Dieses Bild zeigt Rudolf Widmer-Schnidrig

Rudolf Widmer-Schnidrig

Herr Ph.D.

Akademischer Mitarbeiter
Geowissenschaftliches Gemeinschaftsobservatorium (BFO)

Kontakt

+49 7836 2151

Website
Visitenkarte (VCF)

BFO, Heubach 206
77709 Wolfach
Deutschland

Fachgebiet

My main research interest is in low-frequency seismology: observing the elasto-gravitational free oscillations of the Earth to infer mantle and core structure. Since 2000 I work at the Black Forest Observatory (BFO) where we operate sensors to observe the entire geodynamic spectrum in gravity, strain and tilt. At BFO we also tested seismometers for the InSight mission to Mars and I am now involved in the analysis of these data to study the martian interior. Most recently I have also searched for the signature of compact dark matter objects (CDOs) in terrestrial gravimeter data.

  1. 2024

    1. Svennevig, K., Hicks, S. P., Forbriger, T., Lecocq, T., Widmer-Schnidrig, R., Mangeney, A., Hibert, C., Korsgaard, N. J., Lucas, A., Satriano, C., Anthony, R. E., Mordret, A., Schippkus, S., Rysgaard, S., Boone, W., Gibbons, S. J., Cook, K. L., Glimsdal, S., Løvholt, F., … Wirtz, B. (2024). A rockslide-generated tsunami in a Greenland fjord rang Earth for 9 days. https://doi.org/10.1126/science.adm9247
    2. Koelemeijer, P., Widmer-Schnidrig, R., Svennevig, K., Hicks, S., Forbriger, T., Lecocq, T., Mangeney, A., Hibert, C., Korsgaard, N., Lucas, A., Satriano, C., Anthony, R., Mordret, A., Schippkus, S., Rysgaard, S., Boone, W., Gibbons, S., Cook, K., Glimsdal, S., & Løvholt, F. (2024). Global observations of an up to 9 day long,  recurring,  monochromatic seismic source near 10.9 mHz associated with tsunamigenic landslides in a Northeast Greenland fjord. Copernicus GmbH. https://doi.org/10.5194/egusphere-egu24-5821
    3. Widmer-Schnidrig, R. (2024). Gravimeter Search for Compact Dark Matter Objects Moving in the Earth.
    4. Widmer-Schnidrig, R., Forbriger, T., & Zürn, W. (2024). Lifting the veil on enigmatic signals from Greenland.
    5. Forbriger, T., Karamzadeh, N., Azzola, J., Widmer-Schnidrig, R., Gaucher, E., & Rietbrock, A. (2024). On DAS-recorded strain amplitude. Copernicus GmbH. https://doi.org/10.5194/egusphere-egu24-10604
    6. Brotzer, A., Widmer-Schnidrig, R., & Igel, H. (2024). On the influence of ambient atmospheric pressure on multi-component,  direct observations of rotational ground motion. Copernicus GmbH. https://doi.org/10.5194/egusphere-egu24-12679
    7. Widmer-Schnidrig, R., & Brotzer, A. (2024). On the limit imposed by variable atmospheric pressure for the observation of small terrestrial rotations around horizontal axes. Copernicus GmbH. https://doi.org/10.5194/egusphere-egu24-1797
    8. Beck, C., Forbriger, T., Zürn, W., Widmer-Schnidrig, R., & Sneeuw, N. (2024). Systematic disturbances of superconducting gravimeters – An investigation of sensor differences.
    9. Beck, C., Forbriger, T., Zürn, W., Widmer-Schnidrig, R., & Sneeuw, N. (2024). Systematic errors of superconducting gravimeters – An investigation of sensor differences of dual sphere superconducting gravimeters.
    10. Pinot, B., Mimoun, D., Murdoch, N., Onodera, K., Johnson, C., Mittelholz, A., Drilleau, M., Stott, A., Pou, L., de Raucourt, S., Lognonné, P., Widmer-Schnidrig, R., Lange, L., Panning, M., & Banerdt, B. (2024). The In Situ Evaluation of the SEIS Noise Model. Space Science Reviews, 220(3), Article 3. https://doi.org/10.1007/s11214-024-01056-3
    11. Brotzer, A., Igel, H., & Widmer-Schnidrig, R. (2024). What we learn from multi-component,  direct observations of rotational ground motions about atmospheric ground deformation processes. Copernicus GmbH. https://doi.org/10.5194/egusphere-gc12-fibreoptic-67
  2. 2023

    1. Brotzer, A., Igel, H., Stutzmann, E., Montagner, J.-P., Bernauer, F., Wassermann, J., Widmer-Schnidrig, R., Lin, C.-J., Kiselev, S., Vernon, F., & Schreiber, K. U. (2023). Characterizing the Background Noise Level of Rotational Ground Motions on Earth. Seismological Research Letters, 95(3), Article 3. https://doi.org/10.1785/0220230202
    2. Bützler, C., Forbriger, T., Zürn, W., Widmer-Schnidrig, R., & Sneeuw, Ni. (2023). G04p-002: Systematical errors of superconducting gravimeters – An investigation of sensor differences of dual sphere superconducting gravimeters. IUGG, Berlin, Germany.
    3. Bützler, C., Forbiger, T., Zürn, W., Widmer-Schnidrig, R., & Sneeuw, N. (2023). Systematical errors of superconducting gravimeters.  An investigation of sensor differences of four dual sphere superconducting gravimeters. DGG Jahrestagung, Bremen.
  3. 2022

    1. Azzola, J., Toularoud, N. K., Gaucher, E., Forbriger, T., Widmer-Schnidrig, R., Bögelspacher, F., Frietsch, M., & Rietbrock, A. (2022). Comparison between Distributed Acoustic Sensing (DAS) and strain meter measurements at the Black Forest Observatory. Copernicus GmbH. https://doi.org/10.5194/egusphere-egu22-6976
    2. Bützler, C., Forbriger, T., Widmer-Schnidrig, R., & Sneeuw, N. (2022). Instrumental Disturbances of Superconducting Gravimeters - How much do they influence long term studies of gravity? Arbeitskreis Geodäsie/Geophysik, Oppurg, Germany.
    3. Widmer-Schnidrig, R. (2022). Observation of acoustic normal modes of the atmosphere after the 2022 Hunga-Tonga eruption. EGU  2022, Vienna, Austria.
    4. Toularoud, N. K., Azzola, J., Gaucher, E., Forbriger, T., Widmer-Schnidrig, R., Bögelspacher, F., Frietsch, M., & Rietbrock, A. (2022). PSD analysis and seismic event detectability of Distributed Acoustic Sensing (DAS) mesurements from several monitoring sites. Copernicus GmbH. https://doi.org/10.5194/egusphere-egu22-8787
    5. Bützler, C., Douch, K., Widmer-Schnidrig, R., & Sneeuw, N. (2022). Realistic modeling of gravity strain due to prompt elasto-gravity signals (PEGS) - How simple can the Earth model be? Conference on Mathematics of Wave Phenomena 2022, Karlsruhe, Germany.
    6. Huang, Q., Schmerr, N. C., King, S. D., Kim, D., Rivoldini, A., Plesa, A.-C., Samuel, H., Maguire, R. R., Karakostas, F., Lekić, V., Charalambous, C., Collinet, M., Myhill, R., Antonangeli, D., Drilleau, M., Bystricky, M., Bollinger, C., Michaut, C., Gudkova, T., … Banerdt, W. B. (2022). Seismic detection of a deep mantle discontinuity within Mars by InSight. Proceedings of the National Academy of Sciences, 119(42), Article 42. https://doi.org/10.1073/pnas.2204474119
    7. Delage, P., Marteau, E., Vrettos, C., Golombek, M., Ansan, V., Banerdt, W. B., Grott, M., Hurst, K., Lognonné, P., Murdoch, N., Piqueux, S., Schmelzbach, C., Spohn, T., Warner, N. H., Widmer-Schnidrig, R., Brinkman, N., Caicedo, B., Castillo Betancourt, J.-P., P., E., … Williams, R. (2022, Mai). The mechanical properties of the Martian soil at the InSight landing site. Proceeedings 20th International Conference on Soil Mechanics and Geotechnical Engineering, Sydney, May 2022. https://hal.archives-ouvertes.fr/hal-03706564
  4. 2021

    1. Bützler, C., Douch, K., Widmer-Schnidrig, R., & Sneeuw, N. (2021). Prompt Elasto-Gravity Signals Detection with gravity strainmeters or gravity gradiometers? Frontiers of Geodetic Science digital 2021, Hannover.
    2. Bützler, C., Douch, K., Widmer-Schnidrig, R., & Sneeuw, N. (2021). Realistic modeling of gravity strain due to prompt elasto-gravity signals (PEGS) - How simple can the Earth model be? Arbeitskreis Geodäsie/Geophysik, Laacher See.
    3. Khan, A., Ceylan, S., van Driel, M., Giardini, D., Lognonné, P., Samuel, H., Schmerr, N. C., Stähler, S. C., Duran, A. C., Huang, Q., Kim, D., Broquet, A., Charalambous, C., Clinton, J. F., Davis, P. M., Drilleau, M., Karakostas, F., Lekic, V., McLennan, S. M., … Banerdt, W. B. (2021). Upper mantle structure of Mars from InSight seismic data. Science, 373(6553), Article 6553. https://doi.org/10.1126/science.abf2966
  5. 2020

    1. Lognonné, P., Banerdt, W. B., SEISteam, & Widmer-Schnidrig, R. (2020). Constraints on the shallow elastic and anelastic structure of Mars from InSight seismic data. Nature Geoscience, 13, 213–220. https://doi.org/10.1038/s41561-020-0536-y
    2. Scholz, J.-R., Widmer-Schnidrig, R., Davis, P., Lognonné, P., Pinot, B., Garcia, R. F., Hurst, K., Pou, L., Nimmo, F., Barkaoui, S., de Raucourt, S., Knapmeyer-Endrun, B., Knapmeyer, M., Orhand-Mainsant, G., Compaire, N., Cuvier, A., Beucler, É., Bonnin, M., Joshi, R., … Banerdt, W. B. (2020). Detection, Analysis, and Removal of Glitches From InSight\textquotesingles Seismic Data From Mars. Earth and Space Science, 7(11), Article 11. https://doi.org/10.1029/2020ea001317
    3. Stähler, S. C., Widmer-Schnidrig, R., Scholz, J.-R., van Driel, M., Mittelholz, A., Hurst, K., Johnson, C. L., Lemmon, M. T., Lorenz, R. D., Lognonné, P., Müller, N. T., Pou, L., Spiga, A., Banfield, D., Ceylan, S., Charalambous, C., Clinton, J., Giardini, D., Nimmo, F., … Banerdt, W. B. (2020). Geophysical observations of Phobos transits by InSight. Geophysical Research Letters, n/a(n/a), Article n/a. https://doi.org/10.1029/2020GL089099
    4. Horowitz, C. J., & Widmer-Schnidrig, R. (2020). Gravimeter Search for Compact Dark Matter Objects Moving in the Earth. Phys. Rev. Lett., 124(5), Article 5. https://doi.org/10.1103/PhysRevLett.124.051102
    5. Garcia, R. F., Kenda, B., Kawamura, T., Spiga, A., Murdoch, N., Lognonné, P. H., Widmer-Schnidrig, R., Compaire, N., Orhand-Mainsant, G., Banfield, D., & Banerdt, W. B. (2020). Pressure Effects on the SEIS-InSight Instrument, Improvement of Seismic Records, and Characterization of Long Period Atmospheric Waves From Ground Displacements. Journal of Geophysical Research: Planets, 125(7), Article 7. https://doi.org/10.1029/2019JE006278
    6. Banfield, D., Spiga, A., SEISteam, & Widmer-Schnidrig, R. (2020). The atmosphere of Mars as observed by InSight. Nature Geoscience, 13, 190–198. https://doi.org/10.1038/s41561-020-0534-0
  6. 2019

    1. Ringler, A. T., Steim, J., Wilson, D. C., Widmer-Schnidrig, R., & Anthony, R. E. (2019). Improvements in seismic resolution and current limitations in the Global Seismographic Network. Geophysical Journal International, 220(1), Article 1. https://doi.org/10.1093/gji/ggz473
    2. Lognonné, P., SEISteam, & Widmer-Schnidrig, R. (2019). SEIS: Insight’s Seismic Experiment for Internal Structure of Mars. Space Sci Rev, 215(12), Article 12. https://doi.org/10.1007/s11214-018-0574-6
    3. Widmer-Schnidrig, R., Wielandt, E., Verdier, N., Lognonné, P., Pike, T., & SEISteam. (2019). Time Domain Modeling of InSight/SEIS VBB and SP Frequency Calibrations on Earth and on Mars. https://www.gis.uni-stuttgart.de/forschung/doc/Widmer_2019.pdf
  7. 2018

    1. Spiga, A., Banfield, D., Teanby, N. A., Forget, F., Lucas, A., Kenda, B., Rodriguez Manfredi, J. A., Widmer-Schnidrig, R., Murdoch, N., Lemmon, M. T., Garcia, R. F., Martire, L., Karatekin, Ö., Le Maistre, S., Van Hove, B., Dehant, V., Lognonné, P., Mueller, N., Lorenz, R., … Banerdt, W. B. (2018). Atmospheric Science with InSight. Space Science Reviews, 214, 109. https://doi.org/10.1007/s11214-018-0543-0
  8. 2017

    1. Brunke, H.-P., Widmer-Schnidrig, R., & Korte, M. (2017). Merging fluxgate and induction coil data to produce low-noise geomagnetic observatory data meeting the INTERMAGNET definitive 1 s data standard. Geosci. Instrum. Method. Data Syst., 1--7. https://doi.org/10.5194/gi-6-1-2017
  9. 2014

    1. Zhang, Y., Widmer-Schnidrig, R., & Sneeuw, N. (2014). Coherency analysis between superconducting gravimeters at BFO and Strasbourg.
    2. Widmer-Schnidrig, R., & Schwaderer, U. (2014). Sensitivity of Modern Broad-Band Seismometers at High Frequencies - Evaluation of a Huddle Test at BFO. Annual Meeting of the German Geophysical Society, DGG, Poser presentation, 1.
  10. 2013

    1. Zhang, Y., Widmer-Schnidrig, R., & Sneeuw, N. (2013). Can SGs be used to validate GRACE Gravity Field Models? -- Coherency Analysis between SGs at BFO and Strasbourg.
  11. 2012

    1. Häfner, R., & Widmer-Schnidrig, R. (2012). Signature of 3-D density structure in spectra of the spheroidal free oscillation 0S2. Geophysical Journal International, 192(1), Article 1. https://doi.org/10.1093/gji/ggs013
  12. 2010

    1. Kurrle, D., & Widmer-Schnidrig, R. (2010). Excitation of long-period Rayleigh waves by large storms over the North Atlantic ocean. Geophys. J. Int., 183, 330--338.
    2. Forbriger, Th., Widmer-Schnidrig, R., Wielandt, E., Hayman, M., & Ackerley, N. (2010). Magnetic field background variations can limit the resolution of seismic broad-band sensors. Geophys. J. Int., 183, 303--312.
    3. Widmer-Schnidrig, R., Duffner, P., Forbriger, Th., & Zürn, W. (2010). The New Dual Sphere Superconducting Gravimeter at the Black Forest Observatory. Annual Meeting of the German Geophysical Society, DGG, Poser presentation, 1.
  13. 2009

    1. Widmer-Schnidrig, R., & Zürn, W. (2009). Perspectives for Ring Laser Gyroscopes in Low-Frequency Seismology. Bull. Seismol. Soc. Am., 99, 1199--1206.
  14. 2008

    1. Kurrle, D., & Widmer-Schnidrig, R. (2008). The horizontal hum of the Earth: A global background of spheroidal and toroidal modes. Geophys. Res. Lett., 35, L06304, doi:10.1029/2007GL033125.
  15. 2007

    1. Laske, G., & Widmer-Schnidrig, R. (2007). Theory & Observations: Normal Modes & Surface Wave Measurements. Treatise on Geophysics, Vol. 1: Seismology and structure of the Earth, B. Romanowicz and A. Dziewonski, Editors, Elsevier, 67--125.
  16. 2006

    1. Widmer-Schnidrig, R., & Kurrle, D. (2006). Evaluation of installation methods for STS-2 seismometers. Poster at the annual meeting of the German Geophysical Society , DGG, Bremen.
    2. Widmer-Schnidrig, R. (2006). Evaluation of installation methods for STS-2 seismometers. Seismol. Res. Lett., submitted.
    3. Kurrle, D., & Widmer-Schnidrig, R. (2006). Spatiotemporal features of the Earth’s background oscillations observed in central Europe. Geophys. Res. Lett., 33, L24304, doi:10.1029/2006GL028429.
  17. 2003

    1. Zumberge, M. A., Berger, J., Hedlin, M. A. H., Husmann, E., Nooner, S., Hilt, R., & Widmer-Schnidrig, R. (2003). An optical infrasound sensor: a new lower limit on the atmospheric pressure noise between 1 Hz and 10 Hz. J.  Acoust. Soc. Am., 113, 2474--2479.
    2. Zürn, W., & Widmer-Schnidrig, R. (2003). Vertical acceleration noise at seismic frequencies. Cahiers du centre Européen de Géodynamique et de Séismologie, 22, 123--128.
    3. Widmer-Schnidrig, R. (2003). What can Superconducting Gravimeters contribute to normal mode seismology? Bull. Seismol. Soc. Am., 93, 1370--1380.
  18. 2002

    1. Zürn, W., Bayer, B., & Widmer-Schnidrig, R. (2002). A 3.7 mHz gravity signal on June 10, 1991. Bull. d’Information Marées Terrestres, 135, 10717--10724.
    2. Widmer-Schnidrig, R. (2002). Application of regionalized multiplet stripping to retrieval of aspherical structure constraints. Geophys. J. Int., 148, 201--213.
    3. Zürn, W., & Widmer-Schnidrig, R. (2002). Globale Eigenschwingungen der Erde. Physik Journal der Deutschen Physikalische Gesellschaft, 1, 49--55.
    4. Wielandt, E., & Widmer-Schnidrig, R. (2002). Seismic sensing and data acquisition in the GRSN. Ten Years of the German Regional Seismic Network (GRSN),                    Wiley-Vch publisher, Edited by Michael Korn.                    http://www.geophys.uni-stuttgart.de/$\sim$widmer/wws.pdf, 73--83.
    5. Widmer-Schnidrig, R. (2002). What can Superconducting Gravimeters contribute to normal mode seismology? Bull. d’Information Marées Terrestres, 135, 10701--10711.
  19. 2001

    1. Widmer-Schnidrig, R. (2001). Untersuchungen zur Anregung der permanent angeregten Eigenschwingungen der Erde. 61. Jahrestagung der Deutschen Geophysikalischen Gesellschaft, Frankfurt am Main, 148.
  20. 2000

    1. Zürn, W., Laske, G., Widmer-Schnidrig, R., & Gilbert, J. F. (2000). Observation of Coriolis coupled modes below 1 mHz. Geophys. J. Int., 143, 113--118.
  21. 1999

    1. Zürn, W., Widmer-Schnidrig, R., & Bourguignon, S. (1999). Efficiency of air pressure corrections in the BFO records of the Balleny Islands earthquake, March 25, 1998. Bull. d’Information Marées Terrestres, 131, 10183--10194.
    2. Widmer-Schnidrig, R. (1999). Free oscillations illuminate the mantle. Nature, 398, 292--293.
https://orcid.org/0000-0001-9698-2739
Zum Seitenanfang