Herr Dr.-Ing.

Markus Antoni

Akademischer Mitarbeiter

Kontakt

+49 711 685-84637

Visitenkarte (VCF)

Geschwister-Scholl-Str. 24/D
70174 Stuttgart
Deutschland
Raum: 5.322

  1. 2019

    1. Antoni, Markus. (2019). Calculus with Curvilinear Coordinates -- Problems and Solutions. Springer International Publishing. https://doi.org/10.1007/978-3-030-00416-3
  2. 2016

    1. Li, Huishu, Antoni, M., Reubelt, T., Sneeuw, N., Zhong, M., & Zhou, Z. (2016). A Semi-Analytical Approach to Gravity Field Analysis from Cartwheel Formation 2. https://opencms.uni-stuttgart.de/fak6/gis/forschung/doc/LI_2016.pdf
    2. Li, Huishu, Reubelt, T., Antoni, M., & Sneeuw, N. (2016). Gravity field error analysis for pendulum formations by a semi-analytical approach. 1--19. https://doi.org/10.1007/s00190-016-0958-x
    3. Li, H, Antoni, M., Reubelt, T., Sneeuw, N., Zhong, M., & Zhou, Z. (2016). Gravity Field Error Assessment for the Cartwheel Formation via the Semi-Analytical Approach.
  3. 2015

    1. Li, Huishu, Antoni, M., Reubelt, T., Zhou, Z., Zhong, M., Chen, Q., & Sneeuw, N. (2015). A Semi-analytical Approach to Gravity Field Analysis from Pendulum Formation. https://opencms.uni-stuttgart.de/fak6/gis/forschung/doc/LI_2016.pdf
    2. Antoni, Markus, Keller, W., Kersten, T., & Schön, S. (2015). Alternative GNSS antenna calibration in terms of Bernstein-Bezier polynomials. https://opencms.uni-stuttgart.de/fak6/gis/forschung/doc/ANTO_2015a.pdf
    3. Antoni, Markus, Li, H., Reubelt, T., & Sneeuw, N. (2015). Pre-mission error assessment for the pendulum formation via the semi-analytical approach.
    4. Roth, M., Antoni, M., Devaraju, B., Weigelt, M., & Sneeuw, N. (2015). SHBundle -- spherical harmonic synthesis/analysis until very high degree/order. https://www.gis.uni-stuttgart.de/forschung/doc/ROTH_2015a.pdf
  4. 2014

    1. Antoni, Markus, Roth, M., & Keller, W. (2014). Construction of directional wavelets on the sphere. https://www.gis.uni-stuttgart.de/forschung/doc/ANTO_2014a.pdf
  5. 2013

    1. Antoni, Markus, Weigelt, M., Keller, W., & Van Dam, T. (2013). Boundary elements for modelling gravitational signals observed by inter-satellite ranging. https://www.gis.uni-stuttgart.de/forschung/doc/ANTO_2013a.pdf
    2. Antoni, Markus, & Keller, W. (2013). Closed solution of the Hill differential equation for short arcs and a local mass anomaly in the central body (No. 2). 115(2), 107--121. https://doi.org/10.1007/s10569-012-9454-7
    3. Krawinkel, T., Hücker, D., Schikschneit, C., Beermann, K., Flury, J., Vey, S., Antoni, M., & Feldmann-Westendorff, U. (2013). Sub-cm-Konsistenz von nivellierten Normalhöhen, GNSS-Positionen und Quasigeoid im Testgebiet Harz. 138, 201--209. http://geodaesie.info/zfv/heftbeitrag/1568
  6. 2012

    1. Antoni, Markus, & Keller, W. (2012). Local improvement of GRACE gravity field solutions using SO(3) representations. https://www.gis.uni-stuttgart.de/forschung/doc/ANTO_2012a.pdf
    2. Weigelt, M., Keller, W., & Antoni, M. (2012). On the comparison of radial base functions and single layer density representations in local gravity field modeling from simulated satellite observations. In N. Sneeuw, P. Novák, M. Crespi, & F. Sansò (Eds.), Proceedings VII Hotine-Marussi Symposium on Mathematical Geodesy, Rome, Italy (Vol. 137, pp. 199--204). Springer Berlin Heidelberg. https://doi.org/10.1007/978-3-642-22078-4_29
  7. 2011

    1. Antoni, Markus, Keller, W., & Weigelt, M. (2011). Comparison of genetic algorithm and descend direction algorithm for SST data. https://www.gis.uni-stuttgart.de/forschung/doc/ANTO_2011a.pdf
  8. 2009

    1. Keller, W., Antoni, M., & Weigelt, M. (2009). A Closed Solution of the Variational Equations for Short-Arc SST.
    2. Antoni, Markus, Keller, W., & Weigelt, M. (2009a). Analyse von GRACE-Beobachtungen durch optimierte radiale Basisfunktionen (2). https://www.gis.uni-stuttgart.de/forschung/doc/ANTO_2009d.pdf
    3. Weigelt, M., Keller, W., & Antoni, M. (2009a). Comparing the local gravity field recovery based on radial base functions with the boundary element method. https://www.gis.uni-stuttgart.de/forschung/doc/WEIG_2009a.pdf
    4. Weigelt, M., Keller, W., & Antoni, M. (2009b). Lokale Schwerefeldbestimmung mit Hilfe der Randelementemethode und radialen Basisfunktionen. https://www.gis.uni-stuttgart.de/forschung/doc/WEIG_2009b.pdf
    5. Antoni, Markus, Keller, W., & Weigelt, M. (2009b). Recovery of residual GRACE-observations by radial base functions. https://www.gis.uni-stuttgart.de/forschung/doc/ANTO_2009c.pdf
    6. Antoni, Markus, Keller, W., & Weigelt, M. (2009c). Representation of Regional Gravity Fields by Radial Base Functions. In M. G. Sideris (Ed.), Observation our Changing Earth, Proceedings of the 2007 IAG General Assembly, Perugia, Italy (Vol. 133, pp. 293--299). Springer Berlin Heidelberg. https://doi.org/10.1007/978-3-540-85426-5_34
    7. Antoni, Markus, Borkowski, A., Keller, W., & Owczarek, M. (2009). Verification of localized GRACE solutions by the Polish quasiqeoid (No. 2). 58(2), 21--36.
  9. 2008

    1. Antoni, Markus, Keller, W., & Weigelt, M. (2008). Analyse der GRACE-Beobachtungen durch optimierte radiale Basisfunktionen. https://www.gis.uni-stuttgart.de/forschung/doc/ANTO_2008b.pdf
    2. Weigelt, M., Antoni, M., & Keller, W. (2008). Regional gravity recovery from GRACE using position optimized radial base functions. https://www.gis.uni-stuttgart.de/forschung/doc/WEIG_2008a.pdf
    3. Antoni, M, Keller, W., & Weigelt, M. (2008). Regionale Schwerefeldmodellierung durch Slepian- und radiale Basisfunktionen (No. 2). 133(2), 120--129. http://geodaesie.info/zfv/heftbeitrag/597
  10. 2007

    1. Antoni, Markus, Keller, W., & Weigelt, M. (2007). Representation of Regional Gravity Fields by Radial Base Functions. https://www.gis.uni-stuttgart.de/forschung/doc/ANTO_2007a.pdf
Zum Seitenanfang