetry. In N. Sneeuw, P. Novák, M. Crespi, & F. Sansò (Eds.), VIII Hotine-Marussi Symposium on Mathematical Geodesy, Rome, Italy (pp. 109--114; By N. Sneeuw, P. Novák, M. Crespi, & F. Sansò). https://doi.org/10.1007/1345_2015_68
  6. 2014

    1. Baur, O., Bock, H., Höck, E., Jäggi, A., Krauss, S., Mayer-Gürr, T., … Zehentner, N. (2014). Comparison of GOCE-GPS gravity fields derived by different approaches. 88(10), 959--973. https://doi.org/10.1007/s00190-014-0736-6
    2. Cai, J., & Sneeuw, N. (2014). Stochastic modeling of GOCE gravitational tensor invariants. In F. Flechtner, N. Sneeuw, & W. D. Schuh (Eds.), GEOTECHNOLOGIEN Science Report (pp. 115--121; By F. Flechtner, N. Sneeuw, & W. D. Schuh). https://doi.org/10.1007/978-3-642-32135-1_15
    3. Grafarend, E W, You, R. J., & Syffus, R. (2014). Map Projections -- Cartographic Information Systems (2nd edition, p. 520). https://doi.org/10.1007/978-3-642-36494-5
    4. Gruber, T., & NGGM-D Team. (2014). e2.motion: Earth System Mass Transport Mission (Square) -- Concept for a Next Generation Gravity Field Mission. Final Report of Project Satellite Gravimetry of the Next Generation (NGGM-D). In Reihe B Angewandte Geodäsie (No. 318). Deutsche Geodätische Kommission der Bayerischen Akademie der Wissenschaften.
    5. Keller, W, & You, R. J. (2014). Adaptation of the torus and Rosborough approach to radial base functions. 58(2), 249--268. https://doi.org/10.1007/s11200-013-0157-7
    6. Kusche, J., Klemann, V., & Sneeuw, N. (2014). Mass Distribution and Mass Transport in the Earth System: Recent Scientific Progress Due to Interdisciplinary Research. 35(6), 1243--1249. https://doi.org/10.1007/s10712-014-9308-9
    7. Lorenz, C, Kunstmann, H., Devaraju, B., Tourian, M. J., Sneeuw, N., & Riegger, J. (2014). Large-Scale Runoff from Landmasses: A Global Assessment of the Closure of the Hydrological and Atmospheric Water Balances. 15(6), 2111--2139. https://doi.org/10.1175/jhm-d-13-0157.1
    8. Reubelt, Tilo, Sneeuw, N., Iran Pour, S., Hirth, M., Fichter, W., Müller, J., … Pelivan, I. (2014). Future Gravity Field Satellite Missions. In F. Flechtner, N. Sneeuw, & W. D. Schuh (Eds.), Geotechnologien Science Report (pp. 165--230; By F. Flechtner, N. Sneeuw, & W. D. Schuh). https://doi.org/10.1007/978-3-642-32135-1_21
    9. Reubelt, Tilo, Baur, O., Weigelt, M., Roth, M., & Sneeuw, N. (2014). GOCE Long-Wavelength Gravity Field Recovery from 1s-Sampled Kinematic Orbits Using the Acceleration Approach. In U. Marti (Ed.), Gravity, Geoid and Height Systems (pp. 21--26; By U. Marti). https://doi.org/10.1007/978-3-319-10837-7_3
    10. Reudink, R., Klees, R., Francis, O., Kusche, J., Schlesinger, R., Shabanloui, V., … Timmen, L. (2014). High tilt susceptibility of the Scintrex CG-5 relative gravimeters. 88(6), 617--622. https://doi.org/10.1007/s00190-014-0705-0
    11. Riegger, J., & Tourian, M. J. (2014). Characterization of runoff-storage relationships by satellite gravimetry and remote sensing. 50(4), 3444--3466. https://doi.org/10.1002/2013wr013847
    12. Sneeuw, N., Li, J., Baur, O., Cai, J., Tourian, M. J., Elmi, O., … Maier, A. (2014). Current and Future Geodetic Satellite Missions for Global Change Monitoring. (ESA SP-724), 6.
    13. Sneeuw, N., Lorenz, C., Devaraju, Band Tourian, M. J., Riegger, J., Kunstmann, H., & Bardossy, A. (2014). Estimating runoff using hydro-geodetic approaches: Status and challenges. 35(6), 1333--1359. https://doi.org/10.1007/s10712-014-9300-4
    14. Su, Z., Ma, Y., van der Velde, R., Dente, L., Wang, L., Zeng, Y., … Zhong, L. (2014). CEOP-TPE -- Concerted Earth Observation and Prediction of Water and Energy Cycles in the Third Pole Environment. (ESA SP-724), 10.
    15. Tourian, M J, Elmi, O., Chen, Q., Devaraju, B., Roohi, S., & Sneeuw, N. (2014). A spaceborne multisensor approach to monitor the desiccation of Lake Urmia in Iran. 156, 349--360. https://doi.org/10.1016/j.rse.2014.10.006
    16. Varga, P, Krumm, F. W., Grafarend, E. W., Sneeuw, N., Schreider, A. A., & Horváth, F. (2014). Evolution of the oceanic and continental crust during Neo-Proterozoic and Phanerozoic. 25, 255--263. https://doi.org/10.1007/s12210-014-0298-9
  7. 2013

    1. Antoni, Markus, & Keller, W. (2013). Closed solution of the Hill differential equation for short arcs and a local mass anomaly in the central body. 115(2), 107--121. https://doi.org/10.1007/s10569-012-9454-7
    2. Chen, Q., Van Dam, T., Sneeuw, N., Collilieux, X., Weigelt, M., & Rebischung, P. (2013). Singular spectrum analysis for modeling seasonal signals from GPS time series. 72, 25--35. https://doi.org/10.1016/j.jog.2013.05.005
    3. Cramer, M., Schwieger, V., Fritsch, D., Keller, W., Kleusberg, A., & Sneeuw, N. (2013). Geoengine -- The University of Stuttgart International Master Program with more than 6 years of experience. Environment for Sustainability, 19. Retrieved from http://www.fig.net/resources/proceedings/fig_proceedings/fig2013/papers/ts01e/TS01E_cramer_schwieger_et_al_6689.pdf
    4. Davoodianidaliki, M., Abedini, A., & Shankayi, M. (2013). Adaptive Edge Detection using Adjusted Ant Colony Optimization. International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, XL-1/W3, 123--126. https://doi.org/10.5194/isprsarchives-XL-1-W3-123-2013
    5. Elsaka, B., Raimondo, J. C., Brieden, P., Reubelt, T., Kusche, J., Flechtner, F., … Müller, J. (2013). Comparing seven candidate mission configurations for temporal gravity field retrieval through full-scale numerical simulation. 88(1), 31--43. https://doi.org/10.1007/s00190-013-0665-9
    6. Grafarend, E., & Awange, J. (2013). Applications of linear and nonlinear models: Fixed effects, random effects, and total least squares (p. 1016). https://doi.org/10.1007/978-3-642-22241-2
    7. Iran Pour, S., Reubelt, T., & Sneeuw, N. (2013). Quality assessment of sub-Nyquist recovery from future gravity satellite missions. 52(5), 916--929. https://doi.org/10.1016/j.asr.2013.05.026
    8. Krawinkel, T., Hücker, D., Schikschneit, C., Beermann, K., Flury, J., Vey, S., … Feldmann-Westendorff, U. (2013). Sub-cm-Konsistenz von nivellierten Normalhöhen, GNSS-Positionen und Quasigeoid im Testgebiet Harz. 138, 201--209. Retrieved from http://geodaesie.info/zfv/heftbeitrag/1568
    9. Najibi, N., Abedini, A., & Najibi, H. (2013). Analysis of Sea Ice Leads in Baffin Island Sea Using Spaced Based Infrared Remote Sensing Data and Mathematical Hydrological Models. (1), 01--11.
    10. Najibi, N., Abedini, A., & Sheibani, R. A. (2013). Harmonic Decomposition Tidal Analysis and Prediction Based on Astronomical Arguments and Nodal Corrections in Persian Gulf, Iran. 5(7), 381--392. Retrieved from http://maxwellsci.com/print/rjees/v5-381-392.pdf
    11. Roth, M, Sneeuw, N., & Keller, W. (2013). Euler Deconvolution of GOCE Gravity Gradiometry Data. In W. Nagel, D. Kröner, & M. Resch (Eds.), High Performance Computing in Science and Engineering ’12 (pp. 503--515; By W. Nagel, D. Kröner, & M. Resch). https://doi.org/10.1007/978-3-642-33374-3_36
    12. Sahami Shirazi, A., Clawson, J., Hassanpour, Y., Tourian, M. J., Schmidt, A., Chi, E. H., … van Laerhoven, K. (2013). Already Up? Using Mobile Phones to Track & Share Sleep Behavior. 71(9), 878--888. https://doi.org/10.1016/j.ijhcs.2013.03.001
    13. Sneeuw, N., Devaraju, B., & Tourian, M. J. (2013). Die Vermessung der Welt -- aus dem All. In Der Traum Vom Fliegen. Der Traum vom Fliegen (pp. 56--63). Retrieved from http://www.uni-stuttgart.de/hkom/publikationen/themenheft/09/index.html
    14. Tourian, M J, Sneeuw, N., & Bárdossy, A. (2013). A quantile function approach to discharge estimation from satellite altimetry (ENVISAT). 49(7), 1--13. https://doi.org/10.1002/wrcr.20348
    15. Viswakarama, B. D., Jain, K., Sneeuw, N., & Devaraju, B. (2013). Mumbai 2005, Bihar 2008 flood reflected in mass changes seen by GRACE satellites. 41(3), 687--695. https://doi.org/10.1007/s12524-012-0256-x
    16. Weigelt, M., Sneeuw, N., Schrama, E. J. O., & Visser, P. N. A. M. (2013). An improved sampling rule for mapping geopotential functions of a planet from a near polar orbit. 87(2), 127--142. https://doi.org/10.1007/s00190-012-0585-0
    17. Weigelt, M., Van Dam, T., Jäggi, A., Prange, L., Tourian, M. J., Keller, W., & Sneeuw, N. (2013). Time-variable gravity signal in Greenland revealed by high-low satellite-to-satellite tracking. 118(7), 3848--3859. https://doi.org/10.1002/jgrb.50283
  8. 2012

    1. Abedini, A., Aghamohamadnia, M., Sharifi, M., & Farzaneh, S. (2012). Coastal currents monitoring using radar satellites based on wave tracking approach. International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, XXXIX-B8, 141--145. https://doi.org/10.5194/isprsarchives-XXXIX-B8-141-2012
    2. Baur, O., Reubelt, T., Weigelt, M., Roth, M., & Sneeuw, N. (2012). GOCE orbit analysis: Long-wavelength gravity field determination using the acceleration approach. 50(3), 385--396. https://doi.org/10.1016/j.asr.2012.04.022
    3. Devaraju, B, & Sneeuw, N. (2012). Performance Analysis of Isotropic Spherical Harmonic Spectral Windows. In N. Sneeuw, P. Novák, M. Crespi, & F. Sansò (Eds.), Proceedings VII Hotine-Marussi Symposium on Mathematical Geodesy, Rome, Italy (pp. 105--110; By N. Sneeuw, P. Novák, M. Crespi, & F. Sansò). https://doi.org/10.1007/978-3-642-22078-4-16
    4. Fersch, B., Kunstmann, H., Bárdossy, A., Devaraju, B., & Sneeuw, N. (2012). Continental-scale basin water storage variation from global and dynamically downscaled atmospheric water budgets in comparison with GRACE-derived observations. 13(5), 1589--1603. https://doi.org/10.1175/jhm-d-11-0143.1
    5. Grafarend, E. (2012a). The MARUSSI Legacy: The Anholonomity Problem, Geodetic examples. In N. Sneeuw, P. Novák, M. Crespi, & F. Sansò (Eds.), Proceedings VII Hotine-Marussi Symposium on Mathematical Geodesy, Rome, Italy (pp. 5--15; By N. Sneeuw, P. Novák, M. Crespi, & F. Sansò). https://doi.org/10.1007/978-3-642-22078-4_2
    6. Grafarend, E. (2012b). The transition from three-dimensional embedding to two-dimensional Euler-Lagrange deformation tensor of the second kind: variation of curvature measures. 169(8), 1457--1462. https://doi.org/10.1007/s00024-011-0419-7
    7. Grafarend, E. (2012c). Von A. Einstein über H. Weyl und E. Cartan zur Quanten-Gravitation. Sitzungsberichte Der Leibniz-Sozietät, 113, 13–-21. Retrieved from http://leibnizsozietaet.de/wp-content/uploads/2012/12/03-Grafarend4.pdf
    8. Iran Pour, S., & Sneeuw, N. (2012). Properties and Applications of EOF-Based Filtering of GRACE Solutions. In N. Sneeuw, P. Novák, M. Crespi, & F. Sansò (Eds.), Proceedings VII Hotine-Marussi Symposium on Mathematical Geodesy, Rome, Italy (pp. 273--278; By N. Sneeuw, P. Novák, M. Crespi, & F. Sansò). https://doi.org/10.1007/978-3-642-22078-4_41
    9. Moghtased-Azar, K., Tavakoli, F., Nankoli, H. R., & Grafarend, E. (2012). Multivariate statistical analysis of deformation tensors: independent vs. correlated tensor observations. 56(4), 977--992. https://doi.org/10.1007/s11200-011-9024-6
    10. Reubelt, T, Sneeuw, N., & Grafarend, E. (2012). Comparison of kinematic orbit analysis methods for gravity field recovery. In N. Sneeuw, P. Novák, M. Crespi, & F. Sansò (Eds.), Proceedings VII Hotine-Marussi Symposium on Mathematical Geodesy, Rome, Italy (pp. 259--265; By N. Sneeuw, P. Novák, M. Crespi, & F. Sansò). https://doi.org/10.1007/978-3-642-22078-4_39
    11. Riegger, J., Tourian, M., Devaraju, B., & Sneeuw, N. (2012). Analysis of GRACE uncertainties by hydrological and hydro-meteorological observations. 59--60, 16--27. https://doi.org/10.1016/j.jog.2012.02.001
    12. Riegger, J., & Tourian, M. (2012). Characterization of water storage dynamics in arid areas by satellite. In C. Rausch, R and. Schüth & T. Himmelsbach (Eds.), Hydrogeology of Arid Environments (p. 283; By C. Rausch, R and. Schüth & T. Himmelsbach). Retrieved from http://www.bgr.bund.de/EN/Themen/Wasser/Veranstaltungen/hydroarid_2012/flyer_proceedings_pdf.pdf
    13. Roese-Koerner, L., Devaraju, B., Sneeuw, N., & Schuh, W. D. (2012). A stochastic framework for inequality constrained estimation. 86(11), 1005--1018. https://doi.org/10.1007/s00190-012-0560-9
    14. Roth, Matthias, Baur, O., & Keller, W. (2012). ``Brute-force’’ solution of large-scale systems of equations in a MPI-PBLAS-ScaLAPACK environment. In W. E. Nagel, D. B. Kröner, & M. M. Resch (Eds.), High Performance Computing in Science and Engineering ’11 (pp. 581--594; By W. E. Nagel, D. B. Kröner, & M. M. Resch). https://doi.org/10.1007/978-3-642-23869-7_42
    15. Sneeuw, N. (2012). Inclination Functions: Orthogonality and Other Properties. In N. Sneeuw, P. Novák, M. Crespi, & F. Sansò (Eds.), Proceedings VII Hotine-Marussi Symposium on Mathematical Geodesy, Rome, Italy (pp. 267--271; By N. Sneeuw, P. Novák, M. Crespi, & F. Sansò). https://doi.org/10.1007/978-3-642-22078-4_40
    16. Tourian, M, Sneeuw, N., Riegger, J., & Bárdossy, A. (2012). A new method to derive river discharge from satellite altimetry (ENVISAT). Geoscience and Remote Sensing Symposium (IGARSS), 2012, 5250--5253. https://doi.org/10.1109/IGARSS.2012.6352425
    17. Varga, P, Krumm, F., Doglioni, C., Grafarend, E., Panza, G. F., Riguzzi, F., … Sneeuw, N. (2012). Did a change in tectonic regime occur between the Phanerozoic and earlier Epochs? 23(2), 139--148. https://doi.org/10.1007/s12210-012-0172-6
    18. Varga, P, Krumm, F., Riguzzi, F., Doglioni, C., Süle, B., Wang, K., & Panza, G. F. (2012). Global pattern of earthquakes and seismic energy distributions: Insights for the mechanisms of plate tectonics. 530--531, 80--86. https://doi.org/10.1016/j.tecto.2011.10.014
    19. Weigelt, M., Keller, W., & Antoni, M. (2012). On the comparison of radial base functions and single layer density representations in local gravity field modeling from simulated satellite observations. In N. Sneeuw, P. Novák, M. Crespi, & F. Sansò (Eds.), Proceedings VII Hotine-Marussi Symposium on Mathematical Geodesy, Rome, Italy (pp. 199--204; By N. Sneeuw, P. Novák, M. Crespi, & F. Sansò). https://doi.org/10.1007/978-3-642-22078-4_29
  9. 2011

    1. Anselmi, A., Cesare, S., Visser, P., Van Dam, T., Sneeuw, N., Gruber, T., … Texieira Da Encarnacao, J. G. (2011). Assessment of a next generation gravity mission to monitor the variations of Earth’s gravity field.
    2. Baur, O., & Sneeuw, N. (2011). Assessing Greenland ice mass loss by means of point-mass modeling: a viable methodology. 85(9), 607--615. https://doi.org/10.1007/s00190-011-0463-1
    3. Grafarend, E., & Kühnel, W. (2011). A minimal atlas for the rotation group SO(3). 2(1), 113--122. https://doi.org/10.1007/s13137-011-0018-x
    4. Grafarend, E. (2011). Space gradiometry: tensor-valued ellipsoidal harmonics, the datum problem and application of the Lusternik-Schnirelmann category to construct a minimum atlas. 1(2), 145--166. https://doi.org/10.1007/s13137-011-0013-2
    5. Keller, W, Kuhn, M., & Featherstone, W. E. (2011). A set of analytical formulae to model deglaciation-induced polar wander. In S. Kenyon, M. C. Pacino, & U. Marti (Eds.), Geodesy for the Planet Earth (pp. 527--537; By S. Kenyon, M. C. Pacino, & U. Marti). https://doi.org/10.1007/978-3-642-20338-1_64
    6. Keller, W, & Hajkova, J. (2011). Representation of planar integral-transformations by 4-D wavelet decomposition. 85(6), 341--356. https://doi.org/10.1007/s00190-010-0440-0
    7. Keller, W, & Borkowski, A. (2011). Wavelet based buildings segmentation in airborne laser scanning data sets. 60(2), 99--121. https://doi.org/10.2478/v10277-012-0010-0
    8. Lin, Y, Zhang, S., Cai, J., & Sneeuw, N. (2011). Application of wavelet support vector regression on SAR data de-noising. 22(4), 579--586. https://doi.org/10.3969/j
    9. Reubelt, T, Sneeuw, N., & Iran Pour, S. (2011). Quick-look gravity field analysis of formation scenarios selection. In Geotechnologien -- Science Report No. 17. Geotechnologien -- Science Report No. 17 (pp. 126--133). https://doi.org/10.2312/GFZ.gt.17.19
    10. Roth, M, Baur, O., & Keller, W. (2011). Tailored usage of the NEC SX-8 and SX-9 systems in satellite geodesy. In W. E. Nagel, D. B. Kröner, & M. M. Resch (Eds.), High Performance Computing in Science and Engineering ’10 (pp. 561--572; By W. E. Nagel, D. B. Kröner, & M. M. Resch). https://doi.org/10.1007/978-3-642-15748-6_41
    11. Tourian, M, Riegger, J., Sneeuw, N., & Devaraju, B. (2011). Outlier identification and correction for GRACE aggregated data. 55, 627--640. https://doi.org/10.1007/s11200-009-9007-z
    12. van der Wal, W., Wang, L., Visser, P., Sneeuw, N., & Vermeersen, B. (2011). Evaluating GOCE data near a mid-ocean ridge and possible application to crustal structure in Scandinavia. In L. Ouwehand (Ed.), Proceedings of 4th International GOCE User Workshop, Munich, Germany (By L. Ouwehand). Retrieved from http://esamultimedia.esa.int/multimedia/publications/SP-696/toc_SP696.pdf
    13. Visser, P. N. A. M., Schrama, E. J. O., Sneeuw, N., & Weigelt, M. (2011). Dependency of Resolvable Gravitational Spatial Resolution on Space-Borne Observation Techniques. In S. Kenyon, M. C. Pacino, & U. Marti (Eds.), Geodesy for Planet Earth, Proceedings of the 2009 IAG Symposium, Buenos Aires, Argentina (pp. 373--379; By S. Kenyon, M. C. Pacino, & U. Marti). https://doi.org/10.1007/978-3-642-20338-1_45
    14. Weigelt, M., Baur, O., Reubelt, T., Sneeuw, N., & Roth, M. (2011). Long wavelength gravity field determination from GOCE using the acceleration approach. Proceedings of 4th GOCE User Workshop, ESA, Munich, Germany, (ESA SP-696).
    15. Zou, X., Cai, J., Sneeuw, N., & Li, J. (2011). Numerical study on the mixed model in the GOCE polar gap problem. 14(3), 216--222. https://doi.org/10.1007/s11806-011-0532-x
  10. 2010

    1. Ardalan, A., Karimi, R., & Grafarend, E. (2010). A New Reference Equipotential Surface, and Reference Ellipsoid for the Planet Mars. 106(1), 1--13. https://doi.org/10.1007/s11038-009-9342-7
    2. Awange, J., Grafarend, E., Paláncz, B., & Zaletnyik, P. (2010). Algebraic Geodesy and Geoinformatics. In Algebraic Geodesy and Geoinformatics (2nd ed., p. 377). https://doi.org/10.1007/978-3-642-12124-1
    3. Baur, O., Sneeuw, N., Cai, J., & Roth, M. (2010). GOCE data analysis: realization of the invariants approach in a high performance computing environment. Proceedings of the ESA Living Planet Symposium, Bergen, Norway, ESA SP-686.
    4. Baur, O., Kuhn, M., & Featherstone, W. E. (2010). GRACE-derived linear and non-linear secular mass variations over Greenlands. In F. Sansò (Ed.), Proceedings VII. Hotine Marussi Symposium (By F. Sansò). https://doi.org/10.1007/978-3-642-22078-4_57
    5. Baur, O., Cai, J., & Sneeuw, N. (2010). Spectral approaches to solving the polar gap problem. In F. Flechtner, T. Gruber, A. Güntner, M. Mandea, M. Rothacher, T. Schöne, & J. Wickert (Eds.), System Earth via Geodetic-Geophysical Space Techniques, (pp. 243--253; By F. Flechtner, T. Gruber, A. Güntner, M. Mandea, M. Rothacher, T. Schöne, & J. Wickert). https://doi.org/10.1007/978-3-642-10228-8_19
    6. Cai, J., Baur, O., & Sneeuw, N. (2010). GOCE gravity field determination by means of rotational invariants: first experiences. In GEOTECHNOLOGIEN Science Report: Öbservation of the System Earth from Space": Vol. 17. GEOTECHNOLOGIEN Science Report: Öbservation of the System Earth from Space" (pp. 62--69).
    7. Grafarend, E. (2010). Spacetime gradiometry: tensor-valued ellipsoidal harmonics, the datum problem and an application of the Lusternik-Schnirelmann Category to construct a minimum atlas. In M. E. Contadakis (Ed.), The apple of knowledge. In honor of Prof. em. D. N. Arabelos (pp. 121--145; By M. E. Contadakis). ZHTH, Thessalonoki, Greece.
    8. Grafarend, E., Martinec, Z., & Klapp, M. (2010). Spacetime modelling of the Earth’s gravity field by ellipsoidal harmonics. In W. Freeden, M. Z. Nashed, & T. Sonar (Eds.), Handbook of Geomathematics: 1st ed., part 3 (pp. 159--252; By W. Freeden, M. Z. Nashed, & T. Sonar). https://doi.org/10.1007/978-3-642-01546-5_7
    9. Reubelt, T, Sneeuw, N., & Sharifi, M. A. (2010). Future Mission Design Options for Spatio-Temporal Geopotential Recovery. In S P Mertikas (Ed.), Gravity, Geoid and Earth Observation. International Association of Geodesy Symposia, IAG Commission 2: Gravity Field, Chania, Crete, Greece (pp. 163--170; By S P Mertikas). https://doi.org/10.1007/978-3-642-10634-7_22
    10. Richter, B., Engels, J., & Grafarend, E. (2010). Transformation of amplitudes and frequencies of precession and nutation of the Earth’s rotation vector to amplitudes and frequencies of diurnal pole motion. 84(1), 1--18. https://doi.org/10.1007/s00190-009-0339-9
    11. Varga, P, Krumm, F., Riguzzi, F., Doglione, C., Süle, B., Wang, K., & Panza, G. F. (2010). Earthquake Energy Distribution along the Earth Surface and Radius.
    12. Visser, P. N. A. M., Sneeuw, N., Reubelt, T., Losch, M., & Van Dam, T. (2010). Space-borne gravimetric satellite constellations and ocean tides: aliasing effects. 181(2), 789--805. https://doi.org/10.1111/j.1365-246x.2010.04557.x
    13. Weigelt, M., Sneeuw, N., & Keller, W. (2010). Evaluation of EGM2008 by Comparison with Global and Local Gravity Solutions from CHAMP. In S P Mertikas (Ed.), Gravity, Geoid and Earth Observation (pp. 497--504; By S P Mertikas). https://doi.org/10.1007/978-3-642-10634-7
    14. Zeile, O., Lachenmann, M., Baumstark, E., Mohr, A., Bock, D., Laufer, R., … Röser, H. P. (2010). Analysis of orbital lifetime and observation conditions of small lunar satellites. 66(3--4), 516--527. https://doi.org/10.1016/j.actaastro.2009.07.008
  11. 2009

    1. Antoni, Markus, Keller, W., & Weigelt, M. (2009). Representation of Regional Gravity Fields by Radial Base Functions. In M. G. Sideris (Ed.), Observation our Changing Earth, Proceedings of the 2007 IAG General Assembly, Perugia, Italy (pp. 293--299; By M. G. Sideris). https://doi.org/10.1007/978-3-540-85426-5_34
    2. Antoni, Markus, Borkowski, A., Keller, W., & Owczarek, M. (2009). Verification of localized GRACE solutions by the Polish quasiqeoid. 58(2), 21--36.
    3. Austen, G., & Keller, W. (2009). Singularity free formulations of the geodetic boundary value problem in gravity space. 83(7), 645--657. https://doi.org/10.1007/s00190-008-0278-x
    4. Awange, J. L., Sharifi, M. A., Baur, O., Keller, W., Featherstone, W. E., & Kuhn, M. (2009). GRACE hydrological monitoring of Australia: current limitations and future prospects. 54(1), 23--36. https://doi.org/10.1080/14498596.2009.9635164
    5. Baur, O., & Keller, W. (2009). Computational considerations for satellite-based geopotential recovery. In W. E. Nagel, D. B. Kröner, & M. M. Resch (Eds.), High Performance Computing in Science and Engineering ’09 (pp. 511--521; By W. E. Nagel, D. B. Kröner, & M. M. Resch). https://doi.org/10.1007/978-3-642-04665-0_35
    6. Baur, O., Kuhn, M., & Featherstone, W. E. (2009). GRACE-derived ice-mass variations over Greenland by accounting for leakage effects. 114(B6), 1--13. https://doi.org/10.1029/2008JB006239
    7. Baur, O. (2009). Tailored least-squares solvers implementation for high-performance gravity field research. 35(3), 548--556. https://doi.org/10.1016/j.cageo.2008.09.004
    8. Böhm, W. (2009). Die Erde ist eine Kartoffel. Retrieved from http://www.n24.de/n24/Wissen/d/689566/die-erde-ist-eine-kartoffel.html
    9. Cai, J., & Grafarend, E. (2009). Systematical analysis of the transformation between Gauss-Krueger-Coordinate/DHDN and UTM-Coordinate/ETRS89 in Baden-Wuerttemberg with different estimation methods. In H. Drewes (Ed.), Geodetic Reference Frames, Proceedings of the IAG Symposium, Munich, Germany (pp. 205--211; By H. Drewes). https://doi.org/10.1007/978-3-642-00860-3_32
    10. Cai, J., Grafarend, E., & Hu, C. (2009). The total optimal criterion in solving the mixed integer linear model with GNSS carrier phase observations. 13(3), 221--230. https://doi.org/10.1007/s10291-008-0115-y
    11. Grafarend, E. (2009). Geodetic reference frames: The kinematical Euler equations: a review of their singularities or the benefit of the Lusternik-Schnirelmann Category CAT(SO(3))=4. In A Volume Dedicated to Milan Bursa on the Occasion of His 80th Birthday, Prague, Czech Republic. A Volume dedicated to Milan Bursa on the occasion of his 80th birthday, Prague, Czech Republic (pp. 85--99).
    12. Keller, W. (2009). A Geometric Perspective to the Boundary Value Problem of Physical Geodesy. In P. Holota (Ed.), Mission and Passion: Science. A volume dedicated to Milan Bursa on the occasion of his 80th birthday (pp. 125--135; By P. Holota). Prague, Czech Republic.
    13. Kuhn, M., Featherstone, W. E., Makarynskyy, O., & Keller, W. (2009). Deglaciation-Induced Spatially Variable Sea-level Change: A Simple-Model Case Study for the Greenland and Antarctic Ice Sheets. https://doi.org/10.1260/1759-3131.1.2.67
    14. Moghtased-Azar, K., & Grafarend, E. (2009). Surface deformation analysis of dense GPS networks based on intrinsic geometry: deterministic and stochastic aspects. 83(5), 431--454. https://doi.org/10.1007/s00190-008-0252-7
    15. Weigelt, M., Sideris, M. G., & Sneeuw, N. (2009). On the influence of the ground track on the gravity field recovery from high-low satellite-to-satellite tracking missions: CHAMP monthly gravity field recovery using the energy balance approach revisited. 83(12), 1131--1143. https://doi.org/10.1007/s00190-009-0330-5
    16. Xu, C., Ding, K., Cai, J., & Grafarend, E. (2009). Methods of determining weight scaling factors for geodetic-geophysical joint inversion. 47(1), 39--46. https://doi.org/10.1016/j.jog.2008.06.005
  12. 2008

    1. Antoni, M, Keller, W., & Weigelt, M. (2008). Regionale Schwerefeldmodellierung durch Slepian- und radiale Basisfunktionen. 133(2), 120--129. Retrieved from http://geodaesie.info/zfv/heftbeitrag/597
    2. Baur, O., Austen, G., & Kusche, J. (2008). Efficient GOCE satellite gravity field recovery based on LSQR. 82(4), 207--221. https://doi.org/10.1007/s00190-007-0171-z
    3. Baur, O., Sneeuw, N., & Grafarend, E. (2008). Methodology and use of tensor invariants for satellite gravity recovery. 82(4), 279--293. https://doi.org/10.1007/s00190-007-0178-5
    4. Cai, J., Wang, J., Wu, J., Hu, C., Grafarend, E., & Chen, J. (2008). Horizontal deformation rate analysis based on multi-epoch GPS measurements in Shanghai. 134(4), 132--137. https://doi.org/10.1061/(asce)0733-9453(2008)134:4(132)
    5. Cai, J., Koivula, H., Grafarend, E., & Poutanen, M. (2008). The statistical analysis of the eigenspace components of the strain rate tensor derived from FinnRef GPS measurements (1997--2004) in Fennoscandia. In P. Xu, J. Liu, & A. Dermanis (Eds.), VI Hotine-Marussi Symposium on Theoretical and Computational Geodesy, Wuhan, PR China (pp. 79--87; By P. Xu, J. Liu, & A. Dermanis). https://doi.org/10.1007/978-3-540-74584-6_13
    6. Cai, J., Grafarend, E., Hu, C., & Wang, J. (2008). The uniform Tykhonov-Phillips regularization (?-weighted S-homBLE) and its application in GPS rapid static positioning. In P. Xu, J. Liu, & A. Dermanis (Eds.), VI Hotine-Marussi Symposium on Theoretical and Computational Geodesy, Wuhan, PR China (pp. 221--229; By P. Xu, J. Liu, & A. Dermanis). https://doi.org/10.1007/978-3-540-74584-6_35
    7. Devaraju, B, Sneeuw, N., Kindt, H., & Riegger, J. (2008). Estimating GRACE monthly water storage change consistent with hydrology by assimilating hydrological information. In S. P. Mertikas (Ed.), Proceedings of the IAG symposium on Gravity, Geoid, and Earth Observation 2008, Chania, Crete, Greece (pp. 603–610; By S. P. Mertikas). https://doi.org/10.1007/978-3-642-10634-7_80
    8. Grafarend, E. (2008). Kinematische und dynamische Gleichungen zur Erdrotation: Messexperimente, Präzession/Nutation versus Tageslängenschwankung (LOD)/Polbewegung (PM). Sitzungsberichte Der Leibniz-Sozietät, 94, 67--82. Retrieved from http://leibnizsozietaet.de/wp-content/uploads/2012/11/09-Grafarend.pdf
    9. Ivins, E. R., & Wolf, D. (2008). Glacial isostatic adjustment: new developments from advanced observing systems and modelling. 46(3--5), 69--77. https://doi.org/10.1016/j.jog.2008.06.002
    10. Keller, W. (2008). A Localizing Basis Function Representation for Low-Low Mode SST and Gravity Gradients Observations. In P. Xu, J. Liu, & A. Dermanis (Eds.), VI Hotine-Marussi Symposium on Theoretical and Computational Geodesy, Wuhan, PR China (pp. 10--16; By P. Xu, J. Liu, & A. Dermanis). https://doi.org/10.1007/978-3-540-74584-6_2
    11. Paláncz, B., Zaletnyik, P., Awange, J. L., & Grafarend, E. (2008). Dixon resultant’s solution of systems of geodetic polynomial equations. 82(8), 505--511. https://doi.org/10.1007/s00190-007-0199-0
    12. Sneeuw, N., Sharifi, M. A., & Schaub, H. (2008). Formation Flight Stability in a Gravitational Field. In K. Fletcher (Ed.), Proceedings of the 3rd International Symposium on Formation Flying, Missions and Technologies, Nordwijk, The Netherlands: Vol. ESA SP-654 (By K. Fletcher). ESA Communication Production Office.
    13. Sneeuw, N., Sharifi, M. A., & Keller, W. 29. 5.-2. 6. 2006. (2008). Gravity Recovery from Formation Flight Missions. In P. Xu, J. Liu, & A. Dermanis (Eds.), VI Hotine-Marussi Symposium on Theoretical and Computational Geodesy, Wuhan, PR China (pp. 29--34; By P. Xu, J. Liu, & A. Dermanis). https://doi.org/10.1007/978-3-540-74584-6_5
    14. Van Dam, T., Visser, P., Sneeuw, N., Losch, M., Gruber, T., Bamber, J., … Smit, M. (2008). Monitoring and Modelling Individual Sources of Mass Distribution and Transport in the earth System by Means of Satellites.
    15. Vanícek, P., Grafarend, E., & Berber, M. (2008). Short Note: Strain Invariants. https://doi.org/10.1007/s00190-007-0175-8
    16. Wolf, D., Jacoby, W. R., Hartmann, O., Klemann, V., & Sasgen, I. (2008). Glaziale Isostasie im Südosten Islands. In Festschrift Zum 65. Geburtstag von Prof. Dr.-Ing. Carl-Erhard Gerstenecker. Festschrift zum 65. Geburtstag von Prof. Dr.-Ing. Carl-Erhard Gerstenecker (pp. 145--156).
    17. Wu, J., Cai, J., Hu, C., Xiao, F., & Liu, C. (2008). A quaternary prototype for spatiotemporal analysis of permanent scatter interferometry. XXXVII Part B7, 157--160. Retrieved from http://www.isprs.org/proceedings/XXXVII/congress/7_pdf/2_WG-VII-2/16.pdf
    18. Xu, C., Sneeuw, N., & Sideris, M. G. (2008). The Torus Approach in Spaceborne Gravimetry. In P. Xu, J. Liu, & A. Dermanis (Eds.), VI Hotine-Marussi Symposium on Theoretical and Computational Geodesy, Wuhan, PR China (pp. 23--28; By P. Xu, J. Liu, & A. Dermanis). https://doi.org/10.1007/978-3-540-74584-6_4
  13. 2007

    1. Austen, G., & Keller, W. (2007). On an ellipsoidal approach to the singularity-free gravity space theory. In P. Xu, J. Liu, & A. Dermanis (Eds.), VI Hotine-Marussi Symposium on Theoretical and Computational Geodesy, Wuhan, China (pp. 327--332; By P. Xu, J. Liu, & A. Dermanis). https://doi.org/10.1007/978-3-540-74584-6_53
    2. Cai, J., & Grafarend, E. (2007a). Statistical analysis of geodetic deformation (strain rate) derived from the space geodetic measurements of BIFROST Project in Fennoscandia. 43(2), 214--238. https://doi.org/10.1016/j.jog.2006.09.010
    3. Cai, J., & Grafarend, E. (2007b). Statistical analysis of the eigenspace components of the two-dimensional, symmetric rank-two strain rate tensor derived from the space geodetic measurements (ITRF92-ITRF2000 data sets) in central Mediterranean and Western Europe. 168(2), 449--472. https://doi.org/10.1111/j.1365-246X.2006.03153.x
    4. Cai, J., Hu, C., & Grafarend, E. (2007). The Optimal Regularization Method and its Application in GNSS Rapid Static Positioning. Proceedings of the 20th International Technical Meeting of the Satellite Division of The Institute of Navigation (ION GNSS 2007), 299--305. Fort Worth, Texas, USA.
    5. Cai, J., Grafarend, E., & Hu, C. (2007). The Statistical Property of the GNSS Carrier Phase Observations and its Effects on the Hypothesis Testing of the Related Estimators. Proceedings of the 20th International Technical Meeting of the Satellite Division of The Institute of Navigation (ION GNSS 2007), 331--338. Fort Worth, Texas, USA.
    6. Fleming, K., Martinec, Z., & Wolf, D. (2007). Glacial-isostatic adjustment and the viscosity structure underlying Vatnajökull. 164(4), 751--768. https://doi.org/10.1007/s00024-007-0187-6
    7. Hagedoorn, J. M., Wolf, D., & Martinec, Z. (2007). An estimate of global mean sea-level rise inferred from tide-gauge measurements using glacial-isostatic models consistent with the relative sea-level record. 164(4), 791--818. https://doi.org/10.1007/s00024-007-0186-
    8. Hartmann, O., Jacoby, W., Wolf, D., Klemann, V., & Sasgen, I. (2007). Interpretation glazial-isostatischer Ausgleichsvorgänge im Südosten Islands unter Berücksichtigung des Island-Plumes. https://doi.org/10.2312/GFZ.b103-07070
    9. Klemann, V., & Wolf, D. (2007). Using fuzzy logic for the analysis of sea-level indicators with respect to glacial-isostatic adjustment: an application to the Richmond-Gulf region, Hudson Bay. 164(4), 683--696. https://doi.org/10.1007/s00024-007-0191-x
    10. Paláncz, B., Awange, J., & Grafarend, E. (2007). Computer algebra solution of the GPS N-points problem. 11(4), 295--299. https://doi.org/10.1007/s10291-007-0066-8
    11. Sasgen, I., Mulvany, R., Klemann, Y., & Wolf, D. (2007). Glacial-isostatic adjustment and sea-level change near Berkner Island, Antarctica. https://doi.org/10.2312/GFZ.b103-07059
    12. Sharifi, M., Sneeuw, N., & Keller, W. (2007). Gravity recovery capability of four generic satellite formations. In A. Kiliçoglu & R. Forsberg (Eds.), Gravity field of the Earth: General Command of Mapping: Vol. 18 (special issue) (pp. 211--216; By A. Kiliçoglu & R. Forsberg). 1st Int. Symp. of the International Gravity Field Service, Istanbul, Turkey.
    13. Siemes, C., Schuh, W., Cai, J., Sneeuw, N., & Baur, O. (2007). GOCE data processing: the numerical challenge of data gaps. Status Seminar, Munich, Germany.
    14. Sneeuw, N., & Kusche, J. (2007). Preface. Special issue: Satellite Gravimetry and Inverse Problems. 81(1--3), 1--3. https://doi.org/10.1007/s00190-006-0119-8
    15. Weigelt, M. L. (2007). Global and Local Gravity Field Recovery from Satellite-to-Satellite Tracking.
    16. Wolf, D., & Fernandez, J. (2007). Deformation and Gravity Change: Indicators of Isostasy, Tectonics, Volcanism and Climate Change. 164(4), 633--635. https://doi.org/10.1007/s00024-007-0195-6
    17. Xu, C., Sneeuw, N., & Sideris, M. (2007). Joint SST and SGG Gravity Field Solutions Using the Torus Approach. In A. Kiliçoglu & R. Forsberg (Eds.), Gravity field of the Earth: General Command of Mapping: Vol. 18 (special issue) (pp. 169--174; By A. Kiliçoglu & R. Forsberg). 1st Int. Symp. of the International Gravity Field Service, Istanbul, Turkey.
    18. Xu, C., Weigelt, M., Sideris, M., & Sneeuw, N. (2007). Spaceborne gravimetry and gravity field recovery. 53(3--4), 65--75. https://doi.org/10.5589/q07-008
  14. 2006

    1. Austen, G., & Keller, W. (2006a). LSQR Tuning to Succeed in Computing High Resolution Gravity Field Solutions. In P. Alberigo, G. Erbacci, & F. Garofalo (Eds.), Science and Supercomputing in Europe, HPC-Europa Transnational Access Report 2005 (pp. 307--311; By P. Alberigo, G. Erbacci, & F. Garofalo). Monograf s.r.l., Bologna, Italy.
    2. Austen, G., & Keller, W. (2006b). Numerical implementation of the Gravity Space approach -- proof of concept. In C. Rizos & P. Tregoning (Eds.), Dynamic Planet -- Monitoring and Understanding a Dynamic Planet with Geodetic and Oceanographic Tools (pp. 296--302; By C. Rizos & P. Tregoning). https://doi.org/10.1007/978-3-540-49350-1_44
    3. Baur, O., Austen, G., & Keller, W. (2006). Efficient Satellite Based Geopotential Recovery. In W. E. Nagel, W. Jäger, & M. Resch (Eds.), High Performance Computing in Science and Engineering ’06 (pp. 499--514; By W. E. Nagel, W. Jäger, & M. Resch). https://doi.org/10.1007/978-3-540-36183-1_36
    4. Baur, O., & Grafarend, E. (2006a). High-Performance GOCE Gravity Field Recovery from Gravity Gradients Tensor Invariants and Kinematic Orbit Information. In J. Flury, R. Rummel, C. Reigber, M. Rothacher, G. Boedecker, & U. Schreiber (Eds.), Observation of the Earth System from Space (pp. 239--253; By J. Flury, R. Rummel, C. Reigber, M. Rothacher, G. Boedecker, & U. Schreiber). https://doi.org/10.1007/3-540-29522-4_17
    5. Baur, O., & Kusche, J. (2006). LSQR Based Geopotential Recovery. Proc. 1st Int. Symposium of the IGFS, Istanbul, Turkey, 157--162.
    6. Baur, O., & Grafarend, E. (2006b). LSQR Tuning to Succeed in Computing High Resolution Gravity Field Solutions. In P. Alberigo, G. Erbacci, & F. Garofalo (Eds.), Science and Supercomputing in Europa, HPC-Europa Report Book 2005 (pp. 312--315; By P. Alberigo, G. Erbacci, & F. Garofalo). Monograf s.r.l., Bologna, Italy.
    7. Baur, O., & Sneeuw, N. (2006). Slepian Approach Revisited: New Studies to Overcome the Polar Gap. Proc. 3rd GOCE User Workshop, Frascati, Italy, (ESA SP-627), 8. Retrieved from http://earth.esa.int/goce06/GOCEabstractbook3.pdf
    8. Grafarend, E., Finn, G., & Ardalan, A. (2006). Ellipsoidal Vertical Deflections and Ellipsoidal Gravity Disturbance: Case Studies. 50(1), 1--57. https://doi.org/10.1007/s11200-006-0001-4
    9. Grafarend, E. W. (2006). Linear and Nonlinear Models -- Fixed Effects, Random Effects, and Mixed Models. In Linear and Nonlinear Models -- Fixed Effects, Random Effects, and Mixed Models (p. 752). de Gruyter.
    10. Grafarend, E. W., & Krumm, F. W. (2006). Map Projections -- Cartographic Information Systems. In Map Projections -- Cartographic Information Systems (p. 713). https://doi.org/10.1007/978-3-540-36702-4
    11. Götzelmann, M., Keller, W., & Reubelt, T. (2006). Gross error compensation for gravity field analysis based on kinematic orbit data. 80(4), 184--198. https://doi.org/10.1007/s00190-006-0061-9
    12. Najafi-Alamdari, M., Emadi, S., & Moghtased-Azar, K. (2006). The ellipsoidal correction to the Stokes kernel for precise geoid determination. 80(12), 675--689. https://doi.org/10.1007/s00190-006-0050-z
    13. Novák, P., Austen, G., Sharifi, M. A., & Grafarend, E. (2006). Mapping Earth’s gravitation using GRACE data. In Observation of the Earth System from Space. Observation of the Earth System from Space (pp. 149--165). https://doi.org/10.1007/3-540-29522-4_11
    14. Novák, P., & Grafarend, E. (2006). The Effect of topographical and atmospheric masses on spaceborne gravimetric and gradiometric data. 50(4), 549--582. https://doi.org/10.1007/s11200-006-0035-7
    15. Reubelt, T, Götzelmann, M., & Grafarend, E. (2006). Harmonic Analysis of the Earth’s Gravitational Field from Kinematic CHAMP Orbits based on Numerically Derived Satellite Accelerations. In J. Flury, R. Rummel, C. Reigber, M. Rothacher, G. Boedecker, & U. Schreiber (Eds.), Observation of the Earth System from Space (pp. 27--42; By J. Flury, R. Rummel, C. Reigber, M. Rothacher, G. Boedecker, & U. Schreiber). https://doi.org/10.1007/3-540-29522-4_3
    16. Wang, J., Keller, W., & Sharifi, M. A. (2006). Comparison of Availability of GALILEO, GPS and Combined GALILEO/GPS Navigation Systems. 41, 3--15. https://doi.org/10.2478/v10018-007-0001-9
    17. Wolf, D., Klemann, V., Wünsch, J., & Zhang, F. P. (2006). A reanalysis and reinterpretation of geodetic and geological evidence of glacial-isostatic adjustment in the Churchill region, Hudson Bay. 27(1), 19--61. https://doi.org/10.1007/s10712-005-0641-x
    18. Xu, C., Sideris, M., & Sneeuw, N. (2006). Gravity Field Recovery from Spaceborne Gravimetry. 13th Astronautics Conference and 53rd Annual General Meeting: Canada’s Future in Space -- Global Responsibilities and Opportunities, Montreal.
  15. 2005

    1. Austen, G., & Grafarend, E. (2005). Gravitational field recovery from GRACE data of type high-low and low-low SST. Proceedings of Joint CHAMP/GRACE Science Meeting. Presented at the GFZ Potsdam. GFZ Potsdam.
    2. Austen, G., Baur, O., & Keller, W. (2005). Use of high performance computing in gravity field research. In W. Nagel, W. Resch, & W. Jäger (Eds.), High Performance Computing in Science and Engineering’ 05 (pp. 305--318; By W. Nagel, W. Resch, & W. Jäger). https://doi.org/10.1007/3-540-29064-8_24
    3. Awange, J., & Grafarend, E. (2005). From Space Angles to Point Position using Sylvester Resultant. 112, 265--269. Retrieved from http://gispoint.de/artikelarchiv/avn/2005/avn-ausgabe-072005/2117-from-space-angles-to-point-position-using-sylvester-resultant.html
    4. Awange, J., Fukuda, F., Takemoto, S., & Grafarend, E. (2005). Role of algebra in modern day Geodesy. In F. Sansò (Ed.), A Window on the Future of Geodesy (pp. 524--529; By F. Sansò). https://doi.org/10.1007/3-540-27432-4_89
    5. Awange, J., Grafarend, E., Fukuda, F., & Takemoto, S. (2005). The application of commutative algebra to geodesy: two examples. 79(1), 93--102. https://doi.org/10.1007/s00190-005-0446-1
    6. Awange, J. L., & Grafarend, E. W. (2005). Solving Algebraic Computational Problems in Geodesy and Geoinformatics. The Answer to Modern Challenges (p. 334). https://doi.org/10.1007/b138214
    7. Baur, O., & Austen, G. (2005). A parallel iterative algorithm for large-scale problems of type potential field recovery from satellite data. Proceedings of Joint CHAMP/GRACE Science Meeting. Presented at the GFZ Potsdam. GFZ Potsdam.
    8. Baur, O., & Grafarend, E. (2005). Orbital Rotations of a Satellite. Case Study: GOCE. 40(2), 87--107.
    9. Borkowski, A., & Keller, W. (2005). Global and local methods for tracking the intersection curve between two surfaces. 79(1), 1--10. https://doi.org/10.1007/s00190-005-0437-2
    10. Bölling, K., & Grafarend, E. (2005). Ellipsoidal Spectral Properties of the Earth’s Gravitational Potential and its First and Second Derivatives. 79(6), 300--330. https://doi.org/10.1007/s00190-005-0465-y
    11. Cai, J., Grafarend, E., & Schaffrin, B. (2005). Statistical inference of the eigenspace components of a two-dimensional, symmetric rank-two random tensor. 78(7), 425--436. https://doi.org/10.1007/s00190-004-0405-2
    12. Fleming, K., Martinec, Z., Hagedoorn, J. M., & Wolf, D. (2005). Contemporary changes in the geoid about Greenland: predictions relevant to gravity space missions. In C. Reigber, H. Lühr, P. Schwintzer, & J. Wickert (Eds.), Earth Observation with CHAMP (pp. 217--222; By C. Reigber, H. Lühr, P. Schwintzer, & J. Wickert). https://doi.org/10.1007/3-540-26800-6_35
    13. Fleming, K., Martinec, Z., Wolf, D., & Sasgen, I. (2005). Detectability of geoid displacements arising from: changes in global continental-ice volumes by the GRACE gravity space mission. Proc. of Joint CHAMP/GRACE Science Meeting. Presented at the GFZ Potsdam. GFZ Potsdam.
    14. Grafarend, E., Awange, J., Takemoto, S., & Fukuda, Y. (2005). A combinatorial scatter approach to the overdetermined three-dimensional intersection problem. LXIII, 235--248.
    15. Grafarend, E. (2005). Harmonic Maps. 78(10), 594--615. https://doi.org/10.1007/s00190-004-0422-1
    16. Gruber, C., Tsoulis, D., & Sneeuw, N. (2005). CHAMP accelerometer calibration by means of the equation of motion and an a-priori gravity model. 130(2), 92--98. Retrieved from http://geodaesie.info/zfv/heftbeitrag/1271
    17. Ilk, K. H., Flury, J., Rummel, R., Schwintzer, P., Bosch, W., Haas, C., … Gruber, T. (2005). Mass Transport and Mass Distribution in the Earth System: Contribution of the New Generation of Satellite Gravimetry and Altimetry Missions to Geosciences (2nd edn, p. 154). GOCE Project Office Germany, Munich and GeoForschungsZentrum Potsdam.
    18. Keller, W, & Sharifi, M. (2005). Satellite Gradiometry Using a Satellite Pair. 78(9), 544--557. https://doi.org/10.1007/s00190-004-0426-x
    19. Klemann, V., & Wolf, D. (2005). The eustatic reduction of shorteline diagrams: implications for the inference of relaxation-rate spectra and the viscosity stratification below Fennoscandia. 162(1), 249--256. https://doi.org/10.1111/j.1365-246X.2005.02637.x
    20. Kumar, P., Kind, R., Hanka, W., Wylegalla, K., Reigber, C., Yuan, X., … Wolf, D. (2005). The lithosphere-asthenosphere boundary in the North-West Atlantic region. 236(1--2), 249--257. https://doi.org/10.1016/j.epsl.2005.05.029
    21. Martinec, Z., & Wolf, D. (2005). Inverting the Fennoscandian relaxation-time spectrum in terms of an axisymmetric viscosity distribution with a lithospheric root. 39(2), 143--163. https://doi.org/10.1016/j.jog.2004.08.007
    22. Mäkinen, J., Engfeldt, A., Harsson, B., Ruotsalainen, H., Strykowski, G., Oja, T., & Wolf, D. (2005). The Fennoscandian land uplift gravity lines: status 2004. In C. Jekeli, L. Bastos, & J. Fernandes (Eds.), Gravity, Geoid and Space Missions (pp. 328--332; By C. Jekeli, L. Bastos, & J. Fernandes). https://doi.org/10.1007/3-540-26932-0_57
    23. Novák, P., & Grafarend, E. (2005). Ellipsoidal representation of the topographical potential and its vertical gradient. 78(1), 691--706. https://doi.org/10.1007/s00190-005-0435-4
    24. Reubelt, T, Götzelmann, M., & Grafarend, E. (2005). A new CHAMP gravitational field model based on the GIS acceleration approach and two years of kinematic CHAMP data. In J. Flury, R. Rummel, C. Reigber, M. Rothacher, G. Boedecker, & U. Schreiber (Eds.), Observation of the Earth System from Space -- Proceedings of Joint CHAMP/GRACE Science Meeting (By J. Flury, R. Rummel, C. Reigber, M. Rothacher, G. Boedecker, & U. Schreiber). Springer Verlag.
    25. Sasgen, I., Wolf, D., Martinec, Z., Klemann, V., & Hagedoorn, J. (2005). Geodetic signatures of glacial changes in Antarctica: rates of geoid-height change and radial displacement due to present and past ice-mass variations. Retrieved from http://bib.gfz-potsdam.de/pub/str0501/0501.pdf
    26. Sharifi, M A, & Keller, W. (2005). GRACE Gradiometer. In C. Jekeli, L. Bastos, & J. Fernandes (Eds.), Gravity, Geoid and Space Mission (pp. 42--47; By C. Jekeli, L. Bastos, & J. Fernandes). https://doi.org/10.1007/3-540-26932-0_8
    27. Sneeuw, N., Flury, J., & Rummel, R. (2005). Science requirements on future missions and simulated mission scenarios. 94(1), 113--142. https://doi.org/10.1007/s11038-004-7605-x
    28. Tsoulis, D., Gruber, C., & Sneeuw, N. (2005). A novel approach for the calibration of the CHAMP accelerometer using short data spans. 64(2), 113--128.
  16. 2004

    1. Amiri-Simkooei, A., & Sharifi, M. (2004). Approach for Equivalent Accuracy Design of Different Types of Observations. 130(1), 1--5. https://doi.org/10.1061/(ASCE)0733-9453(2004)130:1(1)
    2. Ardalan, A., & Grafarend, E. (2004). High-resolution regional geoid computation without applying Stokes’s formula: a case study of the Iranian geoid. 78(1), 138--156. https://doi.org/10.1007/s00190-004-0385-2
    3. Awange, J., Fukuda, Y., & Grafarend, E. (2004). Exact solution of the nonlinear 7-parameter datum transformation by Groebner basis. 63(2), 117--127.
    4. Cai, J., Grafarend, E., & Schaffrin, B. (2004). The A-optimal regularization parameter in uniform Tykhonov-Phillips regularization — ?-weighted BLE. In F. Sansò (Ed.), V. Hotine-Marussi Symposium on Mathematical Geodesy (pp. 309–324; By F. Sansò). https://doi.org/10.1007/978-3-662-10735-5_41
    5. Cai, J., & Grafarend, E. (2004). The Analysis of the Eigenspace Components of the Strain Rate Tensor in Central Mediterranean and Western Europe, 1992--2000. 6, 06239.
    6. Finn, G., & Grafarend, E. (2004). Ellipsoidal Vertical Deflections: Regional, continental, global maps of the horizontal derivative of the incremental gravity potential. In F. Sansò (Ed.), V. Hotine-Marussi Symposium on Mathematical Geodesy (pp. 252--259; By F. Sansò). https://doi.org/10.1007/978-3-662-10735-5_32
    7. Ilk, K., Flury, J., Rummel, R., Schwintzer, P., Bosch, W., Haas, C., … Güntner, A. (2004). Mass Transport and Mass Distribution in the Earth System: Contribution of the New Generation of Satellite Gravity and Altimetry Missions to Geosciences. Retrieved from http://www.massentransporte.de/fileadmin/Dokumente/programmschrift-Ed2.pdf
    8. Keller, W, Kubik, K., & Mojarrabi, B. (2004). Bi-static SAR using GPS Signals reflected at the Sea-surface. Proceedings EUSAR 2004, 2, 779--783. 5th European Conference on Synthetic Aperture Radar, EUSAR2004, Ulm, Germany: VDE Verlag.
    9. Keller, W. (2004a). The use of wavelets for the acceleration of iteration schemes. In F. Sansò (Ed.), V. Hotine-Marussi Symposium on Mathematical Geodesy (pp. 81--87; By F. Sansò). https://doi.org/10.1007/978-3-662-10735-5_10
    10. Keller, W. (2004b). Wavelets in Geodesy and Geodynamics (p. 279). De Gruyter.
    11. Kösters, F., Käse, R., Fleming, K., & Wolf, D. (2004). Denmark Strait overflow for last glacial maximum to Holocene conditions. 19(2). https://doi.org/10.1029/2003PA000972
    12. Mäkinen, J., Engfeldt, A., Harsson, B. G., Ruotsalainen, H., Strykowski, G., Oja, T., & Wolf, D. (2004). The Fennoscandian land uplift gravity lines: status 2004. In C. Ehlers, O. Eklund, A. Korja, A. Kruuna, R. Lahtinen, & L. J. Pesonen (Eds.), Programme and Extended Abstracts of the Third Symposium on Structure, Composition and Evolution of the Lithosphere in Finland (pp. 81--87; By C. Ehlers, O. Eklund, A. Korja, A. Kruuna, R. Lahtinen, & L. J. Pesonen). Institute of Seismology, University of Helsinki.
    13. Vajda, P., Vanícek, P., Novák, P., & Meurers, B. (2004). On evaluation of Newton integrals in geodetic coordinates: Exact formulation and spherical approximation. 34(4), 289--314. Retrieved from http://www2.unb.ca/gge/Research/GRL/GeodesyGroup/Publications/documents/On%20evaluation%20of%20Newton%20integrals.pdf
    14. Varga, P, Engels, J., & Grafarend, E. (2004). Temporal variations of the polar moment of inertia and the second-degree geopotential. 78(3), 187--191. https://doi.org/10.1007/s00190-004-0388-z
    15. Wolf, D., Klemann, V., Wünsch, J., & Zhang, F. P. (2004). A reanalysis and reinterpretation of geodetic and geological evidence of glacial-isostatic adjustment in the Churchill region, Hudson Bay.
  17. 2003

    1. Abolghasem, A., & Grafarend, E. (2003). Finite Element Analysis of Quasi-Static Earthquake Displacement Fields Observed by GPS. 77(9), 529--536. https://doi.org/10.1007/s00190-003-0341-6
    2. Awange, J., & Grafarend, E. (2003a). Closed Form Solution of the Overdetermined Nonlinear 7 Parameter Datum Transformation. (110), 130--149. Retrieved from https://www.wichmann-verlag.de/images/stories/avn/artikelarchiv/2003/04/44a6676cc9c.pdf
    3. Awange, J., Grafarend, E., & Fukuda, Y. (2003). Closed Form Solution of the Triple Three-Dimensional Intersection Problem. 128(6), 395--402. Retrieved from http://geodaesie.info/zfv/heftbeitrag/1435
    4. Awange, J., Grafarend, E., Fukuda, Y., & Takemoto, S. (2003a). Direct Polynomial Approach to Nonlinear Distance (Ranging) Problems. 55(5), 231--241. https://doi.org/10.1186/BF03351754
    5. Awange, J., & Grafarend, E. (2003b). Explicit Solution of the Overdetermined Three-Dimensional Resection Problem. 76(11), 605--616. https://doi.org/10.1007/s00190-002-0287-0
    6. Awange, J., & Grafarend, E. (2003c). Groebner-Basis Solution of the Three-Dimensional Resection Problem (P4P). 77(5), 327--337. https://doi.org/10.1007/s00190-003-0328-3
    7. Awange, J., & Grafarend, E. (2003d). Multipolynomial Resultant Solution of the 3D Resection Problem (P4P). LXII, 79--102.
    8. Awange, J., & Grafarend, E. (2003e). Polynomial Optimization of the 7-Parameter Datum Transformation Problem when Only Three Stations in Both Systems are Given. 128(4), 266--270. Retrieved from http://geodaesie.info/zfv/heftbeitrag/1418
    9. Awange, J., Fukuda, Y., Takemoto, S., Ateya, I., & Grafarend, E. (2003). Ranging Algebraically With More Observations Than Unknowns. 55, 387--394. https://doi.org/10.1186/bf03351772
    10. Awange, J., Grafarend, E., Fukuda, Y., & Takemoto, S. (2003b). Resultants approach to the triple three-dimensional intersection problem. 49(4), 243--256. Retrieved from https://www.jstage.jst.go.jp/pub/images/icon_tool_pdf_free.png
    11. Borkowski, A., & Keller, W. (2003). Modelling of Irregularly Sampled Surfaces by two-dimensional Snakes. 77(9), 543--553. https://doi.org/10.1007/s00190-003-0354-1
    12. Grafarend, E. (2003). A Closed Form Representation of Somigliana-Pizzetti Gravity (M. Santos, Ed.). Fredericton.
    13. Grafarend, E., & Martinec, Z. (2003). Comments on “Solution of the Dirichlet and Stokes exterior boundary problems for the Earth’s ellipsoid” by V.V. Brovar, Z.S. Kopeikina, M.V. Pavlova Journal of Geodesy (2001) 74: 767–772. 77(5), 357--360. https://doi.org/10.1007/s00190-002-0301-6
    14. Grafarend, E., & Voosoghi, B. (2003). Intrinsic Deformation Analysis of the Earth’s Surface Based on Displacement Fields Derived from Space Geodetic Measurements. Case Studies: Present-Day Deformation Patterns of Europe and of the Mediterranean Area (ITRF Data Sets). 77(5), 303--326. https://doi.org/10.1007/s00190-003-0329-2
    15. Grafarend, E., & Awange, J. (2003). Nonlinear analysis of the three-dimensional datum transformation conformal group C7(3). 77(1--2), 66--76. https://doi.org/10.1007/s00190-002-0299-9
    16. Grafarend, E. W., Krumm, F. W., & Schwarze, V. S. (2003). Geodesy -- The Challenge of the 3rd Millenium (p. 473). https://doi.org/10.1007/978-3-662-05296-9
    17. Lou, L., & Grafarend, E. (2003). GPS Integer Ambiguity Resolution by Various Decorrelation Methods. 128(3), 203--210. Retrieved from http://geodaesie.info/zfv/heftbeitrag/1409
    18. Marinkovic, P., Grafarend, E., & Reubelt, T. (2003). Space Gravity Spectroscopy: The Benefits of Taylor-Karman Structured Criterion Matrices. 1, 113--120. https://doi.org/10.5194/adgeo-1-113-2003
    19. Novák, P., Kern, M., Schwarz, K., & Heck, B. (2003). Evaluation of band-limited topographical effects in airborne gravimetry. 76(11), 597--604. https://doi.org/10.1007/s00190-002-0282-5
    20. Novák, P. (2003a). Geoid determination using one-step integration. 77(3), 193--206. https://doi.org/10.1007/s00190-003-0314-9
    21. Novák, P., Kern, M., Schwarz, K., Sideris, M., Heck, B., Ferguson, S., … Wei, M. (2003). On geoid determination from airborne gravity. 76(9), 510--522. https://doi.org/10.1007/s00190-002-0284-3
    22. Novák, P., Bruton, A., Bayoud, F., Kern, M., & Schwarz, K. (2003). On numerical and data requirements for topographical reduction of airborne gravity in geoid determination and resource exploration. LXII, 103--124.
    23. Novák, P. (2003b). Optimal model for geoid determination from airborne gravity. 47(1), 1--36. https://doi.org/10.1023/A:1022274821011
    24. Novák, P., Šimek, J., & Kostelecký, J. (2003). A detailed gravimetric quasi-geoid model VUGTK 2002 for Central Europe. In I. N. Tziavos (Ed.), Gravity and Geoid 2002. Reviewed Proc. of the 3rd Meeting of the International Gravity and Geoid Commission (pp. 150--155; By I. N. Tziavos).
    25. Reubelt, T, Austen, G., & Grafarend, E. (2003a). Harmonic Analysis of the Earth’s Gravitational Field by Means of Semi-Continuous Ephemerides of a Low Earth Orbiting GPS-Tracked Satellite. Case Study: CHAMP. 77(5), 257--278. https://doi.org/10.1007/s00190-003-0322-9
    26. Reubelt, T, Austen, G., & Grafarend, E. (2003b). Space Gravity Spectroscopy -- Determination of the Earth’s Gravitational Field by Means of Newton Interpolated LEO Ephemeris. Case Studies on Dynamic (CHAMP Rapid Science Orbit) and Kinematic Orbits. 1, 127--135. https://doi.org/10.5194/adgeo-1-127-2003
    27. Tenzer, R., Vanícek, P., & Novák, P. (2003). Far-zone contributions to topographical effects in the Stokes-Helmert method of the geoid determination. 47(3), 467--480. https://doi.org/10.1023/A:1024799131709
    28. Vanícek, P., Novák, P., Craymer, M., & Pagiatakis, S. (2003). On the correct determination of transformation parameters of the horizontal geodetic datum. 56(4), 329--340. Retrieved from ftp://ftp.glonass-iac.ru/REPORTS/OLD/NRCAN/Vanicek.pdf
  18. 2002

    1. Ardalan, A., Grafarend, E., & Ihde, J. (2002). Molodensky potential telluroid based on a minimum-distance map. Case study: the quasi-geoid of East Germany in the World Geodetic Datum 2000. 76(3), 127--138. https://doi.org/10.1007/s00190-001-0238-1
    2. Ardalan, A., Grafarend, E., & Kakkuri, J. (2002). National height datum, the Gauss-Listing geoid level value w0 and its time variation (Baltic Sea Level Project: epochs 1990.8, 1993.8, 1997.4). 76(1), 1--28. https://doi.org/10.1007/s001900100211
    3. Ardalan, A., & Grafarend, E. (2002). High Resolution Regional Geoid Computation. In M. G. Sideris (Ed.), Gravity, Geoid and Geodynamics (pp. 301--310; By M. G. Sideris). https://doi.org/10.1007/978-3-662-04827-6_13
    4. Austen, G., Grafarend, E., & Reubelt, T. (2002). Analysis of the Earth’s gravitational field from semi-continuous ephemerides of a low Earth orbiting GPS-tracked satellite of type Champ, Grace or Goce. In J. Ádám & K. P. Schwarz (Eds.), Vistas for Geodesy in the New Millennium (pp. 309--315; By J. Ádám & K. P. Schwarz). https://doi.org/10.1007/978-3-662-04709-5_51
    5. Awange, J., & Grafarend, E. (2002a). Algebraic solution of GPS pseudo-ranging equations. 5(4), 20--32. https://doi.org/10.1007/PL00012909
    6. Awange, J., & Grafarend, E. (2002b). Linearized Least Squares and nonlinear Gauss-Jacobi combinatorial algorithm applied to the 7-parameter datum transformation C7(3) problem. 127, 109--116. Retrieved from http://geodaesie.info/sites/default/files/privat/zfv_2002_2_Awange_Grafarend.pdf
    7. Awange, J., & Grafarend, E. (2002c). Nonlinear adjustment of GPS observations of type pseudo-ranges. 5(4), 80--93. https://doi.org/10.1007/PL00012914
    8. Awange, J., & Grafarend, E. (2002d). Sylvester resultant solution of the planar ranging problem. 109(4), 143--147. Retrieved from https://www.wichmann-verlag.de/images/stories/avn/artikelarchiv/2002/04/40179bdc42a.pdf
    9. Grafarend, E., & Schwarze, V. S. (2002). Das Global Positioning System. 1, 39--44. Retrieved from http://www.pro-physik.de/details/articlePdf/1108837/issue.html
    10. Grafarend, E., & Shan, J. (2002). GPS Solutions: closed forms, critical and special configurations of P4P. 5(3), 29--41. https://doi.org/10.1007/PL00012897
    11. Grafarend, E. (2002a). Sensitive control of high-speed-railway tracks, Part I: Local representation of the clothoid. 109, 61--70. Retrieved from http://gispoint.de/artikelarchiv/1990-sensitive-control-of-high-speed-railway-tracks.html
    12. Grafarend, E. (2002b). Sensitive control of high-speed-railway tracks, Part II: Minimal distance mapping of a point close to the clothoid. 109, 85--94. Retrieved from http://gispoint.de/artikelarchiv/avn/2002/avn-ausgabe-032002/1985-sensitive-control-of-high-speed-railway-tracks.html
    13. Grafarend, E W, & Ardalan, A. A. (2002). Time evolution of a World Geodetic Datum. In J. Ádám & K. P. Schwarz (Eds.), Vistas for Geodesy in the New Millennium (pp. 114--123; By J. Ádám & K. P. Schwarz). https://doi.org/10.1007/978-3-662-04709-5_20
    14. Hähnle, J., & Grafarend, E. (2002). Erstellung eines digitalen Höhenmodells (DHM) mit Dreiecks-Bézier-Flächen. 127, 193--199. Retrieved from http://geodaesie.info/sites/default/files/privat/zfv_2002_3_Haehnle_Grafarend.pdf
    15. Krumm, F., & Grafarend, E. (2002). Datum-free Deformation Analysis of ITRF networks. 37(3), 75--84.
    16. Martinec, Z., & Grafarend, E. (2002). Separability conditions for the vector Helmholtz equation. 61, 53--61.
    17. Novák, P., & Heck, B. (2002). Downward continuation and geoid determination based on band-limited airborne gravity data. 76(5), 269--278. https://doi.org/10.1007/s00190-002-0252-y
    18. Novák, P. (2002). The use of airborne gravimetry for precise geoid determination. 5(5), 85--94.
    19. Schäfer, C, & Grafarend, E. (2002). On the determination of gravitational information from GPS-tracked satellite missions. 37(2), 31--49.
  19. 2001

    1. Bölling, K., Hagedoorn, J. M., Wolf, D., & Grafarend, E. (2001). Berechnung eislastinduzierter Vertikalbewegungen und Geoidänderungen in Südostalaska mit Hilfe viskoelastischer Erdmodelle.
    2. Grafarend, E., & Ardalan, A. (2001a). Ellipsoidal geoidal undulations (ellipsoidal Bruns formula): case studies. 75(9), 544--552. https://doi.org/10.1007/s001900100212
    3. Grafarend, E., & Ardalan, A. (2001b). Somigliana-Pizzetti gravity: the international gravity formula accurate to the sub-nanoGal level. 75(7), 424--437. https://doi.org/10.1007/PL00004005
    4. Grafarend, E. (2001). The spherical horizontal and spherical vertical boundary value problem -- vertical deflections and geoidal undulations -- the completed Meissl diagram. 75(7), 363--390. https://doi.org/10.1007/s001900100186
    5. Grafarend, E., & Hanke, S. (2001). The terrain correction in a moving tangent space. 45(3), 211--234. https://doi.org/10.1023/A:1022088927779
    6. Hagedoorn, J. M., Wolf, D., & Neumeyer, J. (2001). Determination of atmospheric influence on high-accuracy gravity measurements with elastic earth models. In M. G. Sideris (Ed.), Gravity, Geoid and Geodynamics 2000 (pp. 185--191; By M. G. Sideris). https://doi.org/10.1007/978-3-662-04827-6_31
    7. Keller, W. (2001). A wavelet solution to 1D non-stationary collocation with an extension to 2D case. In M. G. Sideris (Ed.), Gravity, Geoid and Geodynamics 2000 (pp. 79--85; By M. G. Sideris). https://doi.org/10.1007/978-3-662-04827-6_13
    8. Martinec, Z., Thoma, M., & Wolf, D. (2001). Material versus local incompressibility and its influence on glacial-isostatic adjustment. 144(1), 136--156. https://doi.org/10.1046/j.1365-246x.2001.01230.x
    9. Thoma, M., Wolf, D., & Neumeyer, J. (2001). Inverting land uplift near Vatnajökull, Iceland, in terms of lithosphere thickness and viscosity stratification. In M. G. Sideris (Ed.), Gravity, Geoid and Geodynamics 2000 (pp. 97--102; By M. G. Sideris). https://doi.org/10.1007/978-3-662-04827-6_16
  20. 2000

    1. Ardalan, A., & Awange, J. L. (2000). Compatibility of the NMEA GGA with GPS receivers. 3(3), 1--3. https://doi.org/10.1007/PL00012797
    2. Ardalan, A., & Grafarend, E. (2000). Reference ellipsoidal gravity potential field and gravity intensity field of degree/order 360/360.
    3. Gilbert, A., & Keller, W. (2000). Deconvolution with wavelets and vaguelettes. 74(3--4), 306--320. https://doi.org/10.1007/s001900050288
    4. Grafarend, E., & Awange, J. L. (2000). Determination of vertical deflections by GPS/LPS measurements. 125(8), 279--288.
    5. Grafarend, E. (2000a). Mixed integer-real valued adjustment (IRA) problems. 4(2), 31--45. https://doi.org/10.1007/PL00012840
    6. Grafarend, E., Engels, J., & Varga, P. (2000). The temporal variation of the spherical and Cartesian multipoles of the gravity field. 74(7), 519--530. https://doi.org/10.1007/s001900000114
    7. Grafarend, E. (2000b). The time-varying gravitational potential field of a massive, deformable body. 44(3), 364--373. https://doi.org/10.1023/A:1022108420086
    8. Grafarend, E., Hendricks, A., & Gilbert, A. (2000). Transformation of conformal coordinates of type Gauß-Krüger or UTM from a local datum (regional, National, European) to a global datum (WGS84, ITRF96) Part II: Case studies. 107(6), 218--222. Retrieved from http://gispoint.de/artikelarchiv/avn/2000/avn-ausgabe-062000/1883-transformation-of-conformal-coordinates-of-type-gauss-krueger-or-utm-from-a-local-datum-regional-national-european-to-a-global-datum-wgs-84-itrf-96-part-ii-case-studies.html
    9. Keller, W. (2000). A wavelet approach to non-stationary collocation. In K. P. Schwarz (Ed.), Geodesy Beyond 2000 -- The Challenges of the First Decade (pp. 208--213; By K. P. Schwarz). https://doi.org/10.1007/978-3-642-59742-8_34
    10. Krumm, F., & Grafarend, E. W. (2000). Datum free deformation analysis of ITRF networks (Vol. 37, pp. 75--84). Vol. 37, pp. 75--84. Int. Symp. Gravity, Geoid and Geodynamics 2000, Banff, Alberta, Canada.
  21. 1999

    1. Ardalan, A., & Awange, J. L. (1999). Care while using the NMEA 0183! In F. Krumm & V. S. Schwarze (Eds.), Quo vadis geodesia...? Festschrift for Erik W. Grafarend on the occasion of his 60th birthday (pp. 41--52; By F. Krumm & V. S. Schwarze). Retrieved from http://www.uni-stuttgart.de/gi/research/schriftenreihe/quo_vadis/pdf/ardalan+awange.pdf
    2. Ardalan, A. (1999). Somigliana-Pizzetti Minimum Distance Telluroid Mapping. In F. Krumm & V. S. Schwarze (Eds.), Quo vadis geodesia...? Festschrift for Erik W. Grafarend on the occasion of his 60th birthday (pp. 27--40; By F. Krumm & V. S. Schwarze). Retrieved from http://www.uni-stuttgart.de/gi/research/schriftenreihe/quo_vadis/pdf/ardalan.pdf
    3. Awange, J. L. (1999). Partial Procrustes Solution of the Threedimensional Orientation Problem from GPS/LPS Observations. In F. Krumm & V. S. Schwarze (Eds.), Quo vadis geodesia...? Festschrift for Erik W. Grafarend on the occasion of his 60th birthday (pp. 277--286; By F. Krumm & V. S. Schwarze). Retrieved from http://www.uni-stuttgart.de/gi/research/schriftenreihe/quo_vadis/pdf/awange.pdf
    4. Grafarend, E., & Ardalan, A. (1999a). A first test of W_0, the time variation of W_0(dot) based on three GPS campaigns of the Baltic Sea Level Project. In M. Poutanen & J. Kakkuri (Eds.), Final Results of the Baltic Sea Level 1997 GPS Campaign (pp. 93--113; By M. Poutanen & J. Kakkuri). The Finnish Institute of Geodesy, Kirkonummi.
    5. Grafarend, E., Ardalan, A., & Sideris, M. G. (1999). The spheroidal fixed-free two-boundary-value problem for geoid determination (the spheroidal Bruns’ transform). 73(10), 513--533. https://doi.org/10.1007/s001900050263
    6. Grafarend, E., & Ardalan, A. (1999b). World Geodetic Datum 2000. 73(11), 611--623. https://doi.org/10.1007/s001900050272
    7. Grafarend, E., & Engels, J. (1999). zwei polare geodätische Bezugssysteme: Der Referenzrahmen der mittleren Oberflächenvortizität und der Tisserand-Referenzrahmen. In M. Schneider (Ed.), Mitteilungen des Bundesamtes für Kartographie und Geodäsie (pp. 100--109; By M. Schneider).
    8. Heß, D., & Keller, W. (1999a). Gradiometrie mit GRACE, Teil I. 124, 137--144.
    9. Heß, D., & Keller, W. (1999b). Gradiometrie mit GRACE, Teil II. 124, 205--211.
    10. Keller, W. (1999). Geodetic pseudodifferential operators and the Meissl scheme. In F. Krumm & V. S. Schwarze (Eds.), Quo vadis geodesia...? Festschrift for Erik W. Grafarend on the occasion of his 60th birthday (pp. 237--246; By F. Krumm & V. S. Schwarze). Retrieved from http://www.uni-stuttgart.de/gi/research/schriftenreihe/quo_vadis/pdf/keller.pdf
    11. Krumm, F., & S, S. V. (1999). Quo vadis geodesia...? Festschrift for Erik W. Grafarend on the occasion of his 60th birthday (F. Krumm & S. V. S, Eds.).
    12. Schwarze, V. S. (1999). Satellite geodesy on curved space-time manifolds. 73(11), 594--602. https://doi.org/10.1007/s001900050270
  22. 1998

    1. Grafarend, E. (1998). Helmut Wolf -- das wissenschaftliche Werk/the scientific work. In Heft A 115 (p. 97). Deutsche Geodätische Kommission, Bayerische Akademie der Wissenschaften, München, Germany.
    2. Grafarend, E., & Syffus, R. (1998a). Map projections of project surveying objects and architectural structures, Part 3, projective geometry of the parabolic mirror or the paraboloid with boundary. 123, 93--97.
    3. Grafarend, E., & Syffus, R. (1998b). Map projections of project surveying objects and architectural structures, Part 4, projective geometry of the church tower or the onion. 123, 128--132.
    4. Grafarend, E., & Syffus, R. (1998c). Optimal Mercator projection and the optimal polycylindric projection of conformal type -- case study Indonesia. 72(5), 251--258. https://doi.org/10.1007/s001900050165
    5. Grafarend, E., & Krumm, F. (1998). The Abel-Poisson kernel and the Abel-Poisson integral in a moving tangent space. 72(7), 404--410. https://doi.org/10.1007/s001900050179
    6. Grafarend, E., & Syffus, R. (1998d). The solution of the Korn-Lichtenstein equations of conformal mapping: the direct generation of ellipsoidal Gauss-Krüger conformal coordinates or the Transverse Mercator Projection. 72(5), 282--293. https://doi.org/10.1007/s001900050167
    7. Grafarend, E., & Syffus, R. (1998e). Transformation of conformal coordinates from a local datum (regional, National, European) to a global datum (WGS 84) Part I: The transformation equations. 105, 134--141.
    8. Grafarend, E., & Okeke, F. (1998). Transformation of conformal coordinates of type mercator from a global datum (WGS 84) to a local datum (regional, national). 21(3), 169--180. https://doi.org/10.1080/01490419809388133
    9. Metzner, M. (1998). Prozessstudien regionaler Phänomene im Auftriebsgebiet vor Nordwestafrika unter Einbeziehung von Fernerkundungsdaten.
    10. Okeke, F., & Krumm, F. (1998). Graph, graph spectra and partitioning algorithms in a geodetic network structural analysis and adjustment. 57(1), 1--24.
    11. Sabadini, R., & Vermeersen, L. L. A. (1998). Mantle Layering and Long-term rotational response of the Earth to glacial cycles. In P. Wu (Ed.), Dynamics of the Ice Age Earth: A modern perspective (pp. 489--496; By P. Wu). Trans Tech Publications Ltd, Ütikon-Zürich, Switzerland.
    12. Schäfer, Ch, Grafarend, E. W., Krauss, S., & Sayda, F. (1998). Aufbau einer Programmsammlung zur Berechnung von Störeinflüssen auf Satellitenbahnen. In W Freeden (Ed.), Progress in Geodetic Science at GW98, Proceedings zur Geodätischen Woche 1998 Kaiserslautern (pp. 73--76; By W Freeden). Shaker Verlag, Aachen.
    13. Vermeersen, L. L. A., & Sabadini, R. (1998). Effects of compressibility and stratification on viscoelastic relaxation: The analytical perspective. In P. Wu (Ed.), Dynamics of the Ice Age Earth: A modern perspective (pp. 123--134; By P. Wu). Trans Tech Publications Ltd, Ütikon-Zürich, Switzerland.
  23. 1997

    1. Grafarend, E., & Shan, S. (1997a). Closed-form solution of P4P or the three-dimensional resection problem in terms of Möbius barycentric coordinates. 71(4), 217--231. https://doi.org/10.1007/s001900050089
    2. Grafarend, E., & Shan, S. (1997b). Closed-form solution to the twin P4P or the combined three dimensional resection-intersection problem in terms of Möbius barycentric coordinates. 71(4), 232--239. https://doi.org/10.1007/s001900050090
    3. Grafarend, E., & Krumm, F. (1997). Comments and reply regarding Grafarend and Krumm (1996): The Stokes and Vening-Meinesz functionals in a moving tangent space. 71(11), 704--708. https://doi.org/10.1007/s001900050138
    4. Grafarend, E., & Shan, S. (1997c). Estimable quantities in projective networks, Part I. 122, 218--226.
    5. Grafarend, E., & Syffus, R. (1997a). Map projections of project surveying objects and architectural structures, Part 1: Projective geometry of the pneu or torus T2A,B with boundary. 122, 457--465.
    6. Grafarend, E., & Syffus, R. (1997b). Map projections of project surveying objects and architectural studies, Part 2: Projective geometry of the cooling tower of the hyperboloid IH2. 122, 560--566.
    7. Grafarend, E., & Syffus, R. (1997c). Mixed cylindric map projections of the ellipsoid of revolution. 71(11), 685--694. https://doi.org/10.1007/s001900050136
    8. Grafarend, E., & Martinec, Z. (1997). Solution to the Stokes boundary-value problem on an ellipsoid of revolution. 41(2), 103--129. https://doi.org/10.1023/A:1023380427166
    9. Grafarend, E., & Syffus, R. (1997d). Strip transformation of conformal coordinates of type Gauß-Krüger and UTM. 104.
    10. Grafarend, E., & Syffus, R. (1997e). The Hammer projection of the ellipsoid of revolution (azimuthal, transverse, rescaled equiareal). 71(12), 736--748. https://doi.org/10.1007/s001900050140
    11. Grafarend, E., & Syffus, R. (1997f). The optimal Mercator projection and the optimal polycylindric projection of conformal type -- case study Indonesia. In S. Mira (Ed.), Proc. GALOS (Geodetic Aspects of the Law of the Sea) (pp. 93--103; By S. Mira). 2nd International Conference, Denpasar, Bali, Indonesia: Institute of Technology.
    12. Grafarend, E., Engels, J., & Varga, P. (1997). The spacetime gravitational field of a deformable body. 72(1), 11--30. https://doi.org/10.1007/s001900050144
    13. Grafarend, E., & Ardalan, A. (1997b). W_0. In S. Mira (Ed.), Proc. GALOS (Geodetic Aspects of the Law of the Sea) (pp. 183--192; By S. Mira). 2nd International Conference, Denpasar, Bali, Indonesia: Institute of Technology.
    14. Grafarend, E., & Ardalan, A. (1997a). W_0: an estimate in the Finnish Height Datum N 60, epoch 1993.4, from twenty-five GPS points of the Baltic Sea Level Project. 71(11), 673--679. https://doi.org/10.1007/s001900050134
    15. Grafarend, E. (1997). Field lines of gravity, their curvature and torsion, the Lagrange and the Hamilton equations of the plumbline. 40(5), 1233--1247. https://doi.org/10.4401/ag-3859
    16. Keller, W. (1997a). A Wavelet-Vaguelette Analysis of Geodetic Integral Formulae. In J. Segawa, H. Fujimoto, & K. Okubo (Eds.), Gravity, Geoid and Marine Geodesy (pp. 557--564; By J. Segawa, H. Fujimoto, & K. Okubo). https://doi.org/10.1007/978-3-662-03482-8_74
    17. Keller, W. (1997b). Anwendung von Wavelets in der Verarbeitung geowissenschaftlicher Daten. 122, 334--339.
    18. Keller, W. (1997c). Application of Boundary Value Techniques to Satellite Gradiometry. In F. Sansó & R. Rummel (Eds.), Geodetic Boundary Value Problems in View of the One Centimeter Geoid (pp. 542--558; By F. Sansó & R. Rummel). https://doi.org/10.1007/BFb0011716
    19. Keller, W. (1997d). Schnelle Algorithmen zur diskreten Wavelet Transformation. 122, 126--135.
    20. Martinec, Z., & Grafarend, E. (1997). Construction of Green’s function to the external Dirichlet boundary value problem for the Laplace equation on an ellipsoid of revolution. 71(9), 562--570. https://doi.org/10.1007/s001900050124
    21. Martinec, Z., & E, G. (1997). Solution of the Stokes Boundary-Value Problem on an Ellipsoid of Revolution. 41(2), 103--129. https://doi.org/10.1023/A:1023380427166
    22. Sabadini, R., & Vermeersen, L. L. A. (1997a). Ice-age cycles: Earth’s rotation instabilities and sealevel changes. 24(23), 3041--3044. https://doi.org/10.1029/97GL03161
    23. Sabadini, R., & Vermeersen, L. L. A. (1997b). Influence of lithospheric and mantle layering on global post-seismic deformation. 24(16), 2075--2078. https://doi.org/10.1029/97GL01979
    24. Vermeersen, L. L. A., & Sabadini, R. (1997). A new class of stratified viscoelastic models by analytical techniques. 129(3), 531--570. https://doi.org/10.1111/j.1365-246X.1997.tb04492.x
    25. Vermeersen, L. L. A., Fournier, A., & Sabadini, R. (1997). Changes in rotation induced by Pleistocene ice masses with stratified analytical Earth models. 102(B12), 27689--27702. https://doi.org/10.1029/97JB01738
  24. 1996

    1. Bian, S. (1996). Topography Supported GPS Leveling. 121, 109--113.
    2. Bláha, T., Hirsch, M., Keller, W., & Scheinert, M. (1996). Application of a spherical FFT approach in airborne gravimetry. 70(11), 663--672. https://doi.org/10.1007/BF00867145
    3. Engels, J., Grafarend, E., & Sorcik, P. (1996). The gravitational field of topographic-isostatic masses and the hypothesis of mass condensation II-the topographic-isostatic geoid. 17(1), 41--66. https://doi.org/10.1007/BF01904474
    4. Grafarend, E., Krarup, T., & Syffus, R. (1996). An algorithm for the inverse of a multivariate homogeneous polynomial of degree n. 70(5), 276--286. https://doi.org/10.1007/BF00867348
    5. Grafarend, E., & Kampmann, G. (1996). C_10(3): The ten parameter conformal group as a datum transformation in threedimensional Euclidian space. 121, 68--77.
    6. Grafarend, E., & Varga, P. (1996). Distribution of the lunisolar tidal elastic stress tensor components within the Earth’s mantle. 93(3--4), 285--297. https://doi.org/10.1016/0031-9201(95)03067-0
    7. Grafarend, E. (1996). Entwerfend Festliches für Klaus Linkwitz. In E. Baumann, U. Hangleiter, & W. Möhlenbrink (Eds.), Festschrift für K. Linkwitz (pp. 110--117; By E. Baumann, U. Hangleiter, & W. Möhlenbrink).
    8. Grafarend, E., & Xu, P. (1996). Probability distribution of eigenspectra and eigendirections of a twodimensional, symmetric rank two random tensor. 70(7), 419--430. https://doi.org/10.1007/BF01090817
    9. Grafarend, E., & Syffus, R. (1996). The optimal Mercator projection and the optimal polycylindric projection of conformal type - case study Indonesia. Proc. GALOS (Geodetic Aspects of the Law of the Sea). 2nd International Conference, Denpasar/Bali, Indonesia.
    10. Grafarend, E., & Krumm, F. (1996). The Stokes and Vening-Meinesz functionals in a moving tangent space. 70(11), 696--713. https://doi.org/10.1007/BF00867148
    11. Grafarend, E., & Ardalan, A. (1996). W_0, Proc. GALOS (Geodetic Aspects of the Law of the Sea). 2nd International Conference, Denpasar, Bali, Indonesia.
    12. Grafarend, E W, & Shan, J. (1996). A closed-form solution of the nonlinear pseudoranging equations (GPS). 31(28), 133--147.
    13. Keller, W. (1996a). Inversion of STEP-observation equation using Banach’s fixed-point principle. In B. H. Jacobsen, K. Mosegaard, & P. Sibani (Eds.), Inverse Methods: Interdisciplinary Elements of Methodology, Computation, and Applications (pp. 247--253; By B. H. Jacobsen, K. Mosegaard, & P. Sibani). https://doi.org/10.1007/BFb0011783
    14. Keller, W. (1996b). Kontinuierliche Wavelet Transformation. 121, 563--572.
    15. Shan, J. (1996a). Edge Detection Algorithms in Photogrammetry and Computer Vision.
    16. Shan, J. (1996b). Object Reconstruction without Interior Orientation. 31(B3), 786--791. Retrieved from http://www.isprs.org/proceedings/XXXI/congress/part3/786_XXXI-part3.pdf
    17. Vermeersen, L. L. A., Sabadini, R., & Spada, G. (1996a). Analytical visco-elastic relaxation models. 23(7), 697--700. https://doi.org/10.1029/96GL00620
    18. Vermeersen, L. L. A., Sabadini, R., & Spada, G. (1996b). Compressible rotational deformation. 126(3), 735--761. https://doi.org/10.1111/j.1365-246X.1996.tb04700.x
    19. Vermeersen, L. L. A., & Sabadini, R. (1996). Significance of the fundamental mantle rotational relaxation mode in polar wander simulations. 127(2), F5--F9. https://doi.org/10.1111/j.1365-246X.1996.tb04717.x