Herr Dr.

Hassan Hashemi Farahani

Akademischer Mitarbeiter
Geodätisches Institut

Kontakt

+49 711 685-84654
+49 711 685-83285

Visitenkarte (VCF)

Geschwister-Scholl-Str. 24/D
70174 Stuttgart
Deutschland
Raum: 5.345

  1. 2019

    1. Camici, S., Brocca, L., Massari, C, Giuliani, G., Sneeuw, N., Hashemi Farahani, H., … Benveniste, J. (2019). A satellite-based approach for total runoff estimation: stream project. AGU Fall Meeting 2019, San Francisco, USA, 9 –- 13 December 2019.
    2. Camici, S., Brocca, L., Massari, C., Giuliani, G., Sneeuw, N., Hashemi Farahani, H., & Benveniste, J. (2019). Total runoff estimation through the exploitation of multiple satellite data: STREAM project. Satellite inspired hydrology in an uncertain future: an H SAF and HEPEX workshop, Reading, Great Britain, 25--28 November 2019.
    3. Hashemi Farahani, H., & Sneeuw, N. (2019). Total runoff estimation from satellite data: STREAM project. Frontiers of Geodetic Science 2019, Stuttgart, Germany, 17--19 September 2019.
    4. Mattes, D., Hashemi Farahani, H., & Sneeuw, N. (2019). Densifying radar altimetry-derived water level time series along rivers by least squares collocation. Frontiers of Geodetic Science 2019, Stuttgart, Germany, 17--19 September 2019.
    5. Saemian, P., Hashemi Farahani, H., & Sneeuw, N. (2019). A comprehensive assessment of GRACE decorrelating filters for hydrological applications. EGU, Wien, 7--12 April 2019.
  2. 2018

    1. Klees, R., Slobbe, D., & Farahani, H. (2018). How to deal with the high condition number of the noise covariance matrix of gravity field functionals synthesised from a satellite-only global gravity field model? J Geod. https://doi.org/10.1007/s00190-018-1136-0
    2. Ran, J., Ditmar, P., Klees, R., & Farahani, H. (2018a). A methodology for least-squares local quasi-geoid modelling using a noisy satellite-only gravity field model. J Geod, 92, 431–442. https://doi.org/10.1007/s00190-017-1076-0
    3. Ran, J., Ditmar, P., Klees, R., & Farahani, H. (2018b). Statistically optimal estimation of Greenland Ice Sheet mass variations from GRACE monthly solutions using an improved mascon approach. J Geod, 92, 299–319. https://doi.org/10.1007/s00190-017-1063-5
    4. Slobbe, D., Sumihar, J., Frederikse, T., Verlaan, M., Klees, R., Zijl, F., … Broekman, R. (2018). A Kalman filter approach to realize the lowest astronomical tide surface. Mar Geod, 41, 44–67. https://doi.org/10.1080/01490419.2017.1391900
    5. Slobbe, D., Klees, R., Verlaan, M., Zijl, F., Alberts, B., & Farahani, H. (2018). Height system connection between island and mainland using a hydrodynamic model. J Geod. https://doi.org/10.1007/s00190-018-1133-3
    6. Xia, Z., Farahani, H., Sneeuw, N., & Tourian, M. (2018). Assessment of radar altimetry river water level data densification methods. Geodätische Woche, Frankfurt a.M., Germany.
    7. Yan, L., Farahani, H., & Sneeuw, N. (2018). Water Level Analysis in Tibet using CryoSat-2. Retrieved from https://www.gis.uni-stuttgart.de/forschung/doc/YanL_2018.pdf
  3. 2013

    1. Baur, O., Bock, H., Ditmar, P., Hashemi Farahani, H., Jäggi, A., Mayer-Gürr, T., … Zehentner, N. (2013). Comparison of GOCE-GPS gravity fields derived by different approaches. EGU General Assembly, Vienna, Austria. EGU General Assembly, Vienna, Austria.
Zum Seitenanfang