Dieses Bild zeigt Rudolf Widmer-Schnidrig

Rudolf Widmer-Schnidrig

Herr Ph.D.

Akademischer Mitarbeiter
Geowissenschaftliches Gemeinschaftsobservatorium (BFO)

Kontakt

+49 7836 2151

Website
Visitenkarte (VCF)

BFO, Heubach 206
77709 Wolfach
Deutschland

Fachgebiet

My main research interest is in low-frequency seismology: observing the elasto-gravitational free oscillations of the Earth to infer mantle and core structure. Since 2000 I work at the Black Forest Observatory (BFO) where we operate sensors to observe the entire geodynamic spectrum in gravity, strain and tilt. At BFO we also tested seismometers for the InSight mission to Mars and I am now involved in the analysis of these data to study the martian interior. Most recently I have also searched for the signature of compact dark matter objects (CDOs) in terrestrial gravimeter data.

  1. 2022

    1. Widmer-Schnidrig, R. (2022). Observation of acoustic normal modes of the atmosphere after the 2022 Hunga-Tonga eruption. EGU  2022, Vienna, Austria.
  2. 2021

    1. Barkaoui, S., Lognonné, P., Kawamura, T., Stutzmann, É., Seydoux, L., de Hoop, M. V., Balestriero, R., Scholz, J.-R., Sainton, G., Plasman, M., Ceylan, S., Clinton, J., Spiga, A., Widmer-Schnidrig, R., Civilini, F., & Banerdt, W. B. (2021). Anatomy of Continuous Mars SEIS and Pressure Data from Unsupervised Learning. Bulletin of the Seismological Society of America, 111(6), 2964--2981. https://doi.org/10.1785/0120210095
    2. Forbriger, T., Zürn, W., & Widmer-Schnidrig, R. (2021). Challenges and Perspectives for Lowering the Vertical-Component Long-Period Detection Level. Seismological Research Letters, 92(4), 2498--2512. https://doi.org/10.1785/0220200399
    3. Murdoch, N., Spiga, A., Lorenz, R., Garcia, R. F., Perrin, C., Widmer-Schnidrig, R., Rodriguez, S., Compaire, N., Warner, N. H., Mimoun, D., Banfield, D., Lognonné, P., & Banerdt, W. B. (2021). Constraining Martian Regolith and Vortex Parameters From Combined Seismic and Meteorological Measurements. Journal of Geophysical Research: Planets, 126(2), Article 2. https://doi.org/10.1029/2020je006410
    4. Zürn, W., Forbriger, T., Widmer-Schnidrig, R., Duffner, P., & Ringler, A. T. (2021). Modeling tilt noise caused by atmospheric processes at long periods for several horizontal seismometers at BFO - a reprise. Geophysical Journal International, 228(2), 927--943. https://doi.org/10.1093/gji/ggab336
    5. Kim, D., Davis, P., Lekić, V., Maguire, R., Compaire, N., Schimmel, M., Stutzmann, E., Irving, J. C. E., Lognonné, P., Scholz, J.-R., Clinton, J., Zenhäusern, G., Dahmen, N., Deng, S., Levander, A., Panning, M. P., Garcia, R. F., Giardini, D., Hurst, K., … Banerdt, W. B. (2021). Potential Pitfalls in the Analysis and Structural Interpretation of Seismic Data from the Mars InSight Mission. Bulletin of the Seismological Society of America, 111(6), 2982--3002. https://doi.org/10.1785/0120210123
    6. Bützler, C., Douch, K., Widmer-Schnidrig, R., & Sneeuw, N. (2021). Prompt Elasto-Gravity Signals Detection with gravity strainmeters or gravity gradiometers? Frontiers of Geodetic Science digital 2021, Hannover.
    7. Bützler, C., Douch, K., Widmer-Schnidrig, R., & Sneeuw, N. (2021). Realistic modeling of gravity strain due to prompt elasto-gravity signals (PEGS) - How simple can the Earth model be? Arbeitskreis Geodäsie/Geophysik, Laacher See.
    8. Khan, A., Ceylan, S., van Driel, M., Giardini, D., Lognonné, P., Samuel, H., Schmerr, N. C., Stähler, S. C., Duran, A. C., Huang, Q., Kim, D., Broquet, A., Charalambous, C., Clinton, J. F., Davis, P. M., Drilleau, M., Karakostas, F., Lekic, V., McLennan, S. M., … Banerdt, W. B. (2021). Upper mantle structure of Mars from InSight seismic data. Science, 373(6553), 434--438. https://doi.org/10.1126/science.abf2966
  3. 2020

    1. Lognonné, P., Banerdt, W. B., SEISteam, & Widmer-Schnidrig, R. (2020). Constraints on the shallow elastic and anelastic structure of Mars from InSight seismic data. Nature Geoscience, 13, 213–220. https://doi.org/10.1038/s41561-020-0536-y
    2. Scholz, J.-R., Widmer-Schnidrig, R., Davis, P., Lognonné, P., Pinot, B., Garcia, R. F., Hurst, K., Pou, L., Nimmo, F., Barkaoui, S., de Raucourt, S., Knapmeyer-Endrun, B., Knapmeyer, M., Orhand-Mainsant, G., Compaire, N., Cuvier, A., Beucler, É., Bonnin, M., Joshi, R., … Banerdt, W. B. (2020). Detection, Analysis, and Removal of Glitches From InSight\textquotesingles Seismic Data From Mars. Earth and Space Science, 7(11), Article 11. https://doi.org/10.1029/2020ea001317
    3. Stähler, S. C., Widmer-Schnidrig, R., Scholz, J.-R., van Driel, M., Mittelholz, A., Hurst, K., Johnson, C. L., Lemmon, M. T., Lorenz, R. D., Lognonné, P., Müller, N. T., Pou, L., Spiga, A., Banfield, D., Ceylan, S., Charalambous, C., Clinton, J., Giardini, D., Nimmo, F., … Banerdt, W. B. (2020). Geophysical observations of Phobos transits by InSight. Geophysical Research Letters, 47(19), e2020GL089099. https://doi.org/10.1029/2020GL089099
    4. Horowitz, C. J., & Widmer-Schnidrig, R. (2020). Gravimeter Search for Compact Dark Matter Objects Moving in the Earth. Phys. Rev. Lett., 124(5), 051102. https://doi.org/10.1103/PhysRevLett.124.051102
    5. Garcia, R. F., Kenda, B., Kawamura, T., Spiga, A., Murdoch, N., Lognonné, P. H., Widmer-Schnidrig, R., Compaire, N., Orhand-Mainsant, G., Banfield, D., & Banerdt, W. B. (2020). Pressure Effects on the SEIS-InSight Instrument, Improvement of Seismic Records, and Characterization of Long Period Atmospheric Waves From Ground Displacements. Journal of Geophysical Research: Planets, 125(7), e2019JE006278. https://doi.org/10.1029/2019JE006278
    6. Bützler, C., Douch, K., & Widmer-Schnidrig, R. (2020). Schweregradienten von PEG (Prompt-Elasto-Gravity) Signalen. Arbeitskreis Geodäsie/Geophysik, Kloster Nimbschen.
    7. Kenda, B., Drilleau, M., Garcia, R. F., Kawamura, T., Murdoch, N., Compaire, N., Lognonné, P., Spiga, A., Widmer-Schnidrig, R., Delage, P., Ansan, V., Vrettos, C., Rodriguez, S., Banerdt, W. B., Banfield, D., Antonangeli, D., Christensen, U., Mimoun, D., Mocquet, A., & Spohn, T. (2020). Subsurface Structure at the InSight Landing Site From Compliance Measurements by Seismic and Meteorological Experiments. Journal of Geophysical Research: Planets, 125(6), e2020JE006387. https://doi.org/10.1029/2020JE006387
    8. Banfield, D., Spiga, A., SEISteam, & Widmer-Schnidrig, R. (2020). The atmosphere of Mars as observed by InSight. Nature Geoscience, 13, 190–198. https://doi.org/10.1038/s41561-020-0534-0
  4. 2019

    1. Kedar, S., Banerdt, W. B., Brinkmann, N., Charalambous, C., Delage, P., Fayon, L., Gaudin, E., Giardini, D., Grott, M., Horleston, A., Hudson, T. L., Hurst, K., Kiely, A., Kerjean, L., Knapmeyer-Endrun, B., Krasner, S., Krause, C., Lognonne, P., McLean, J., … Yana, C. (2019). Characterization of the InSight Landing Site near Surface Properties using the Heat Flow and Physical Properties Probe (HP3) mole as a Seismic Source. AGU Fall Meeting. https://elib.dlr.de/132739/
    2. Mittelholz, A., Johnson, C. L., Langlais, B., Lognonne, A. P., Pike, W. T., Joy, S. P., Russel, C. T., Yu, Y., Ansan, V., Grott, M., Krause, C., Spohn, T., Widmer-Schnidrig, R., Smrekar, S., & Banerdt, B. (2019). First Results from the InSight Fluxgate Magnetometer: Constraints on Mars’ Crustal Magnetic Field at the InSight Landing Site. EGU General Assembly. https://elib.dlr.de/127249/
    3. Ringler, A. T., Steim, J., Wilson, D. C., Widmer-Schnidrig, R., & Anthony, R. E. (2019). Improvements in seismic resolution and current limitations in the Global Seismographic Network. Geophysical Journal International, 220(1), 508–521. https://doi.org/10.1093/gji/ggz473
    4. Lognonné, P., SEISteam, & Widmer-Schnidrig, R. (2019). SEIS: Insight’s Seismic Experiment for Internal Structure of Mars. Space Sci Rev, 215(12), Article 12. https://doi.org/10.1007/s11214-018-0574-6
    5. Widmer-Schnidrig, R., Wielandt, E., Verdier, N., Lognonné, P., Pike, T., & SEISteam. (2019). Time Domain Modeling of InSight/SEIS VBB and SP Frequency Calibrations on Earth and on Mars. https://www.gis.uni-stuttgart.de/forschung/doc/Widmer_2019.pdf
  5. 2018

    1. Spiga, A., Banfield, D., Teanby, N. A., Forget, F., Lucas, A., Kenda, B., Rodriguez Manfredi, J. A., Widmer-Schnidrig, R., Murdoch, N., Lemmon, M. T., Garcia, R. F., Martire, L., Karatekin, Ö., Le Maistre, S., Van Hove, B., Dehant, V., Lognonné, P., Mueller, N., Lorenz, R., … Banerdt, W. B. (2018). Atmospheric Science with InSight. Space Science Reviews, 214, 109. https://doi.org/10.1007/s11214-018-0543-0
  6. 2017

    1. Brunke, H.-P., Widmer-Schnidrig, R., & Korte, M. (2017). Merging fluxgate and induction coil data to produce low-noise geomagnetic observatory data meeting the INTERMAGNET definitive 1 s data standard. Geosci. Instrum. Method. Data Syst., 1--7. https://doi.org/10.5194/gi-6-1-2017
  7. 2014

    1. Zhang, Y., Widmer-Schnidrig, R., & Sneeuw, N. (2014). Coherency analysis between superconducting gravimeters at BFO and Strasbourg.
    2. Widmer-Schnidrig, R., & Schwaderer, U. (2014). Sensitivity of Modern Broad-Band Seismometers at High Frequencies - Evaluation of a Huddle Test at BFO. Annual Meeting of the German Geophysical Society, DGG, Poser presentation, 1.
  8. 2013

    1. Zhang, Y., Widmer-Schnidrig, R., & Sneeuw, N. (2013). Can SGs be used to validate GRACE Gravity Field Models? -- Coherency Analysis between SGs at BFO and Strasbourg.
  9. 2012

    1. Häfner, R., & Widmer-Schnidrig, R. (2012). Signature of 3-D density structure in spectra of the spheroidal free oscillation 0S2. Geophysical Journal International, 192(1), 285–294. https://doi.org/10.1093/gji/ggs013
  10. 2010

    1. Kurrle, D., & Widmer-Schnidrig, R. (2010). Excitation of long-period Rayleigh waves by large storms over the North Atlantic ocean. Geophys. J. Int., 183, 330--338.
    2. Forbriger, Th., Widmer-Schnidrig, R., Wielandt, E., Hayman, M., & Ackerley, N. (2010). Magnetic field background variations can limit the resolution of seismic broad-band sensors. Geophys. J. Int., 183, 303--312.
    3. Widmer-Schnidrig, R., Duffner, P., Forbriger, Th., & Zürn, W. (2010). The New Dual Sphere Superconducting Gravimeter at the Black Forest Observatory. Annual Meeting of the German Geophysical Society, DGG, Poser presentation, 1.
  11. 2009

    1. Widmer-Schnidrig, R., & Zürn, W. (2009). Perspectives for Ring Laser Gyroscopes in Low-Frequency Seismology. Bull. Seismol. Soc. Am., 99, 1199--1206.
  12. 2008

    1. Kurrle, D., & Widmer-Schnidrig, R. (2008). The horizontal hum of the Earth: A global background of spheroidal and toroidal modes. Geophys. Res. Lett., 35, L06304, doi:10.1029/2007GL033125.
  13. 2007

    1. Laske, G., & Widmer-Schnidrig, R. (2007). Theory & Observations: Normal Modes & Surface Wave Measurements. Treatise on Geophysics, Vol. 1: Seismology and structure of the Earth, B. Romanowicz and A. Dziewonski, Editors, Elsevier, 67--125.
  14. 2006

    1. Widmer-Schnidrig, R. (2006). Evaluation of installation methods for STS-2 seismometers. Seismol. Res. Lett., submitted.
    2. Widmer-Schnidrig, R., & Kurrle, D. (2006). Evaluation of installation methods for STS-2 seismometers. Poster at the annual meeting of the German Geophysical Society , DGG, Bremen.
    3. Kurrle, D., & Widmer-Schnidrig, R. (2006). Spatiotemporal features of the Earth’s background oscillations observed in central Europe. Geophys. Res. Lett., 33, L24304, doi:10.1029/2006GL028429.
  15. 2003

    1. Zumberge, M. A., Berger, J., Hedlin, M. A. H., Husmann, E., Nooner, S., Hilt, R., & Widmer-Schnidrig, R. (2003). An optical infrasound sensor: a new lower limit on the atmospheric pressure noise between 1 Hz and 10 Hz. J.  Acoust. Soc. Am., 113, 2474--2479.
    2. Zürn, W., & Widmer-Schnidrig, R. (2003). Vertical acceleration noise at seismic frequencies. Cahiers du centre Européen de Géodynamique et de Séismologie, 22, 123--128.
    3. Widmer-Schnidrig, R. (2003). What can Superconducting Gravimeters contribute to normal mode seismology? Bull. Seismol. Soc. Am., 93, 1370--1380.
  16. 2002

    1. Zürn, W., Bayer, B., & Widmer-Schnidrig, R. (2002). A 3.7 mHz gravity signal on June 10, 1991. Bull. d’Information Marées Terrestres, 135, 10717--10724.
    2. Widmer-Schnidrig, R. (2002). Application of regionalized multiplet stripping to retrieval of aspherical structure constraints. Geophys. J. Int., 148, 201--213.
    3. Zürn, W., & Widmer-Schnidrig, R. (2002). Globale Eigenschwingungen der Erde. Physik Journal der Deutschen Physikalische Gesellschaft, 1, 49--55.
    4. Wielandt, E., & Widmer-Schnidrig, R. (2002). Seismic sensing and data acquisition in the GRSN. Ten Years of the German Regional Seismic Network (GRSN),                    Wiley-Vch publisher, Edited by Michael Korn.                    http://www.geophys.uni-stuttgart.de/$\sim$widmer/wws.pdf, 73--83.
    5. Widmer-Schnidrig, R. (2002). What can Superconducting Gravimeters contribute to normal mode seismology? Bull. d’Information Marées Terrestres, 135, 10701--10711.
  17. 2001

    1. Widmer-Schnidrig, R. (2001). Untersuchungen zur Anregung der permanent angeregten Eigenschwingungen der Erde. 61. Jahrestagung der Deutschen Geophysikalischen Gesellschaft, Frankfurt am Main, 148.
  18. 2000

    1. Zürn, W., Laske, G., Widmer-Schnidrig, R., & Gilbert, J. F. (2000). Observation of Coriolis coupled modes below 1 mHz. Geophys. J. Int., 143, 113--118.
  19. 1999

    1. Zürn, W., Widmer-Schnidrig, R., & Bourguignon, S. (1999). Efficiency of air pressure corrections in the BFO records of the Balleny Islands earthquake, March 25, 1998. Bull. d’Information Marées Terrestres, 131, 10183--10194.
    2. Widmer-Schnidrig, R. (1999). Free oscillations illuminate the mantle. Nature, 398, 292--293.
https://orcid.org/0000-0001-9698-2739
Zum Seitenanfang