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Ausgleichungs-
rechnung

1 Introduction

Adjustment theory deals with the optimal combination of redundant measurements together with
the estimation of unknown parameters.

Teunissen, 2000

1.1 Adjustment theory - a first look

To understand the purpose of adjustment theory consider the following simple highschool example
that is supposed to demonstrate how to solve for unknown quantities. In case 0 the price of apples
and pears is determined after doing groceries twice. After that we will discuss more interesting
shopping scenarios.

Case 0)

3 apples + 4 pears = 5.00€
5 apples + 2 pears = 6.00 €

. . 5 = 3x; +4x,
2 equations in 2 unknowns:

6 = 5x1 +2x;

5
as matrix-vector system: ( ) ( ) ( )
6 X2

linear algebra: y = Ax

The determinant of matrix A reads det A =3 -2 — 5 -4 = —14. Thus the above linear system can be

inverted:
oAt xi\_ 1 [ 2-4)\(5)_{(1
-4 x| -14\-5 3)\e] \o05

So each apple costs 1€ and each pear 50 cents. The price can be determined because there are as
many unknowns (the price of apples and the price of pears) as there are observations (shopping
twice). The square and regular matrix A is invertible.

Remark 1.1 (terminology) The left-hand vector y contains the observations. The vector x contains
the unknown parameters. The two vectors are linked through the design matrix A. The linear model
y = Ax is known as the model of observation equations.

The following cases demonstrate that the idea of determining unknowns from observations is not
as straightforward as may seem from the above example.



1.1 Adjustment theory — a first look

Case 1a)

If one buys twice as much apples and pears the second time, and if one has to pay twice as much as
well, no new information is added to the system of linear equations

3a+4p= 5€ 5 34\ (x
= =
6a+8p=10€ 10 6 8/ \ x2
The matrix A has linearly dependent columns (and rows), i.e. it is singular. Correspondingly det A =
0 and the inverse A~! does not exist. The observations (5€ and 10€) are consistent, but the vector

x of unknowns (price per apple or pear) cannot be determined. This situation will return later with
so-called datum problems. Seemingly trivial, case 1a) is of fundamental importance.

Case 1b)

Suppose the same shopping scenario as above, but now one needs to pay 8 € the second time.

(4

In this alternative scenario, the matrix is still singular and x cannot be determined. But worse still,
the observations y are inconsistent with the linear model. Mathematically, they do not fulfil the
compatibility conditions. In data analysis inconsistency is not necessarily a weakness. In fact, it
may add information to the linear system. It might indicate observation errors (in y), for instance a
miscalculation of the total grocery bill. Or it might indicate an error in the linear model: the prices
may have changed in between, which leads to a different A.

Case 2)

We go back to the consistent and invertible case 0. Suppose a third combination of apples and pears

5 34\(x
6 52 |\ x

3 12

gives an inconsistent result.

The third row is inconsistent with x; = 1, x; = % from case 0. But one can equally maintain that the
first row is inconsistent with the second and third. In short, we have redundant and inconsistent
information: the number of observations (m = 3) is larger than the number of unknowns (n = 2).
Consequently, matrix A is not a square matrix.

Although a standard inversion is not possible anymore, redundancy is a positive characteristic in
engineering disciplines. In data analysis redundancy provides information on the quality of the
observations, it strengthens the estimation of the unknowns and allows us to perform statistical
tests. Thus, redundancy provides a handle to quality control.

But obviously the inconsistencies have to be eliminated. This is done by spreading them out in
an optimal way. This is the task of adjustment: to combine redundant and inconsistent data in an
optimal way. Two main questions will be addressed in the first part of this course:

« How to combine inconsistent data optimally?

« Which criterion defines what optimal is?
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1 Introduction

Errors

The inconsistencies may be caused by model errors. If the green grocer changed his prices between
two rounds of shopping we need to introduce new parameters. In surveying, however, the observa-
tion models are usually well-defined, e.g. the sum of angles in a plane triangle equals 7. So usually
the inconsistencies arise from observation errors. To make the linear system y = Ax consistent
again, we need to introduce an error vector e with the same dimension as the observation vector.

y=A x + e . (1.1)

mx1 mxn nx1 mx1

Errors go under several names: inconsistencies, residuals, improvements, deviations, discrepancies,
and so on.

Remark 1.2 (sigh convention) In many textbooks the error vector is put at the same side of the
equation as the observations: y + e = Ax. Where to put the e-vector is rather a philosophical question.
Practically, though, one should be aware of the definitions used, how the sign of e is defined.

Three different types of errors are usually identified:
i) Gross error, also known as blunder or outlier.
ii) Systematic error, or bias.
iii) Random error.

These types are visualized in fig. In this figure, one can think of the marks left behind by the
arrow points in a game of darts, in which one attempts to aim at the bull’s eye. Whatever the type,

(a) gross error (b) systematic error (c) random error

Figure 1.1: Different types of errors.

errors are stochastic quantities. Thus, the vector e is a (m-dimensional) stochastic variable. The
vector of observations is consequently also a stochastic variable. Such quantities will be underlined,
if necessary:

y=Ax+e.

Nevertheless, it will be assumed in the sequel that e is drawn from a distribution of random errors.



1.2 Historical development

1.2 Historical development

The question how to combine redundant and inconsistent data has been treated in many different
ways in the past. To compare the different approaches, the following mathematical framework is

used:
observation model: y=Ax
combination: L y=L A x
nxXm mx1 nXm mxn nx1
invert: x = (LA) 'Ly
= By

From a modern viewpoint matrix B is a left-inverse of A because BA = I. Note that such a left-inverse
is not unique, as it depends on the choice of the combination matrix L.

Method of selected points — before 1750

A simple way out of the overdetermined problem is to select only so many observations (“points”)
as there are unknowns. The remaining unused observations may be used to validate the estimated
result. This is the so-called method of selected points. Suppose one uses only the first n observations.
Then:

L=[1 0 ]

nxm nxn nx(m-n)

The trouble with this approach, obviously, is the arbitrariness of the choice of n observations. There
are (') choices.

From a modern perspective the method of selected points resembles the principle of cross-validation.
The idea of this principle is to deliberately leave out a limited number of observations during the
estimation and to use the estimated parameters to predict values for those observations that were left
out. A comparison between actual and predicted observations provides information on the quality
of the estimated parameters.

Method of averages - ca. 1750

In 1714 the British government offered the Longitude Prize for the precise determination of a ship’s
longitude. Tobias Mayer’ approach was to determine longitude, or rather time, through the mo-
tion of the moon. In the course of his investigations he needed to determine the libration of the
moon through measurement to lunar surface (craters). This led him to overdetermined systems of
observation equations:

y=A x

27x1  27x3 3X1

Mayer called them equations of conditions, which is, from today’s view point, an unfortunate desig-
nation.

ITobias Mayer (1723-1762) made the breakthrough that enabled the lunar distance method to become a practicable way
of finding longitude at sea. As a young man, he displayed an interest in cartography and mathematics. In 1750, he
was appointed professor in the Georg-August Academy in Gottingen, where he was able to devote more time to his
interests in lunar theory and the longitude problem. From 1751 to 1755, he had an extensive correspondence with
Leonhard Euler, whose work on differential equations enabled Mayer to calculate lunar distance tables.



1 Introduction

Mayer’s adjustment strategy:
« distribute the observations into three groups
+ sum up the equations within each group
« solve the 3 X 3-system.

11---1 0000 000 0
L=(0000 11---1 000 0
*10000 0000 11---1

Mayer actually believed each aggregate of 9 observations to be “9 times more precise” than a single
observation. Today we know that this should be V9 = 3.
Euler’s attempt - 1749
Leonhard Eulerf]
Background:
« Orbital motion of the Saturn under influence of Jupiter
« Stability of the solar system
« Prize (1748) of the Academy of Sciences, Paris
75 observations from the years 1582-1745; 6 unknowns = Given up!

Fuler was mathematician — “FError bounds”

Laplace’s attempt — ca. 1787

LaplaceE]

Background: Saturn, too

Reformulated: 4 unknowns

Best data: 24 observations

Approach: like Mayer, but other combinations:

y =A x
24X1 24x4 4X1
L y=L Ax
4X24 24X1 4%24 24x4 4x1
x = (LA) 'Ly

2Euler (1707-1783) was a Swiss mathematician and physicist. He is considered to be one of the greatest mathematicians
who ever lived. Euler was the first to use the term function (defined by Leibniz in 1694) to describe an expression
involving various arguments; i.e. y = F(x). He is credited with being one of the first to apply calculus to physics.

3Pierre-Simon, Marquis de Laplace (1749-1827) was a French mathematician and astronomer who put the final capstone
on mathematical astronomy by summarizing and extending the work of his predecessors in his five volume Mécanique
Céleste (Celestial Mechanics) (1799-1825). This masterpiece translated the geometrical study of mechanics used by
Newton to one based on calculus, known as physical mechanics. He is also the discoverer of Laplace’s equation and the
Laplace transform, which appear in all branches of mathematical physics — a field he took a leading role in forming.
He became count of the Empire in 1806 and was named a marquis in 1817 after the restoration of the Bourbons.
Pierre-Simon Laplace was among the most influential scientists in history.

10
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1111111111111 11111111111
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Method of least absolute deviation — 1760
Roger Boscovicfﬁ

Ellipticity of the Earth
5 observations (Quito, Cape Town, Rome, Paris, Lapland)
2 unknowns

a(1-e?)

M(p) = —————
(1 — e?sin® (p)%

3
a(1—e*)(1+ Eez sin g + ...

MO)=a(l1-e?))<a

_p2
M(%)=a—5=—-~_>q
(1-e?)2 1-e?

x1 + sin? Px2

First attempt: All (g) = 2!(§i2), = g:‘f

= 10 systems of equations (2 X 2)
= 10 solutions

Comparison of results.

g:;:} = 10 combinations with 2 observations each.

His result: gross variations of the ellipticity = reject the ellipsoidal hypothesis.

Second attempt: The mean deviation (or sum of deviations) should be zero:
5
i=1

and the sum of absolute deviations should be minimum:

5
Z le;| = min .
i=1

This is an objective adjustment criterion, although its implementation is mathematically difficult.
This is the approach of L;-norm minimization.

Method of least squares - 1805

In 1805 Legendr published his method of least squares (in French: moindres carrés). The name least  Methode der

squares refers to the fact the sum of square residuals is minimized. Legendre developed the method ~ kleinsten
Quadrate

4Rudjer Josip Boskovi¢ aka. Roger Boscovich (1711-1787) was a Croatian Jesuit, a mathematician and an innovative
physicist, he was active also in astronomy, nature philosophy and poetry as well as technician and geodesist.

5 Adrien-Marie Legendre (1752-1833) was a French mathematician. He made important contributions to statistics, num-
ber theory, abstract algebra and mathematical analysis.

11
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for the determination of orbits of comets and to derive the Earth ellipticity. As will be derived in the
next chapter, the matrix L will be the transposed of the design matrix A:

5
L= Zeiz =e'e=(y— Ax)"(y — Ax) = min
i=1 *
& L=A"

= % =(ATA)TAT y
N——

nx1 nxm mx1

nxn

After Legendre’s publication Gauss states that he already developed and used the method of least
squares in 1794. He published his own theory only several years later. A bitter argument over the
scientific priority broke out. Nowadays it is acknowledged that Gauss’s claim of priority is very
likely valid but that he refrained from publication because he found his results still premature.



2 Least squares adjustment

Legendre’s method of least squares is actually not a method. Rather, it provides the criterion for the
optimal combination of inconsistent data: combine the observations such that the sum of squared
residuals is minimal. It was seen already that this criterion defines the combination matrix L:

Ly=LAx = x=(LA) 'Ly.

But what is so special about L = A"? In this chapter we will derive the equations of least squares
adjustment from several mathematical viewpoints:

+ geometry: smallest distance (Pythagoras)

« linear algebra: orthogonality between the optimal e and the columns of A: ATe =0
« calculus: minimizing target function — differentiation

o probability theory: BLUE (Best Linear Unbiased Estimate)

These viewpoints are elucidated by a simple but fundamental example in which a distance is mea-
sured twice.

2.1 Adjustment with observation equations

We will start with the model of the introduction y = Ax. This is the model of observation equations,
in which observations are linearly related to unknowns.

Suppose that, in order to determine a certain distance, it is measured twice. Let the unknown dis-
tance be x and the observations y; and y,:

Yy1=x yi) _ (1 _
y2:x} = (yz)—(l)x = y=ax (2.1)

If y; = y, the equations are consistent and the parameter x clearly solvable: x = y; = y,. If, on
the other hand, y; # y, the equations are inconsistent and x not solvable directly. Given a limited
measurement precision the latter scenario will be more likely. Let’s therefore take into account

(zl):(i)x+(zl) — y=ax+e (2.2)
2 2

measurement errors e.

A geometric view

The column vector a spans up a line y = ax in R?. This line is the 1D model space or range space
of A: R(A). Inconsistency of the observation vector means that y does not lie on this line. Instead,

13
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2 Least squares adjustment

there is some vector of discrepancies e that connects the observations to the line. Both this vector

e and the point on the line, defined by the unknown parameter x, must be found, see the left panel
of fig. Adjustment of observations is about finding the optimal e and x. An intuitive choice for

Yo

(@)

ax

N1

Inconsistent data: the observation vec-
tor y is not in the model space, i. e. not
on the line spanned by a.

B2

x>

1

(b) Least squares adjustment means or-

thogonal projection of y onto the line
ax. This guarantees the shortest e.

Figure 2.1

“optimality” is to make the vector e as short as possible. The shortest possible e is indicated by a
hat: é. The squared length é"é = }; é? is the smallest of all possible e'e = 3, e, which explains the
name least squares. If é is determined, we will at the same time know the optimal x.

How do we get the shortest e? The right panel of fig. [2.1| show that the shortest e is perpendicular

to a:

A

ela

Subtracting é from the vector of observations y leads to the point §j = axX that is on the line and
closest to y. This is the vector of adjusted observations. Being on the line means that § is consistent.

If we now substitute é = y—ax, the least squares criterion leads us subsequently to optimal estimates

of x, y and e:

14

orthogonality é L a

normal equations
LS estimate of x
LS estimate of y
LS estimate of e

sum square residuals

€=0
x)=0
alak=a'y
%= (a"a)la"y
j=axt = a(a'a)ta'y
é=y-9 = [I-a@'a)a'ly
Te = yT[1 - a(a"a)d"]y

(2.3a)
(2.3b)
(2.3¢)
(2.3d)
(2.3e)
(2.3f)

)

(2.3g



2.1 Adjustment with observation equations

Exercise 2.1 Call the matrix in square brackets P and convince yourself that the sum of squares of the
residuals (the squared length of €) in the last line indeed follows from the line above. Two things should
be shown: that P is symmetric, and that PP = P.

The least squares criterion leads us to the above algorithm. Indeed, the combination matrix reads
L=A"
A calculus view

Let us define the Lagrangian or cost function:
Lt
La(x) = Jee (2.4)

which is half of the sum of square residuals. Its graph would be a parabola. The factor % shouldn’t
worry us. If we find the minimum £,, then any scaled version of it is also minimized. The task is
now to find the % that minimizes the Lagrangian. With e = y — ax we get the minimization problem:

min £L,(x) = min %(y —ax)'(y — ax)

1 1
= min —yTy - xaTy + —a'ax?
% \2 2

The term %yTy is just a constant that doesn’t play a role in the minimization. The minimum occurs
at the location where the derivative of £, is zero (necessary condition):

dz,

1 (#)=—-a'y+a'ax=0.
X

The solution of this equation, which happens to be the normal equation (2.3c), is the x we are looking
for:
#=(a'a)la"y.

To make sure that the derivative does not give us a maximum, we must check that the second
derivative of £, is positive at X (sufficiency condition):

d’L,

= (%) =da'a>0,

which is a positive constant for all x indeed.

Projectors

Figure[2.1]shows that the optimal, consistent § is obtained by an orthogonal projection of the original
y onto the line ax. Mathematically this was translated by (2.3€) as:

j=a(a'a)a'y (2.5a)
— =Py (2.5b)
with Po=a(a'a)'a". (2.5¢)

15
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2 Least squares adjustment

The matrix P, is an orthogonal projector. It is an idempotent matrix, meaning:
PP, =a(a'a) 'a'a(a'a) la" = P,. (2.6)

It projects onto the line ax along a direction orthogonal to a. With this projection in mind, the
property P,P, = P, becomes clear: if a vector has been projected already, the second projection has
no effect anymore.

Also can be abbreviated:
é=y—Py=(1-Py)y=Py,

which is also a projection. In order to give é the vector y is projected onto a line perpendicular to
ax along the direction a. And, of course, P; is idempotent as well:

PrPr=(I-P)(I-Py)=1-2P,+P,Pa=1-P,=Pr.

Moreover, the definition (2.5¢) makes clear that P, and P, are symmetric. Therefore the square sum
of residuals could be simplified to:

e =y PPy = y"PLPLy = 4Py,

At a more fundamental level the definition of the orthogonal projector P} = I — P, can be recast
into the equation:
[=P,+P;.

Thus, we can decompose every vector, say z, into two components: one in component in a subspace
defined by P,, the other mapped onto a subspace by P;:

z=Iz=(P,+P;)z=P,z+P;z.

In the case of Ls adjustment, the subspaces are defined by the range space R(a) and its orthogonal
complement R(a)*:
y=Py+Pry=g+e,

which is visualized in fig.

Numerical example

With a = (1 1)" we will follow the steps from :

(a'a)k =a'y — 28X =y + 1o
1
$=(a"a)a"y — X = E(yl + 1) (average)
j=a(a'a)a"y — (gl):l(}h'l'yz)
Y2)  2\th+ye
. 1 3
é=y—49 —> (‘il ) == ( y1~8 ) (error distribution)
€ 2\ -y ty2
1
éle — E(yl — 1yy)* (least squares)

16



2.2 Adjustment with condition equations

Exercise 2.2 Verify that the projectors are

111 1 1-1
Po== d Pr=I-P,==
“ 2(11) e Ta “ 2(—1 1)

and check the equations §j = P,y and é = Py with the numerical results above.

2.2 Adjustment with condition equations

In the ideal case, in which the measurements y; and y, are without error, both observations would
be equal: y; = y; or y; — y, = 0. In matrix notation:

(1—1)(y1)=0 — b y=0 . (2.7)

Y2 1x2 2x1  1x1

In reality, though, both observations do contain errors, i.e. they are not equal: y; —y, # 0 or b’y # 0.
Instead of 0 one would obtain a misclosure w. If we recast the observation equation into y — e = ax,
it is clear that it is (y — e) that has to obey the above condition:

b'(y—e)=0 = w:=by=b'e. (2.8)

In this condition equation the vector e is unknown. The task of adjustment according to the model
of condition equations is to find the smallest possible e that fulfills the condition (2.8). At this stage,
the model of condition equations does not involve any kind of parameters x.

A geometric view

The condition (2.8) describes a line with normal vector b that goes through the point y. This line is
the set of all possible vectors e. We are looking for the shortest e, i.e. the point closest to the origin.
Figure makes it clear that é is perpendicular to the line b"e = w. So ¢é lies on a line through b.

Geometrically, é is achieved by projecting y onto a line through b. Knowing the definition of the
projectors from the previous section, we here define the following estimates by using the projector
Py:

é=Pyy=b(b"b)" by =b(b"b)'w (2.9a)
J=y-é=y-b(b'b)'bly

=[I-b(b"b)"'b"y = P}y (2.9b)

é'é=y"Py=y"b(b"h) by (2.9¢)

Exercise 2.3 Confirm that the orthogonal projector Py, is idempotent and verify that the equation for

éTé is correct.

17
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2 Least squares adjustment

Y2 ble=b"y Y2 ble=b"y

e A
\ 4
¢ 321 B3l
b b
(a) The condition equation describes a line in R?, (b) Least squares adjustment with condition
perpendicular to b and going through y. We equations means orthogonal projection of y
are looking for a point e on this line. onto the line through b. This guarantees the
shortest e.

Figure 2.2

Numerical example

With b7 = (1 —1)We get

bb=2 = (B'b)'=

1
2
L 101 1 11
P, = b(b"b) bT—E(_l)(l—l)—E(_l 1)

These results for i and € are the same as those for the adjustment with observation equations. The
estimator ¢ describes the mean of the two observations, whereas the estimator é distributes the
inconsistencies equally. Also note that P, = P; and vice versa.

18




2.2 Adjustment with condition equations

A calculus view

Alternatively we can again determine the optimal e by minimizing the target function £y (e) = e'e,
but now under the condition b™(y — e) = 0:

min L (e) = ele under b'(y—e) =0, (2.10a)
1
min Lp(e, A) = EeTe +AT(bTy—bTe). (2.10b)
éA

The main trick here — due to Lagrange — is to not consider the condition as a constraint or limitation
of the minimization problem. Instead, the minimization problem is extended. To be precise, the
condition is added to the original cost function, multiplied by a factor A. Such factors are called
Lagrangian multipliers. In case of more than one condition, each gets its own multiplier. The target
function £}, is now a function of e and A.

The minimization problem now exists in finding the é and A that minimize the extended £;. Thus
we need to derive the partial derivatives of £} towards e and A. Next, we impose the conditions that
these partial derivatives are zero when evaluated in é and A.

A

) N
—L(é,A):O - e-br=0
de

oL

ﬁ(é,;I) =0 = bly-be=0

In matrix terms, the minimization problem leads to:

I -b\(e 0
(5202

Because of the extension of the original minimization problem, this system is square. It might be
inverted in a straightforward manner, see also Instead, we will solve it stepwise. First, rewrite
the first line:

é-bi=0 = é=bl.

This result is then used to eliminate é in the second line:
b'y—b"bA=0,

which is solved by:
A="b) by,

With this result we go back to the first line:
é-b(b'h) y=0,

which is finally solved by:
é=b(b'b)by="Pyy.

This is the same estimator é as (2.9a)).

19



2 Least squares adjustment

2.3 Synthesis

Both the calculus and geometric approach provide the same Ls estimators. This is due to
P,=Py; and P,=P;,

as can be seen in fig. The deeper reason is that a is perpendicular to b:

bTa:(l—l)(1)=0, (2.12)

which fundamentally connects the model with observation equations to the model with condition
equations. Starting with the observation equation, and applying the orthogonality, one ends up with
the condition equation:

bT T T T, bla=0 7 T
y=ax+e — by=bax+be — Db'y=b'e.

ble=b"
V2 Y
é =ax
V y
~ L
y=Py="Py
a
Figure 2.3: Least sql.lares adjust@ent with é-Py-Ply
observation equations and 7
with condition equations in b
terms of the projectors P, and
Py.

20




3 Generalizations

In this chapter we will apply several generalizations. First we will take the Ls adjustment problems
to higher dimensions. What we will basically do is replace the vector a by an (m X n) matrix A
and replace the vector b by an (m X (m — n)) matrix B. The basic structure of the projectors and
estimators will remain the same.

Moreover, we need to be able to formulate the 2 Ls problems with constant terms:

y=Ax+ag+e and B'(y—e) =by.
Next, we will deal with nonlinear observation equations and nonlinear condition equations. This
will involve linearization, the use of approximate values, and iteration.

We will also touch upon the datum problem, which arises if A contains dependent columns. Math-
ematically we have rank A < n so that the normal matrix has det ATA = 0 and is not invertible.

At the end we will merge both models in order to establish the so-called general model of adjustment
theory.

3.1 Higher dimensions: the -model (observation equations)

The vector of observations y, the vector of inconsistencies e and their respective Ls-estimators will
be (m X 1) vectors. The vector x will contain n unknown parameters. Thus the redundancy, that is
the number of redundant observations, is:

redundancy: r=m-—n.

Geometry

y = Ax+e is the multidimensional extension of y = ax +e with given (reduced) vector of observations

y.

We split A in its n column vectors a; ,i=1,...,n
mx1
A = [al, az, s, ..., an]
mxn mx1 mx1l mx1 mx1
n
y = a x; + e,
mx1 i=1 mXx1 1x1 mx1

which span an n-dimensional vector space as a subspace of E™.
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3 Generalizations

Example: m =3, n=2( y spans an E?)

mx1

V3

(a) The vectors y, a; and az all lie in R3. (b) To see that y is inconsistent, the space

spanned by a; and ay, is shown as the base
plane. It is clear that the observation vector
is not in this plane y ¢ R(A), i.e. y cannot be
written as a linear combination of a1 and ay.

Figure 3.1

Q>
1

Piy=[I-A(ATA) ATy
Pay = A(ATA) ATy = A%

NS
I

%= (ATA) ATy

(ATA)™! exists iff rank A = n = rank(ATA).

Calculus
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1
Lax) = EeTe
1 T
=5y —Ax) (y - Ax)
1 1 1 1
= EyTy - EyTAx - ExTATy + ExTATAx — min
oL . . -
—®=0 = é=y-g=[-AAAHATly="Py










3.2 The datum problem

Solution approach 1: reduce solution space

+ Fix d = dim N'(A) unknowns and eliminate corresponding columns in A so that the rank of
A, rank A =n —d, is full.

+ Move fixed unknowns to the observation vector, e.g. fix H:

h12 + H; 1 0 H,
- h13 +H; |=]0 1 H;
h32 1-1

Solution approach 2: augment solution space

Augment solution space by adding d = dim N (A) constraints, e.g.

H,;
H=0 = (100) H, |=0 ~ Dl x=c¢
dxn nx1 dx1

H;

In order to remove the rank deficiency of A, matrix DT must be chosen in such a way that
rank([AT | D])zn.
nxm nxd

AD = 0, however is not required. As an example, DT = [1, -1, 0] is not permitted. The approach of
augmenting the solution space is far more flexible as compared to approach 1: no changes of original
quantities y, A are necessary. Even curious constraints are allowed as long as datum deficiency is
resolved. However, we are faced with the constrained Lagrangian

1
Lp(x,A) = EeTe +A(D"x —¢)
1 1
= EyTy —y Ax + ExTATAx +A(D"x —¢)
o
9Lp _ ATy +A"Ax + DA =0
ox
o
9Lp =D'x-c=0
A

ATA D) (% Ay X
(o o) ()] = e

(n+d)x(n+d) (n+d)x1
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3.3 Linearization of non-linear observation equations

General multi-D formulation

yi=fi(x;), i=1...,m; j=1,...,n

Xjo0 — Yio = fi(xj,o)

I?) 7} 7}