Herr Dr.-Ing.

Markus Antoni

Akademischer Mitarbeiter

Kontakt

+49 711 685-84637

Visitenkarte (VCF)

Geschwister-Scholl-Str. 24/D
70174 Stuttgart
Deutschland
Raum: 5.322

  1. 2019

    1. Antoni, Markus. (2019). Calculus with Curvilinear Coordinates -- Problems and Solutions. https://doi.org/10.1007/978-3-030-00416-3
  2. 2016

    1. Li, Huishu, Antoni, M., Reubelt, T., Sneeuw, N., Zhong, M., & Zhou, Z. (2016). A Semi-Analytical Approach to Gravity Field Analysis from Cartwheel Formation 2. Retrieved from https://opencms.uni-stuttgart.de/fak6/gis/forschung/doc/LI_2016.pdf
    2. Li, Huishu, Reubelt, T., Antoni, M., & Sneeuw, N. (2016). Gravity field error analysis for pendulum formations by a semi-analytical approach. 1--19. https://doi.org/10.1007/s00190-016-0958-x
    3. Li, H, Antoni, M., Reubelt, T., Sneeuw, N., Zhong, M., & Zhou, Z. (2016). Gravity Field Error Assessment for the Cartwheel Formation via the Semi-Analytical Approach. 1st Joint Commission 2 and IGFS Meeting, International Symposium on Gravity, Geoid and Height Systems 2016, Thessaloniki, Greece.
  3. 2015

    1. Li, Huishu, Antoni, M., Reubelt, T., Zhou, Z., Zhong, M., Chen, Q., & Sneeuw, N. (2015). A Semi-analytical Approach to Gravity Field Analysis from Pendulum Formation. Retrieved from https://opencms.uni-stuttgart.de/fak6/gis/forschung/doc/LI_2016.pdf
    2. Antoni, Markus, Keller, W., Kersten, T., & Schön, S. (2015). Alternative GNSS antenna calibration in terms of Bernstein-Bezier polynomials. Retrieved from https://opencms.uni-stuttgart.de/fak6/gis/forschung/doc/ANTO_2015a.pdf
    3. Antoni, Markus, Li, H., Reubelt, T., & Sneeuw, N. (2015). Pre-mission error assessment for the pendulum formation via the semi-analytical approach. Geodätische Woche/Intergeo 2015, Stuttgart.
    4. Roth, M., Antoni, M., Devaraju, B., Weigelt, M., & Sneeuw, N. (2015). SHBundle -- spherical harmonic synthesis/analysis until very high degree/order. Retrieved from https://www.gis.uni-stuttgart.de/forschung/doc/ROTH_2015a.pdf
  4. 2014

    1. Antoni, Markus, Roth, M., & Keller, W. (2014). Construction of directional wavelets on the sphere. Retrieved from https://www.gis.uni-stuttgart.de/forschung/doc/ANTO_2014a.pdf
  5. 2013

    1. Antoni, Markus, Weigelt, M., Keller, W., & Van Dam, T. (2013). Boundary elements for modelling gravitational signals observed by inter-satellite ranging. Retrieved from https://www.gis.uni-stuttgart.de/forschung/doc/ANTO_2013a.pdf
    2. Antoni, Markus, & Keller, W. (2013). Closed solution of the Hill differential equation for short arcs and a local mass anomaly in the central body. 115(2), 107--121. https://doi.org/10.1007/s10569-012-9454-7
    3. Krawinkel, T., Hücker, D., Schikschneit, C., Beermann, K., Flury, J., Vey, S., … Feldmann-Westendorff, U. (2013). Sub-cm-Konsistenz von nivellierten Normalhöhen, GNSS-Positionen und Quasigeoid im Testgebiet Harz. 138, 201--209. Retrieved from http://geodaesie.info/zfv/heftbeitrag/1568
  6. 2012

    1. Antoni, Markus, & Keller, W. (2012). Local improvement of GRACE gravity field solutions using SO(3) representations. Retrieved from https://www.gis.uni-stuttgart.de/forschung/doc/ANTO_2012a.pdf
    2. Weigelt, M., Keller, W., & Antoni, M. (2012). On the comparison of radial base functions and single layer density representations in local gravity field modeling from simulated satellite observations. In N. Sneeuw, P. Novák, M. Crespi, & F. Sansò (Eds.), Proceedings VII Hotine-Marussi Symposium on Mathematical Geodesy, Rome, Italy (pp. 199--204; By N. Sneeuw, P. Novák, M. Crespi, & F. Sansò). https://doi.org/10.1007/978-3-642-22078-4_29
  7. 2011

    1. Antoni, Markus, Keller, W., & Weigelt, M. (2011). Comparison of genetic algorithm and descend direction algorithm for SST data. Retrieved from https://www.gis.uni-stuttgart.de/forschung/doc/ANTO_2011a.pdf
  8. 2009

    1. Keller, W., Antoni, M., & Weigelt, M. (2009). A Closed Solution of the Variational Equations for Short-Arc SST. IAG General Assembly 2009, Buenos Aires, Argentina.
    2. Antoni, Markus, Keller, W., & Weigelt, M. (2009a). Analyse von GRACE-Beobachtungen durch optimierte radiale Basisfunktionen (2). Retrieved from https://www.gis.uni-stuttgart.de/forschung/doc/ANTO_2009d.pdf
    3. Weigelt, M., Keller, W., & Antoni, M. (2009a). Comparing the local gravity field recovery based on radial base functions with the boundary element method. Retrieved from https://www.gis.uni-stuttgart.de/forschung/doc/WEIG_2009a.pdf
    4. Weigelt, M., Keller, W., & Antoni, M. (2009b). Lokale Schwerefeldbestimmung mit Hilfe der Randelementemethode und radialen Basisfunktionen. Retrieved from https://www.gis.uni-stuttgart.de/forschung/doc/WEIG_2009b.pdf
    5. Antoni, Markus, Keller, W., & Weigelt, M. (2009b). Recovery of residual GRACE-observations by radial base functions. Retrieved from https://www.gis.uni-stuttgart.de/forschung/doc/ANTO_2009c.pdf
    6. Antoni, Markus, Keller, W., & Weigelt, M. (2009c). Representation of Regional Gravity Fields by Radial Base Functions. In M. G. Sideris (Ed.), Observation our Changing Earth, Proceedings of the 2007 IAG General Assembly, Perugia, Italy (pp. 293--299; By M. G. Sideris). https://doi.org/10.1007/978-3-540-85426-5_34
    7. Antoni, Markus, Borkowski, A., Keller, W., & Owczarek, M. (2009). Verification of localized GRACE solutions by the Polish quasiqeoid. 58(2), 21--36.
  9. 2008

    1. Antoni, Markus, Keller, W., & Weigelt, M. (2008). Analyse der GRACE-Beobachtungen durch optimierte radiale Basisfunktionen. Retrieved from https://www.gis.uni-stuttgart.de/forschung/doc/ANTO_2008b.pdf
    2. Weigelt, M., Antoni, M., & Keller, W. (2008). Regional gravity recovery from GRACE using position optimized radial base functions. Retrieved from https://www.gis.uni-stuttgart.de/forschung/doc/WEIG_2008a.pdf
    3. Antoni, M, Keller, W., & Weigelt, M. (2008). Regionale Schwerefeldmodellierung durch Slepian- und radiale Basisfunktionen. 133(2), 120--129. Retrieved from http://geodaesie.info/zfv/heftbeitrag/597
  10. 2007

    1. Antoni, Markus, Keller, W., & Weigelt, M. (2007). Representation of Regional Gravity Fields by Radial Base Functions. Retrieved from https://www.gis.uni-stuttgart.de/forschung/doc/ANTO_2007a.pdf
Zum Seitenanfang