Herr em. Prof. Dr.-Ing. habil. Dr. techn. h. c. Dr.-Ing. E. h.

Erik Grafarend

Emeritus
GIS

Kontakt

+49 711 685-84076
+49 711 685-83285

Geschwister-Scholl-Str. 24D
70174 Stuttgart
Deutschland
Raum: 5.348

  1. 2018

    1. Grafarend, E. (2018a). Geodesy: The Challenge of the Third Millenium.
    2. Grafarend, E. (2018b). The Global World of A. Dermanis and an attempt to use System Dynamics for the analysis of Polar-Motion (PDM) and Length of Day Variations (LOD). Quod Erat Demonstrandum - In Quest of the Ultimate Geodetic Insight, Special Issue for Professor Emeritus Athanasios Dermanis, 1--36.
    3. Sjöberg, L., Grafarend, E., & Joud, M. (2018). Zero gravity curve and surface.
  2. 2017

    1. Varga, Péter, & Grafarend, E. (2017). Influence of Tidal Forces on the Triggering of Seismic Events. Pure and Applied Geophysics, 175(5), 1649--1657. https://doi.org/10.1007/s00024-017-1563-5
    2. Varga, Peter, Grafarend, E., & Engels, J. (2017). Relation of Different Type Love–Shida Numbers Determined with the Use of Time-Varying Incremental Gravitational Potential. Pure and Applied Geophysics, 175(5), 1643--1648. https://doi.org/10.1007/s00024-017-1532-z
    3. Sjöberg, L. E., Grafarend, E. W., & Joud, M. S. S. (2017). The zero gravity curve and surface and radii for geostationary and geosynchronous satellite orbits. Journal of Geodetic Science, 7(1), 43--50. https://doi.org/10.1515/jogs-2017-0005
  3. 2016

    1. Grafarend, E W. (2016a). The Geodetic Anholonomity Problem.
    2. Grafarend, E W. (2016b). Wissenschaftlicher Diskurs zu Friedrich Robert Helmert.
  4. 2015

    1. Grafarend, Erik W, & You, R.-J. (2015). Fourth order Taylor-Kármán structured covariance tensor for gravity gradient predictions by means of the Hankel transformation (No. 2). 6(2), 319--342. https://doi.org/10.1007/s13137-015-0071-y
    2. Grafarend, E W, Klapp, M., & Martinec, Z. (2015). Spacetime modeling of the Earth’s gravity field by ellipsoidal harmonics. In Willi Freeden, Z. M. Nashed, & T. Sonar (Eds.), Handbook of Geomathematics (2nd edition, pp. 381--456). Springer Verlag, Berlin-Heidelberg.
    3. Grafarend, Erik W. (2015a). The reference figure of the rotating Earth in geometry and gravity space and an attempt to generalize the celebrated Runge-Walsh approximation theorem for irregular surfaces (No. 2). 6(2), 101--140. https://doi.org/10.1007/s13137-014-0068-y
    4. Grafarend, Erik W. (2015b). Theory of Map Projections: From Riemann Manifolds to Riemann Manifolds. In Willi Freeden, Z. M. Nashed, & T. Sonar (Eds.), Handbook of Geomathematics (pp. 1--69). Springer Verlag, Berlin-Heidelberg 2015. https://doi.org/10.1007/978-3-642-27793-1_53-1
  5. 2014

    1. Varga, P, Krumm, F. W., Grafarend, E. W., Sneeuw, N., Schreider, A. A., & Horváth, F. (2014). Evolution of the oceanic and continental crust during Neo-Proterozoic and Phanerozoic. 25, 255--263. https://doi.org/10.1007/s12210-014-0298-9
    2. Grafarend, E W, You, R. J., & Syffus, R. (2014). Map Projections -- Cartographic Information Systems (2nd edition, p. 520). Springer-Verlag Berlin Heidelberg, New York. https://doi.org/10.1007/978-3-642-36494-5
  6. 2013

    1. Grafarend, E., & Awange, J. (2013). Applications of linear and nonlinear models: Fixed effects, random effects, and total least squares (p. 1016). Springer. https://doi.org/10.1007/978-3-642-22241-2
    2. Varga, P, Krumm, F. W., Grafarend, E. W., Sneeuw, N., Horvath, F., & Schreider, A. A. (2013). Axial rotation and paleogeodynamics during Phaneorozoic.
    3. Grafarend, E W. (2013). Das duale wisschenschaftliche Paar Moritz-Molodenskij: Geodätische Höhen und Höhensysteme. 80 Jahre Helmut Moritz.
    4. Grafarend, E. (2013a). Space Gradiometry on the International Reference Ellipsoid. http://spacecampus.ipgp.fr/index.php/en/agenda/250-space-gradiometry-on-the-reference-ellipsoid.html
    5. Grafarend, E. (2013b). The Geometry of Kepler orbit/ perturbed Kepler orbit in Maupertuis Manifolds by minimizing the scalar of the Riemann Curvature Tensor, aspects of the Kustaanheimo-Stiefel elements in Satellite Geodesy. http://meetingorganizer.copernicus.org/EGU2013/EGU2013-14104.pdf
  7. 2012

    1. Reubelt, T., Sneeuw, N., & Grafarend, E. (2012). Comparison of kinematic orbit analysis methods for gravity field recovery. In N. Sneeuw, P. Novák, M. Crespi, & F. Sansò (Eds.), Proceedings VII Hotine-Marussi Symposium on Mathematical Geodesy, Rome, Italy (Vol. 137, pp. 259--265). Springer Berlin Heidelberg. https://doi.org/10.1007/978-3-642-22078-4_39
    2. Varga, P, Krumm, F., Doglioni, C., Grafarend, E., Panza, G. F., Riguzzi, F., Schreider, A. A., & Sneeuw, N. (2012). Did a change in tectonic regime occur between the Phanerozoic and earlier Epochs? (No. 2). 23(2), 139--148. https://doi.org/10.1007/s12210-012-0172-6
    3. Moghtased-Azar, K., Tavakoli, F., Nankoli, H. R., & Grafarend, E. (2012). Multivariate statistical analysis of deformation tensors: independent vs. correlated tensor observations (No. 4). 56(4), 977--992. https://doi.org/10.1007/s11200-011-9024-6
    4. Grafarend, E. (2012b). The MARUSSI Legacy: The Anholonomity Problem, Geodetic examples. In N. Sneeuw, P. Novák, M. Crespi, & F. Sansò (Eds.), Proceedings VII Hotine-Marussi Symposium on Mathematical Geodesy, Rome, Italy (Vol. 137, pp. 5--15). Springer Berlin Heidelberg. https://doi.org/10.1007/978-3-642-22078-4_2
    5. Grafarend, E. (2012a). The transition from three-dimensional embedding to two-dimensional Euler-Lagrange deformation tensor of the second kind: variation of curvature measures (No. 8). 169(8), 1457--1462. https://doi.org/10.1007/s00024-011-0419-7
    6. Grafarend, E. (2012c). Von A. Einstein über H. Weyl und E. Cartan zur Quanten-Gravitation. Sitzungsberichte Der Leibniz-Sozietät, 113, 13–-21. http://leibnizsozietaet.de/wp-content/uploads/2012/12/03-Grafarend4.pdf
  8. 2011

    1. Grafarend, E., & Kühnel, W. (2011). A minimal atlas for the rotation group SO(3) (No. 1). 2(1), 113--122. https://doi.org/10.1007/s13137-011-0018-x
    2. Moghtased-Azar, K., Grafarend, E., Tavakoli, F., & Nankali, H. Z. (2011). Estimated Principal Components of Deformation Tensors Derived from GPS Measurements under Assumption of Both Independent and Correlated Tensor Observations (Case Study: Zagros Mountains, Iran).
    3. Grafarend, E. (2011). Space gradiometry: tensor-valued ellipsoidal harmonics, the datum problem and application of the Lusternik-Schnirelmann category to construct a minimum atlas (No. 2). 1(2), 145--166. https://doi.org/10.1007/s13137-011-0013-2
  9. 2010

    1. Ardalan, A., Karimi, R., & Grafarend, E. (2010). A New Reference Equipotential Surface, and Reference Ellipsoid for the Planet Mars (No. 1). 106(1), 1--13. https://doi.org/10.1007/s11038-009-9342-7
    2. Awange, J., Grafarend, E., Paláncz, B., & Zaletnyik, P. (2010). Algebraic Geodesy and Geoinformatics. In Algebraic Geodesy and Geoinformatics (2nd ed., p. 377). Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-12124-1
    3. Moghtased-Azar, K., Grafarend, E., Tavakoli, F., & Nankali, H. Z. (2010). Crustal deformation studies of Zagros Mountains. http://meetingorganizer.copernicus.org/EGU2010/EGU2010-973-2.pdf
    4. Grafarend, E. (2010). Spacetime gradiometry: tensor-valued ellipsoidal harmonics, the datum problem and an application of the Lusternik-Schnirelmann Category to construct a minimum atlas. In M. E. Contadakis (Ed.), The apple of knowledge. In honor of Prof. em. D. N. Arabelos (pp. 121--145). ZHTH, Thessalonoki, Greece.
    5. Grafarend, E., Martinec, Z., & Klapp, M. (2010). Spacetime modelling of the Earth’s gravity field by ellipsoidal harmonics. In W. Freeden, M. Z. Nashed, & T. Sonar (Eds.), Handbook of Geomathematics: 1st ed., part 3 (pp. 159--252). Springer Heidelberg. https://doi.org/10.1007/978-3-642-01546-5_7
    6. Richter, B., Engels, J., & Grafarend, E. (2010). Transformation of amplitudes and frequencies of precession and nutation of the Earth’s rotation vector to amplitudes and frequencies of diurnal pole motion (No. 1). 84(1), 1--18. https://doi.org/10.1007/s00190-009-0339-9
  10. 2009

    1. Cai, J., Grafarend, E., & Hu, C. (2009a). Bootstrap method and its application to the hypothesis testing in GPS mixed integer linear model. http://igsac-cnes.cls.fr/documents/egu09/Cai_EGU_Lecture_21_04_2009.pdf
    2. Reubelt, T., Sneeuw, N., & Grafarend, E. (2009). Comparison of kinematic orbit analysis methods for gravity field recovery.
    3. Grafarend, E. (2009a). Geodetic reference frames: The kinematical Euler equations: a review of their singularities or the benefit of the Lusternik-Schnirelmann Category CAT(SO(3))=4. In A Volume dedicated to Milan Bursa on the occasion of his 80th birthday, Prague, Czech Republic (pp. 85--99).
    4. Grafarend, E. (2009b). Intrinsic deformation analysis, synthesis of Earth deformation measures: surface Euler-Lagrange deformation tensors of first and second kind.
    5. Xu, C., Ding, K., Cai, J., & Grafarend, E. (2009). Methods of determining weight scaling factors for geodetic-geophysical joint inversion (No. 1). 47(1), 39--46. https://doi.org/10.1016/j.jog.2008.06.005
    6. Grafarend, E., & Baur, O. (2009). Orbital rotations of a satellite: Case study GOCE.
    7. Cai, J., Grafarend, E., & Hu, C. (2009b). Reconciling different criteria for solving the mixed integer linear model with GNSS carrier phase observations.
    8. Grafarend, E., & Martinec, Z. (2009). Space gradiometry, characteristic boundary value problems and regularized downward continuation.
    9. Moghtased-Azar, K., & Grafarend, E. (2009). Surface deformation analysis of dense GPS networks based on intrinsic geometry: deterministic and stochastic aspects (No. 5). 83(5), 431--454. https://doi.org/10.1007/s00190-008-0252-7
    10. Cai, J., & Grafarend, E. (2009). Systematical analysis of the transformation between Gauss-Krueger-Coordinate/DHDN and UTM-Coordinate/ETRS89 in Baden-Wuerttemberg with different estimation methods. In H. Drewes (Ed.), Geodetic Reference Frames, Proceedings of the IAG Symposium, Munich, Germany (Vol. 134, pp. 205--211). Springer Berlin Heidelberg. https://doi.org/10.1007/978-3-642-00860-3_32
    11. Grafarend, E., Engels, J., & Varga, P. (2009). The gravitational field of a deformable body like the Earth or other celestial bodies.
    12. Grafarend, E. (2009c). The Marussi Legacy: the anholonomity problem, geodetic examples.
    13. Cai, J., Grafarend, E., & Hu, C. (2009c). The total optimal criterion in solving the mixed integer linear model with GNSS carrier phase observations (No. 3). 13(3), 221--230. https://doi.org/10.1007/s10291-008-0115-y
  11. 2008

    1. Cai, J., Hu, C., & Grafarend, E. (2008a). Directional statistics and statistical property of the GNSS carrier phase observations.
    2. Paláncz, B., Zaletnyik, P., Awange, J. L., & Grafarend, E. (2008). Dixon resultant’s solution of systems of geodetic polynomial equations (No. 8). 82(8), 505--511. https://doi.org/10.1007/s00190-007-0199-0
    3. Cai, J., Wang, J., Wu, J., Hu, C., Grafarend, E., & Chen, J. (2008). Horizontal deformation rate analysis based on multi-epoch GPS measurements in Shanghai (No. 4). 134(4), 132--137. https://doi.org/10.1061/(asce)0733-9453(2008)134:4(132)
    4. Grafarend, E. (2008). Kinematische und dynamische Gleichungen zur Erdrotation: Messexperimente, Präzession/Nutation versus Tageslängenschwankung (LOD)/Polbewegung (PM). Sitzungsberichte Der Leibniz-Sozietät, 94, 67--82. http://leibnizsozietaet.de/wp-content/uploads/2012/11/09-Grafarend.pdf
    5. Baur, O., Sneeuw, N., & Grafarend, E. (2008). Methodology and use of tensor invariants for satellite gravity recovery (No. 4). 82(4), 279--293. https://doi.org/10.1007/s00190-007-0178-5
    6. Vanícek, P., Grafarend, E., & Berber, M. (2008). Short Note: Strain Invariants (No. 4; Vol. 82, Issue 4, pp. 263--268). https://doi.org/10.1007/s00190-007-0175-8
    7. Cai, J., Hu, C., & Grafarend, E. (2008b). Statistical property of the GNSS carrier phase observations and the related hypothesis testing with the bootstrap methods.
    8. Cai, J., Wu, J., Lin, Y., Wang, J., & Grafarend, E. (2008). Systematic analysis of the present-day crustal deformation in Shanghai based on the multi-epoch GPS measurements.
    9. Cai, J., Koivula, H., Grafarend, E., & Poutanen, M. (2008). The statistical analysis of the eigenspace components of the strain rate tensor derived from FinnRef GPS measurements (1997--2004) in Fennoscandia. In P. Xu, J. Liu, & A. Dermanis (Eds.), VI Hotine-Marussi Symposium on Theoretical and Computational Geodesy, Wuhan, PR China (Vol. 132, pp. 79--87). Springer Verlag. https://doi.org/10.1007/978-3-540-74584-6_13
    10. Cai, J., Grafarend, E., Hu, C., & Wang, J. (2008). The uniform Tykhonov-Phillips regularization (?-weighted S-homBLE) and its application in GPS rapid static positioning. In P. Xu, J. Liu, & A. Dermanis (Eds.), VI Hotine-Marussi Symposium on Theoretical and Computational Geodesy, Wuhan, PR China (Vol. 132, pp. 221--229). Springer Verlag. https://doi.org/10.1007/978-3-540-74584-6_35
  12. 2007

    1. Paláncz, B., Awange, J., & Grafarend, E. (2007). Computer algebra solution of the GPS N-points problem (No. 4). 11(4), 295--299. https://doi.org/10.1007/s10291-007-0066-8
    2. Moghtased-Azar, K., & Grafarend, E. (2007). Deformation analysis based on intrinsic geometry.
    3. Cai, J., & Grafarend, E. (2007a). Statistical analysis of geodetic deformation (strain rate) derived from the space geodetic measurements of BIFROST Project in Fennoscandia (No. 2). 43(2), 214--238. https://doi.org/10.1016/j.jog.2006.09.010
    4. Cai, J., & Grafarend, E. (2007b). Statistical analysis of the eigenspace components of the two-dimensional, symmetric rank-two strain rate tensor derived from the space geodetic measurements (ITRF92-ITRF2000 data sets) in central Mediterranean and Western Europe (No. 2). 168(2), 449--472. https://doi.org/10.1111/j.1365-246X.2006.03153.x
    5. Cai, J., Hu, C., & Grafarend, E. (2007). The Optimal Regularization Method and its Application in GNSS Rapid Static Positioning. Proceedings of the 20th International Technical Meeting of the Satellite Division of The Institute of Navigation (ION GNSS 2007), 299--305.
    6. Cai, J., Grafarend, E., & Hu, C. (2007). The Statistical Property of the GNSS Carrier Phase Observations and its Effects on the Hypothesis Testing of the Related Estimators. Proceedings of the 20th International Technical Meeting of the Satellite Division of The Institute of Navigation (ION GNSS 2007), 331--338.
  13. 2006

    1. Grafarend, E., Finn, G., & Ardalan, A. (2006). Ellipsoidal Vertical Deflections and Ellipsoidal Gravity Disturbance: Case Studies (No. 1). 50(1), 1--57. https://doi.org/10.1007/s11200-006-0001-4
    2. Reubelt, T., Götzelmann, M., & Grafarend, E. (2006). Harmonic Analysis of the Earth’s Gravitational Field from Kinematic CHAMP Orbits based on Numerically Derived Satellite Accelerations. In J. Flury, R. Rummel, C. Reigber, M. Rothacher, G. Boedecker, & U. Schreiber (Eds.), Observation of the Earth System from Space (pp. 27--42). Springer Berlin Heidelberg. https://doi.org/10.1007/3-540-29522-4_3
    3. Baur, O., & Grafarend, E. (2006a). High-Performance GOCE Gravity Field Recovery from Gravity Gradients Tensor Invariants and Kinematic Orbit Information. In J. Flury, R. Rummel, C. Reigber, M. Rothacher, G. Boedecker, & U. Schreiber (Eds.), Observation of the Earth System from Space (pp. 239--253). Springer. https://doi.org/10.1007/3-540-29522-4_17
    4. Grafarend, E. W. (2006). Linear and Nonlinear Models -- Fixed Effects, Random Effects, and Mixed Models. In Linear and Nonlinear Models -- Fixed Effects, Random Effects, and Mixed Models (p. 752). de Gruyter.
    5. Baur, O., & Grafarend, E. (2006b). LSQR Tuning to Succeed in Computing High Resolution Gravity Field Solutions. In P. Alberigo, G. Erbacci, & F. Garofalo (Eds.), Science and Supercomputing in Europa, HPC-Europa Report Book 2005 (pp. 312--315). Monograf s.r.l., Bologna, Italy.
    6. Grafarend, E. W., & Krumm, F. W. (2006). Map Projections -- Cartographic Information Systems. In Map Projections -- Cartographic Information Systems (p. 713). Springer Berlin Heidelberg. https://doi.org/10.1007/978-3-540-36702-4
    7. Novák, P., Austen, G., Sharifi, M. A., & Grafarend, E. (2006). Mapping Earth’s gravitation using GRACE data. In Observation of the Earth System from Space (pp. 149--165). Springer Berlin Heidelberg. https://doi.org/10.1007/3-540-29522-4_11
    8. Novák, P., & Grafarend, E. (2006). The Effect of topographical and atmospheric masses on spaceborne gravimetric and gradiometric data (No. 4). 50(4), 549--582. https://doi.org/10.1007/s11200-006-0035-7
  14. 2005

    1. Grafarend, E., Awange, J., Takemoto, S., & Fukuda, Y. (2005). A combinatorial scatter approach to the overdetermined three-dimensional intersection problem. LXIII, 235--248.
    2. Reubelt, T., Götzelmann, M., & Grafarend, E. (2005). A new CHAMP gravitational field model based on the GIS acceleration approach and two years of kinematic CHAMP data. In J. Flury, R. Rummel, C. Reigber, M. Rothacher, G. Boedecker, & U. Schreiber (Eds.), Observation of the Earth System from Space -- Proceedings of Joint CHAMP/GRACE Science Meeting. Springer Verlag.
    3. Novák, P., & Grafarend, E. (2005). Ellipsoidal representation of the topographical potential and its vertical gradient (No. 1). 78(1), 691--706. https://doi.org/10.1007/s00190-005-0435-4
    4. Bölling, K., & Grafarend, E. (2005). Ellipsoidal Spectral Properties of the Earth’s Gravitational Potential and its First and Second Derivatives (No. 6). 79(6), 300--330. https://doi.org/10.1007/s00190-005-0465-y
    5. Awange, J., & Grafarend, E. (2005). From Space Angles to Point Position using Sylvester Resultant. 112, 265--269. http://gispoint.de/artikelarchiv/avn/2005/avn-ausgabe-072005/2117-from-space-angles-to-point-position-using-sylvester-resultant.html
    6. Austen, G., & Grafarend, E. (2005). Gravitational field recovery from GRACE data of type high-low and low-low SST. Proceedings of Joint CHAMP/GRACE Science Meeting.
    7. Grafarend, E. (2005). Harmonic Maps (No. 10). 78(10), 594--615. https://doi.org/10.1007/s00190-004-0422-1
    8. Baur, O., & Grafarend, E. (2005). Orbital Rotations of a Satellite. Case Study: GOCE (No. 2). 40(2), 87--107.
    9. Awange, J., Fukuda, F., Takemoto, S., & Grafarend, E. (2005). Role of algebra in modern day Geodesy. In F. Sansò (Ed.), A Window on the Future of Geodesy (Vol. 128, pp. 524--529). Springer Berlin Heidelberg. https://doi.org/10.1007/3-540-27432-4_89
    10. Awange, J. L., & Grafarend, E. W. (2005). Solving Algebraic Computational Problems in Geodesy and Geoinformatics. The Answer to Modern Challenges (p. 334). Springer Berlin Heidelberg. https://doi.org/10.1007/b138214
    11. Cai, J., Grafarend, E., & Schaffrin, B. (2005). Statistical inference of the eigenspace components of a two-dimensional, symmetric rank-two random tensor (No. 7). 78(7), 425--436. https://doi.org/10.1007/s00190-004-0405-2
    12. Awange, J., Grafarend, E., Fukuda, F., & Takemoto, S. (2005). The application of commutative algebra to geodesy: two examples (No. 1). 79(1), 93--102. https://doi.org/10.1007/s00190-005-0446-1
  15. 2004

    1. Finn, G., & Grafarend, E. (2004). Ellipsoidal Vertical Deflections: Regional, continental, global maps of the horizontal derivative of the incremental gravity potential. In F. Sansò (Ed.), V. Hotine-Marussi Symposium on Mathematical Geodesy (Vol. 127, pp. 252--259). Springer Berlin Heidelberg. https://doi.org/10.1007/978-3-662-10735-5_32
    2. Awange, J., Fukuda, Y., & Grafarend, E. (2004). Exact solution of the nonlinear 7-parameter datum transformation by Groebner basis (No. 2). 63(2), 117--127.
    3. Ardalan, A., & Grafarend, E. (2004). High-resolution regional geoid computation without applying Stokes’s formula: a case study of the Iranian geoid (No. 1). 78(1), 138--156. https://doi.org/10.1007/s00190-004-0385-2
    4. Varga, P, Engels, J., & Grafarend, E. (2004). Temporal variations of the polar moment of inertia and the second-degree geopotential (No. 3). 78(3), 187--191. https://doi.org/10.1007/s00190-004-0388-z
    5. Cai, J., Grafarend, E., & Schaffrin, B. (2004). The A-optimal regularization parameter in uniform Tykhonov-Phillips regularization — ?-weighted BLE. In F. Sansò (Ed.), V. Hotine-Marussi Symposium on Mathematical Geodesy (Vol. 127, pp. 309–324). Springer Berlin Heidelberg. https://doi.org/10.1007/978-3-662-10735-5_41
    6. Cai, J., & Grafarend, E. (2004). The Analysis of the Eigenspace Components of the Strain Rate Tensor in Central Mediterranean and Western Europe, 1992--2000. 6, 06239.
  16. 2003

    1. Grafarend, E. (2003). A Closed Form Representation of Somigliana-Pizzetti Gravity. In M. Santos (Ed.), Technical Report (No. 218; Issue 218, pp. 71--79).
    2. Awange, J., & Grafarend, E. (2003a). Closed Form Solution of the Overdetermined Nonlinear 7 Parameter Datum Transformation (No. 110). 110, 130--149. https://www.wichmann-verlag.de/images/stories/avn/artikelarchiv/2003/04/44a6676cc9c.pdf
    3. Awange, J., Grafarend, E., & Fukuda, Y. (2003). Closed Form Solution of the Triple Three-Dimensional Intersection Problem (No. 6). 128(6), 395--402. http://geodaesie.info/zfv/heftbeitrag/1435
    4. Grafarend, E., & Martinec, Z. (2003). Comments on “Solution of the Dirichlet and Stokes exterior boundary problems for the Earth’s ellipsoid” by V.V. Brovar, Z.S. Kopeikina, M.V. Pavlova Journal of Geodesy (2001) 74: 767–772 (No. 5). 77(5), 357--360. https://doi.org/10.1007/s00190-002-0301-6
    5. Awange, J., Grafarend, E., Fukuda, Y., & Takemoto, S. (2003a). Direct Polynomial Approach to Nonlinear Distance (Ranging) Problems (No. 5). 55(5), 231--241. https://doi.org/10.1186/BF03351754
    6. Awange, J., & Grafarend, E. (2003b). Explicit Solution of the Overdetermined Three-Dimensional Resection Problem (No. 11). 76(11), 605--616. https://doi.org/10.1007/s00190-002-0287-0
    7. Abolghasem, A., & Grafarend, E. (2003). Finite Element Analysis of Quasi-Static Earthquake Displacement Fields Observed by GPS (No. 9). 77(9), 529--536. https://doi.org/10.1007/s00190-003-0341-6
    8. Grafarend, E. W., Krumm, F. W., & Schwarze, V. S. (2003). Geodesy -- The Challenge of the 3rd Millenium (p. 473). Springer-Verlag Berlin Heidelberg. https://doi.org/10.1007/978-3-662-05296-9
    9. Lou, L., & Grafarend, E. (2003). GPS Integer Ambiguity Resolution by Various Decorrelation Methods (No. 3). 128(3), 203--210. http://geodaesie.info/zfv/heftbeitrag/1409
    10. Awange, J., & Grafarend, E. (2003c). Groebner-Basis Solution of the Three-Dimensional Resection Problem (P4P) (No. 5). 77(5), 327--337. https://doi.org/10.1007/s00190-003-0328-3
    11. Reubelt, T., Austen, G., & Grafarend, E. (2003a). Harmonic Analysis of the Earth’s Gravitational Field by Means of Semi-Continuous Ephemerides of a Low Earth Orbiting GPS-Tracked Satellite. Case Study: CHAMP (No. 5). 77(5), 257--278. https://doi.org/10.1007/s00190-003-0322-9
    12. Grafarend, E., & Voosoghi, B. (2003). Intrinsic Deformation Analysis of the Earth’s Surface Based on Displacement Fields Derived from Space Geodetic Measurements. Case Studies: Present-Day Deformation Patterns of Europe and of the Mediterranean Area (ITRF Data Sets) (No. 5). 77(5), 303--326. https://doi.org/10.1007/s00190-003-0329-2
    13. Awange, J., & Grafarend, E. (2003d). Multipolynomial Resultant Solution of the 3D Resection Problem (P4P). LXII, 79--102.
    14. Grafarend, E., & Awange, J. (2003). Nonlinear analysis of the three-dimensional datum transformation conformal group C7(3) (No. 1--2). 77(1--2), 66--76. https://doi.org/10.1007/s00190-002-0299-9
    15. Awange, J., & Grafarend, E. (2003e). Polynomial Optimization of the 7-Parameter Datum Transformation Problem when Only Three Stations in Both Systems are Given (No. 4). 128(4), 266--270. http://geodaesie.info/zfv/heftbeitrag/1418
    16. Awange, J., Fukuda, Y., Takemoto, S., Ateya, I., & Grafarend, E. (2003). Ranging Algebraically With More Observations Than Unknowns. 55, 387--394. https://doi.org/10.1186/bf03351772
    17. Awange, J., Grafarend, E., Fukuda, Y., & Takemoto, S. (2003b). Resultants approach to the triple three-dimensional intersection problem (No. 4). 49(4), 243--256. https://www.jstage.jst.go.jp/pub/images/icon_tool_pdf_free.png
    18. Reubelt, T., Austen, G., & Grafarend, E. (2003b). Space Gravity Spectroscopy -- Determination of the Earth’s Gravitational Field by Means of Newton Interpolated LEO Ephemeris. Case Studies on Dynamic (CHAMP Rapid Science Orbit) and Kinematic Orbits. 1, 127--135. https://doi.org/10.5194/adgeo-1-127-2003
    19. Marinkovic, P., Grafarend, E., & Reubelt, T. (2003). Space Gravity Spectroscopy: The Benefits of Taylor-Karman Structured Criterion Matrices. 1, 113--120. https://doi.org/10.5194/adgeo-1-113-2003
  17. 2002

    1. Awange, J., & Grafarend, E. (2002a). Algebraic solution of GPS pseudo-ranging equations (No. 4). 5(4), 20--32. https://doi.org/10.1007/PL00012909
    2. Austen, G., Grafarend, E., & Reubelt, T. (2002). Analysis of the Earth’s gravitational field from semi-continuous ephemerides of a low Earth orbiting GPS-tracked satellite of type Champ, Grace or Goce. In J. Ádám & K. P. Schwarz (Eds.), Vistas for Geodesy in the New Millennium (Vol. 125, pp. 309--315). Springer Berlin Heidelberg. https://doi.org/10.1007/978-3-662-04709-5_51
    3. Grafarend, E., & Schwarze, V. S. (2002). Das Global Positioning System. 1, 39--44. http://www.pro-physik.de/details/articlePdf/1108837/issue.html
    4. Krumm, F., & Grafarend, E. (2002). Datum-free Deformation Analysis of ITRF networks (No. 3). 37(3), 75--84.
    5. Hähnle, J., & Grafarend, E. (2002). Erstellung eines digitalen Höhenmodells (DHM) mit Dreiecks-Bézier-Flächen. 127, 193--199. http://geodaesie.info/sites/default/files/privat/zfv_2002_3_Haehnle_Grafarend.pdf
    6. Grafarend, E., & Shan, J. (2002). GPS Solutions: closed forms, critical and special configurations of P4P (No. 3). 5(3), 29--41. https://doi.org/10.1007/PL00012897
    7. Ardalan, A., & Grafarend, E. (2002). High Resolution Regional Geoid Computation. In M. G. Sideris (Ed.), Gravity, Geoid and Geodynamics (Vol. 123, pp. 301--310). Springer Berlin Heidelberg. https://doi.org/10.1007/978-3-662-04827-6_13
    8. Awange, J., & Grafarend, E. (2002b). Linearized Least Squares and nonlinear Gauss-Jacobi combinatorial algorithm applied to the 7-parameter datum transformation C7(3) problem. 127, 109--116. http://geodaesie.info/sites/default/files/privat/zfv_2002_2_Awange_Grafarend.pdf
    9. Ardalan, A., Grafarend, E., & Ihde, J. (2002). Molodensky potential telluroid based on a minimum-distance map. Case study: the quasi-geoid of East Germany in the World Geodetic Datum 2000 (No. 3). 76(3), 127--138. https://doi.org/10.1007/s00190-001-0238-1
    10. Ardalan, A., Grafarend, E., & Kakkuri, J. (2002). National height datum, the Gauss-Listing geoid level value w0 and its time variation (Baltic Sea Level Project: epochs 1990.8, 1993.8, 1997.4) (No. 1). 76(1), 1--28. https://doi.org/10.1007/s001900100211
    11. Awange, J., & Grafarend, E. (2002c). Nonlinear adjustment of GPS observations of type pseudo-ranges (No. 4). 5(4), 80--93. https://doi.org/10.1007/PL00012914
    12. Schäfer, C, & Grafarend, E. (2002). On the determination of gravitational information from GPS-tracked satellite missions (No. 2). 37(2), 31--49.
    13. Grafarend, E. (2002a). Sensitive control of high-speed-railway tracks, Part I: Local representation of the clothoid. 109, 61--70. http://gispoint.de/artikelarchiv/1990-sensitive-control-of-high-speed-railway-tracks.html
    14. Grafarend, E. (2002b). Sensitive control of high-speed-railway tracks, Part II: Minimal distance mapping of a point close to the clothoid. 109, 85--94. http://gispoint.de/artikelarchiv/avn/2002/avn-ausgabe-032002/1985-sensitive-control-of-high-speed-railway-tracks.html
    15. Martinec, Z., & Grafarend, E. (2002). Separability conditions for the vector Helmholtz equation. 61, 53--61.
    16. Awange, J., & Grafarend, E. (2002d). Sylvester resultant solution of the planar ranging problem (No. 4). 109(4), 143--147. https://www.wichmann-verlag.de/images/stories/avn/artikelarchiv/2002/04/40179bdc42a.pdf
    17. Grafarend, E W, & Ardalan, A. A. (2002). Time evolution of a World Geodetic Datum. In J. Ádám & K. P. Schwarz (Eds.), Vistas for Geodesy in the New Millennium (Vol. 125, pp. 114--123). Springer Berlin Heidelberg. https://doi.org/10.1007/978-3-662-04709-5_20
  18. 2001

    1. Bölling, K., Hagedoorn, J. M., Wolf, D., & Grafarend, E. (2001). Berechnung eislastinduzierter Vertikalbewegungen und Geoidänderungen in Südostalaska mit Hilfe viskoelastischer Erdmodelle. In Report STR 01/08.
    2. Grafarend, E., & Ardalan, A. (2001a). Ellipsoidal geoidal undulations (ellipsoidal Bruns formula): case studies (No. 9). 75(9), 544--552. https://doi.org/10.1007/s001900100212
    3. Grafarend, E., & Ardalan, A. (2001b). Somigliana-Pizzetti gravity: the international gravity formula accurate to the sub-nanoGal level (No. 7). 75(7), 424--437. https://doi.org/10.1007/PL00004005
    4. Grafarend, E. (2001). The spherical horizontal and spherical vertical boundary value problem -- vertical deflections and geoidal undulations -- the completed Meissl diagram (No. 7). 75(7), 363--390. https://doi.org/10.1007/s001900100186
    5. Grafarend, E., & Hanke, S. (2001). The terrain correction in a moving tangent space (No. 3). 45(3), 211--234. https://doi.org/10.1023/A:1022088927779
  19. 2000

    1. Krumm, F., & Grafarend, E. W. (2000). Datum free deformation analysis of ITRF networks (No. 3; Vol. 37, Issue 3, pp. 75--84).
    2. Grafarend, E., & Awange, J. L. (2000). Determination of vertical deflections by GPS/LPS measurements (No. 8). 125(8), 279--288.
    3. Grafarend, E. (2000a). Mixed integer-real valued adjustment (IRA) problems (No. 2). 4(2), 31--45. https://doi.org/10.1007/PL00012840
    4. Ardalan, A., & Grafarend, E. (2000). Reference ellipsoidal gravity potential field and gravity intensity field of degree/order 360/360.
    5. Grafarend, E., Engels, J., & Varga, P. (2000). The temporal variation of the spherical and Cartesian multipoles of the gravity field (No. 7). 74(7), 519--530. https://doi.org/10.1007/s001900000114
    6. Grafarend, E. (2000b). The time-varying gravitational potential field of a massive, deformable body (No. 3). 44(3), 364--373. https://doi.org/10.1023/A:1022108420086
    7. Grafarend, E., Hendricks, A., & Gilbert, A. (2000). Transformation of conformal coordinates of type Gauß-Krüger or UTM from a local datum (regional, National, European) to a global datum (WGS84, ITRF96) Part II: Case studies (No. 6). 107(6), 218--222. http://gispoint.de/artikelarchiv/avn/2000/avn-ausgabe-062000/1883-transformation-of-conformal-coordinates-of-type-gauss-krueger-or-utm-from-a-local-datum-regional-national-european-to-a-global-datum-wgs-84-itrf-96-part-ii-case-studies.html
  20. 1999

    1. Grafarend, E., & Ardalan, A. (1999a). A first test of W_0, the time variation of W_0(dot) based on three GPS campaigns of the Baltic Sea Level Project. In M. Poutanen & J. Kakkuri (Eds.), Final Results of the Baltic Sea Level 1997 GPS Campaign (Report 99:4; Issue Report 99:4, pp. 93--113). The Finnish Institute of Geodesy, Kirkonummi.
    2. Grafarend, E., Ardalan, A., & Sideris, M. G. (1999). The spheroidal fixed-free two-boundary-value problem for geoid determination (the spheroidal Bruns’ transform) (No. 10). 73(10), 513--533. https://doi.org/10.1007/s001900050263
    3. Grafarend, E., & Ardalan, A. (1999b). World Geodetic Datum 2000 (No. 11). 73(11), 611--623. https://doi.org/10.1007/s001900050272
    4. Grafarend, E., & Engels, J. (1999). zwei polare geodätische Bezugssysteme: Der Referenzrahmen der mittleren Oberflächenvortizität und der Tisserand-Referenzrahmen. In M. Schneider (Ed.), Mitteilungen des Bundesamtes für Kartographie und Geodäsie (pp. 100--109).
  21. 1998

    1. Schäfer, Ch, Grafarend, E. W., Krauss, S., & Sayda, F. (1998). Aufbau einer Programmsammlung zur Berechnung von Störeinflüssen auf Satellitenbahnen. In W Freeden (Ed.), Progress in Geodetic Science at GW98, Proceedings zur Geodätischen Woche 1998 Kaiserslautern (pp. 73--76). Shaker Verlag, Aachen.
    2. Grafarend, E. (1998). Helmut Wolf -- das wissenschaftliche Werk/the scientific work. In Heft A 115 (p. 97). Deutsche Geodätische Kommission, Bayerische Akademie der Wissenschaften, München, Germany.
    3. Grafarend, E., & Syffus, R. (1998a). Map projections of project surveying objects and architectural structures, Part 3, projective geometry of the parabolic mirror or the paraboloid with boundary. 123, 93--97.
    4. Grafarend, E., & Syffus, R. (1998b). Map projections of project surveying objects and architectural structures, Part 4, projective geometry of the church tower or the onion. 123, 128--132.
    5. Grafarend, E., & Syffus, R. (1998c). Optimal Mercator projection and the optimal polycylindric projection of conformal type -- case study Indonesia (No. 5). 72(5), 251--258. https://doi.org/10.1007/s001900050165
    6. Grafarend, E., & Krumm, F. (1998). The Abel-Poisson kernel and the Abel-Poisson integral in a moving tangent space (No. 7). 72(7), 404--410. https://doi.org/10.1007/s001900050179
    7. Grafarend, E., & Syffus, R. (1998d). The solution of the Korn-Lichtenstein equations of conformal mapping: the direct generation of ellipsoidal Gauss-Krüger conformal coordinates or the Transverse Mercator Projection (No. 5). 72(5), 282--293. https://doi.org/10.1007/s001900050167
    8. Grafarend, E., & Syffus, R. (1998e). Transformation of conformal coordinates from a local datum (regional, National, European) to a global datum (WGS 84) Part I: The transformation equations. 105, 134--141.
    9. Grafarend, E., & Okeke, F. (1998). Transformation of conformal coordinates of type mercator from a global datum (WGS 84) to a local datum (regional, national) (No. 3). 21(3), 169--180. https://doi.org/10.1080/01490419809388133
  22. 1997

    1. Grafarend, E., & Shan, S. (1997a). Closed-form solution of P4P or the three-dimensional resection problem in terms of Möbius barycentric coordinates (No. 4). 71(4), 217--231. https://doi.org/10.1007/s001900050089
    2. Grafarend, E., & Shan, S. (1997b). Closed-form solution to the twin P4P or the combined three dimensional resection-intersection problem in terms of Möbius barycentric coordinates (No. 4). 71(4), 232--239. https://doi.org/10.1007/s001900050090
    3. Grafarend, E., & Krumm, F. (1997). Comments and reply regarding Grafarend and Krumm (1996): The Stokes and Vening-Meinesz functionals in a moving tangent space (No. 11). 71(11), 704--708. https://doi.org/10.1007/s001900050138
    4. Martinec, Z., & Grafarend, E. (1997). Construction of Green’s function to the external Dirichlet boundary value problem for the Laplace equation on an ellipsoid of revolution (No. 9). 71(9), 562--570. https://doi.org/10.1007/s001900050124
    5. Grafarend, E., & Shan, S. (1997c). Estimable quantities in projective networks, Part I. 122, 218--226.
    6. Grafarend, E. (1997). Field lines of gravity, their curvature and torsion, the Lagrange and the Hamilton equations of the plumbline (No. 5). 40(5), 1233--1247. https://doi.org/10.4401/ag-3859
    7. Grafarend, E., & Syffus, R. (1997a). Map projections of project surveying objects and architectural structures, Part 1: Projective geometry of the pneu or torus T2A,B with boundary. 122, 457--465.
    8. Grafarend, E., & Syffus, R. (1997b). Map projections of project surveying objects and architectural studies, Part 2: Projective geometry of the cooling tower of the hyperboloid IH2. 122, 560--566.
    9. Grafarend, E., & Syffus, R. (1997c). Mixed cylindric map projections of the ellipsoid of revolution (No. 11). 71(11), 685--694. https://doi.org/10.1007/s001900050136
    10. Martinec, Z., & E, G. (1997). Solution of the Stokes Boundary-Value Problem on an Ellipsoid of Revolution (No. 2). 41(2), 103--129. https://doi.org/10.1023/A:1023380427166
    11. Grafarend, E., & Martinec, Z. (1997). Solution to the Stokes boundary-value problem on an ellipsoid of revolution (No. 2). 41(2), 103--129. https://doi.org/10.1023/A:1023380427166
    12. Grafarend, E., & Syffus, R. (1997d). Strip transformation of conformal coordinates of type Gauß-Krüger and UTM. 104.
    13. Grafarend, E., & Syffus, R. (1997e). The Hammer projection of the ellipsoid of revolution (azimuthal, transverse, rescaled equiareal) (No. 12). 71(12), 736--748. https://doi.org/10.1007/s001900050140
    14. Grafarend, E., & Syffus, R. (1997f). The optimal Mercator projection and the optimal polycylindric projection of conformal type -- case study Indonesia. In S. Mira (Ed.), Proc. GALOS (Geodetic Aspects of the Law of the Sea) (pp. 93--103). Institute of Technology.
    15. Grafarend, E., Engels, J., & Varga, P. (1997). The spacetime gravitational field of a deformable body (No. 1). 72(1), 11--30. https://doi.org/10.1007/s001900050144
    16. Grafarend, E., & Ardalan, A. (1997b). W_0. In S. Mira (Ed.), Proc. GALOS (Geodetic Aspects of the Law of the Sea) (pp. 183--192). Institute of Technology.
    17. Grafarend, E., & Ardalan, A. (1997a). W_0: an estimate in the Finnish Height Datum N 60, epoch 1993.4, from twenty-five GPS points of the Baltic Sea Level Project (No. 11). 71(11), 673--679. https://doi.org/10.1007/s001900050134
  23. 1996

    1. Grafarend, E W, & Shan, J. (1996). A closed-form solution of the nonlinear pseudoranging equations (GPS) (No. 28). 31(28), 133--147.
    2. Grafarend, E., Krarup, T., & Syffus, R. (1996). An algorithm for the inverse of a multivariate homogeneous polynomial of degree n (No. 5). 70(5), 276--286. https://doi.org/10.1007/BF00867348
    3. Grafarend, E., & Kampmann, G. (1996). C_10(3): The ten parameter conformal group as a datum transformation in threedimensional Euclidian space. 121, 68--77.
    4. Grafarend, E., & Varga, P. (1996). Distribution of the lunisolar tidal elastic stress tensor components within the Earth’s mantle (No. 3--4). 93(3--4), 285--297. https://doi.org/10.1016/0031-9201(95)03067-0
    5. Grafarend, E. (1996). Entwerfend Festliches für Klaus Linkwitz. In E. Baumann, U. Hangleiter, & W. Möhlenbrink (Eds.), Festschrift für K. Linkwitz (1996.1; Issue 1996.1, pp. 110--117).
    6. Grafarend, E., & Xu, P. (1996). Probability distribution of eigenspectra and eigendirections of a twodimensional, symmetric rank two random tensor (No. 7). 70(7), 419--430. https://doi.org/10.1007/BF01090817
    7. Engels, J., Grafarend, E., & Sorcik, P. (1996). The gravitational field of topographic-isostatic masses and the hypothesis of mass condensation II-the topographic-isostatic geoid (No. 1). 17(1), 41--66. https://doi.org/10.1007/BF01904474
    8. Grafarend, E., & Syffus, R. (1996). The optimal Mercator projection and the optimal polycylindric projection of conformal type - case study Indonesia. Proc. GALOS (Geodetic Aspects of the Law of the Sea).
    9. Grafarend, E., & Krumm, F. (1996). The Stokes and Vening-Meinesz functionals in a moving tangent space (No. 11). 70(11), 696--713. https://doi.org/10.1007/BF00867148
    10. Grafarend, E., & Ardalan, A. (1996). W_0, Proc. GALOS (Geodetic Aspects of the Law of the Sea).
Zum Seitenanfang