A novel spatial filter to reduce north–south striping noise in GRACE spherical harmonic coefficients

29. Juli 2022 /

[Bild: Springer]

Prevalent north–south striping (NSS) noise in the spherical harmonic coefficient products of the satellite missions gravity recovery and climate experiment greatly impedes the interpretation of signals. The overwhelming NSS noise always leads to excessive smoothing of the data, allowing a large room for improvement in the spatial resolution if this particular NSS noise can be mitigated beforehand. Here, we put forward a new spatial filter that can effectively remove NSS noise while remaining orthogonal to physical signals. This new approach overcomes the limitations of the previous method proposed by Swenson and Wahr (2006), where signal distortion was large and high-order coefficients were uncorrectable. The filter is based on autocorrelation in the longitude direction and cross-correlation in the latitude direction. The NSS-type noise identified by our method is mainly located in coefficients of spherical harmonic order larger than about 20 and degree beyond 30, spatially between latitudes ± 60°. After removing the dominating NSS noise with our method, a weaker filter than before is added to handle the residual noise. Thereby, the spatial resolution can be increased and the amplitude damping can be reduced. Our method can coincidentally reduce outliers in time series without significant trend bias, which underpins its effectiveness and reliability.

Journal of Geodesy (2022) 96:23

Zum Seitenanfang