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1 Introduction

Ausgleichungs-

rechnung
Adjustment theory deals with the optimal combination of redundant measurements together with

the estimation of unknown parameters.

Teunissen, 2000

1.1 Adjustment theory – a first look

To understand the purpose of adjustment theory consider the following simple highschool example

that is supposed to demonstrate how to solve for unknown quantities. In case 0 the price of apples

and pears is determined after doing groceries twice. After that we will discuss more interesting

shopping scenarios.

Case 0)

{
3 apples + 4 pears = 5.00e

5 apples + 2 pears = 6.00e

2 equations in 2 unknowns:

{
5 = 3G1 + 4G2
6 = 5G1 + 2G2

as matrix-vector system:

(
5

6

)
=

(
3 4

5 2

) (
G1
G2

)

linear algebra: ~ = �G

The determinant of matrix � reads det� = 3 · 2 − 5 · 4 = −14. Thus the above linear system can be

inverted:

G = �−1~ ⇐⇒
(
G1
G2

)
=

1

−14

(
2 −4
−5 3

) (
5

6

)
=

(
1

0.5

)

So each apple costs 1e and each pear 50 cents. The price can be determined because there are as

many unknowns (the price of apples and the price of pears) as there are observations (shopping

twice). The square and regular matrix � is invertible.

Remark 1.1 (terminology) The left-hand vector ~ contains the observations. The vector G contains

the unknown parameters. The two vectors are linked through the design matrix �. The linear model

~ = �G is known as the model of observation equations.

The following cases demonstrate that the idea of determining unknowns from observations is not

as straightforward as may seem from the above example.
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1.1 Adjustment theory – a first look

Case 1a)

If one buys twice as much apples and pears the second time, and if one has to pay twice as much as

well, no new information is added to the system of linear equations

3a + 4p = 5e

6a + 8p = 10e

}
⇐⇒

(
5

10

)
=

(
3 4

6 8

) (
G1
G2

)

The matrix� has linearly dependent columns (and rows), i.e. it is singular. Correspondingly det� =

0 and the inverse �−1 does not exist. The observations (5e and 10e) are consistent, but the vector

G of unknowns (price per apple or pear) cannot be determined. This situation will return later with

so-called datum problems. Seemingly trivial, case 1a) is of fundamental importance.

Case 1b)

Suppose the same shopping scenario as above, but now one needs to pay 8e the second time.

~ =

(
5

8

)

In this alternative scenario, the matrix is still singular and G cannot be determined. But worse still,

the observations ~ are inconsistent with the linear model. Mathematically, they do not fulfil the

compatibility conditions. In data analysis inconsistency is not necessarily a weakness. In fact, it

may add information to the linear system. It might indicate observation errors (in ~), for instance a

miscalculation of the total grocery bill. Or it might indicate an error in the linear model: the prices

may have changed in between, which leads to a different �.

Case 2)

We go back to the consistent and invertible case 0. Suppose a third combination of apples and pears

gives an inconsistent result.

©­­«
5

6

3

ª®®¬
=

©­­«
3 4

5 2

1 2

ª®®¬

(
G1
G2

)

The third row is inconsistent with G1 = 1, G2 =
1
2
from case 0. But one can equally maintain that the

first row is inconsistent with the second and third. In short, we have redundant and inconsistent

information: the number of observations (< = 3) is larger than the number of unknowns (= = 2).

Consequently, matrix � is not a square matrix.

Although a standard inversion is not possible anymore, redundancy is a positive characteristic in

engineering disciplines. In data analysis redundancy provides information on the quality of the

observations, it strengthens the estimation of the unknowns and allows us to perform statistical

tests. Thus, redundancy provides a handle to quality control.

But obviously the inconsistencies have to be eliminated. This is done by spreading them out in

an optimal way. This is the task of adjustment: to combine redundant and inconsistent data in an

optimal way. Two main questions will be addressed in the first part of this course:

• How to combine inconsistent data optimally?

• Which criterion defines what optimal is?
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1 Introduction

Errors

The inconsistencies may be caused by model errors. If the green grocer changed his prices between

two rounds of shopping we need to introduce new parameters. In surveying, however, the observa-

tion models are usually well-defined, e.g. the sum of angles in a plane triangle equals c . So usually

the inconsistencies arise from observation errors. To make the linear system ~ = �G consistent

again, we need to introduce an error vector 4 with the same dimension as the observation vector.

~
<×1

= �
<×=

G
=×1
+ 4

<×1
. (1.1)

Errors go under several names: inconsistencies, residuals, improvements, deviations, discrepancies,

and so on.

Remark 1.2 (sign convention) In many textbooks the error vector is put at the same side of the

equation as the observations: ~ + 4 = �G . Where to put the 4-vector is rather a philosophical question.

Practically, though, one should be aware of the definitions used, how the sign of 4 is defined.

Three different types of errors are usually identified:

i)
grober Fehler

Gross error , also known as blunder or outlier.

ii)
systematischer

Fehler Systematic error , or bias.

iii)Zufallsfehler Random error .

These types are visualized in fig. 1.1. In this figure, one can think of the marks left behind by the

arrow points in a game of darts, in which one attempts to aim at the bull’s eye. Whatever the type,

(a) gross error (b) systematic error (c) random error

Figure 1.1: Different types of errors.

errors are stochastic quantities. Thus, the vector 4 is a (<-dimensional)Zufallsvariable stochastic variable. The

vector of observations is consequently also a stochastic variable. Such quantities will be underlined,

if necessary:

~ = �G + 4 .

Nevertheless, it will be assumed in the sequel that 4 is drawn from a distribution of random errors.
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1.2 Historical development

1.2 Historical development

The question how to combine redundant and inconsistent data has been treated in many different

ways in the past. To compare the different approaches, the following mathematical framework is

used:

observation model: ~ = �G

combination: !
=×<

~
<×1

= !
=×<

�
<×=

G
=×1

invert: G = (!�)−1!~

= �~

From amodern viewpoint matrix � is a left-inverse of� because �� = � . Note that such a left-inverse

is not unique, as it depends on the choice of the combination matrix !.

Method of selected points – before 1750

A simple way out of the overdetermined problem is to select only so many observations (“points”)

as there are unknowns. The remaining unused observations may be used to validate the estimated

result. This is the so-calledmethod of selected points. Suppose one uses only the first= observations.

Then:

!
=×<

= [ �
=×=

0
=×(<−=)

]

The trouble with this approach, obviously, is the arbitrariness of the choice of = observations. There

are
(<
=

)
choices.

From amodern perspective the method of selected points resembles the principle of cross-validation.

The idea of this principle is to deliberately leave out a limited number of observations during the

estimation and to use the estimated parameters to predict values for those observations that were left

out. A comparison between actual and predicted observations provides information on the quality

of the estimated parameters.

Method of averages – ca. 1750

In 1714 the British government offered the Longitude Prize for the precise determination of a ship’s

longitude. Tobias Mayer’s1 approach was to determine longitude, or rather time, through the mo-

tion of the moon. In the course of his investigations he needed to determine the libration of the

moon through measurement to lunar surface (craters). This led him to overdetermined systems of

observation equations:

~
27×1

= �
27×3

G
3×1

Mayer called them equations of conditions, which is, from today’s view point, an unfortunate desig-

nation.

1Tobias Mayer (1723–1762) made the breakthrough that enabled the lunar distance method to become a practicable way

of finding longitude at sea. As a young man, he displayed an interest in cartography and mathematics. In 1750, he

was appointed professor in the Georg-August Academy in Göttingen, where he was able to devote more time to his

interests in lunar theory and the longitude problem. From 1751 to 1755, he had an extensive correspondence with

Leonhard Euler, whose work on differential equations enabled Mayer to calculate lunar distance tables.
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1 Introduction

Mayer’s adjustment strategy:

• distribute the observations into three groups

• sum up the equations within each group

• solve the 3 × 3-system.

!
3×27

=
©­­«
1 1 · · · 1 0 0 0 0 0 0 0 0

0 0 0 0 1 1 · · · 1 0 0 0 0

0 0 0 0 0 0 0 0 1 1 · · · 1

ª®®¬
Mayer actually believed each aggregate of 9 observations to be “9 times more precise” than a single

observation. Today we know that this should be
√
9 = 3.

Euler’s a�empt – 1749

Leonhard Euler2

Background:

• Orbital motion of the Saturn under influence of Jupiter

• Stability of the solar system

• Prize (1748) of the Academy of Sciences, Paris

75 observations from the years 1582–1745; 6 unknowns =⇒ Given up!

Euler was mathematician −→ “Error bounds”

Laplace’s a�empt – ca. 1787

Laplace3

Background: Saturn, too

Reformulated: 4 unknowns

Best data: 24 observations

Approach: like Mayer, but other combinations:

~
24×1

= �
24×4

G
4×1

!
4×24

~
24×1

= !
4×24

�
24×4

G
4×1

G = (!�)−1!~
2Euler (1707–1783) was a Swiss mathematician and physicist. He is considered to be one of the greatest mathematicians

who ever lived. Euler was the first to use the term function (defined by Leibniz in 1694) to describe an expression

involving various arguments; i.e. ~ = � (G). He is credited with being one of the first to apply calculus to physics.
3Pierre-Simon, Marquis de Laplace (1749–1827) was a French mathematician and astronomer who put the final capstone

onmathematical astronomy by summarizing and extending the work of his predecessors in his five volumeMécanique

Céleste (Celestial Mechanics) (1799–1825). This masterpiece translated the geometrical study of mechanics used by

Newton to one based on calculus, known as physical mechanics. He is also the discoverer of Laplace’s equation and the

Laplace transform, which appear in all branches of mathematical physics – a field he took a leading role in forming.

He became count of the Empire in 1806 and was named a marquis in 1817 after the restoration of the Bourbons.

Pierre-Simon Laplace was among the most influential scientists in history.
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1.2 Historical development

!
4×24

=


1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

1 1 1 1 1 1 1 1 1 1 1 1 −1 −1 −1 −1 −1 −1 −1 −1 −1 −1 −1 −1
−1 0 1 1 0 0 −1 0 0 1 1 0 0 −1 0 0 1 1 0 −1 0 0 1 1

0 1 0 0 −1 −1 0 1 1 0 0 −1 −1 0 1 1 0 0 −1 0 1 1 0 0


Method of least absolute deviation – 1760

Roger Boscovich4

Ellipticity of the Earth

5 observations (Quito, Cape Town, Rome, Paris, Lapland)

2 unknowns

" (i) = 0(1 − 42)
(1 − 42 sin2 i) 32

= 0(1 − 42) (1 + 3

2
42 sin2 i + ...)�����

" (0) = 0(1 − 42) < 0
" ( c

2
) = 0 1−42

(1−42)
3
2
=

0√
1−42

> 0

= G1 + sin2 iG2

First a�empt: All
(5
2

)
=

5!
2!(5−2)! =

5·4·3·2·1
2·1·3·2·1 = 10 combinations with 2 observations each.

=⇒ 10 systems of equations (2 × 2)
=⇒ 10 solutions

Comparison of results.

His result: gross variations of the ellipticity =⇒ reject the ellipsoidal hypothesis.

Second a�empt: The mean deviation (or sum of deviations) should be zero:

5∑
8=1

48 = 0 ,

and the sum of absolute deviations should be minimum:

5∑
8=1

|48 | = min .

This is an objective adjustment criterion, although its implementation is mathematically difficult.

This is the approach of !1-norm minimization.

Method of least squares – 1805

In 1805 Legendre5 published his Methode der

kleinsten

�adrate

method of least squares (in French: moindres carrés). The name least

squares refers to the fact the sum of square residuals is minimized. Legendre developed the method

4Rudjer Josip Bošković aka. Roger Boscovich (1711–1787) was a Croatian Jesuit, a mathematician and an innovative

physicist, he was active also in astronomy, nature philosophy and poetry as well as technician and geodesist.
5Adrien-Marie Legendre (1752–1833) was a French mathematician. He made important contributions to statistics, num-

ber theory, abstract algebra and mathematical analysis.
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1 Introduction

for the determination of orbits of comets and to derive the Earth ellipticity. As will be derived in the

next chapter, the matrix ! will be the transposed of the design matrix �:

L =

5∑
8=1

428 = 4T4 = (~ −�G)T(~ −�G) = min
Ĝ

⇐⇒ ! = �T

⇐⇒ Ĝ
=×1

= ( �T�︸︷︷︸)−1
=×=

�T

=×<
~

<×1

After Legendre’s publication Gauss states that he already developed and used the method of least

squares in 1794. He published his own theory only several years later. A bitter argument over the

scientific priority broke out. Nowadays it is acknowledged that Gauss’s claim of priority is very

likely valid but that he refrained from publication because he found his results still premature.
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2 Least squares adjustment

Legendre’s method of least squares is actually not a method. Rather, it provides the criterion for the

optimal combination of inconsistent data: combine the observations such that the sum of squared

residuals is minimal. It was seen already that this criterion defines the combination matrix !:

!~ = !�G =⇒ G = (!�)−1!~ .

But what is so special about ! = �T? In this chapter we will derive the equations of least squares

adjustment from several mathematical viewpoints:

• geometry: smallest distance (Pythagoras)

• linear algebra: orthogonality between the optimal 4 and the columns of �: �T4 = 0

• calculus: minimizing target function→ differentiation

• probability theory: BLUE (Best Linear Unbiased Estimate)

These viewpoints are elucidated by a simple but fundamental example in which a distance is mea-

sured twice.

2.1 Adjustment with observation equations

We will start with the model of the introduction ~ = �G . This is the vermi�elnde

Ausgleichung

model of observation equations,

in which observations are linearly related to unknowns.

Suppose that, in order to determine a certain distance, it is measured twice. Let the unknown dis-

tance be G and the observations ~1 and ~2:

direkte

Beobachtungen

~1 = G

~2 = G

}
=⇒

(
~1
~2

)
=

(
1

1

)
G =⇒ ~ = 0G (2.1)

If ~1 = ~2 the equations are consistent and the parameter G clearly solvable: G = ~1 = ~2. If, on

the other hand, ~1 ≠ ~2 the equations are inconsistent and G not solvable directly. Given a limited

measurement precision the latter scenario will be more likely. Let’s therefore take into account

measurement errors 4 . (
~1
~2

)
=

(
1

1

)
G +

(
41
42

)
=⇒ ~ = 0G + 4 (2.2)

A geometric view

The column vector 0 spans up a line ~ = 0G in R2. This line is the 1D model space or Spaltenraumrange space

of �: R(�). Inconsistency of the observation vector means that ~ does not lie on this line. Instead,

13



2 Least squares adjustment

there is some vector of discrepancies 4 that connects the observations to the line. Both this vector

4 and the point on the line, defined by the unknown parameter G , must be found, see the left panel

of fig. 2.1. Adjustment of observations is about finding the optimal 4 and G . An intuitive choice for

(a) Inconsistent data: the observation vec-

tor ~ is not in the model space, i. e. not

on the line spanned by 0.

(b) Least squares adjustment means or-

thogonal projection of ~ onto the line

0G . This guarantees the shortest 4 .

Figure 2.1

“optimality” is to make the vector 4 as short as possible. The shortest possible 4 is indicated by a

hat: 4̂ . The squared length 4̂T4̂ =
∑

8 4̂
2
8 is the smallest of all possible 4T4 =

∑
8 4

2
8 , which explains the

name least squares. If 4̂ is determined, we will at the same time know the optimal Ĝ .

How do we get the shortest 4? The right panel of fig. 2.1 show that the shortest 4 is perpendicular

to 0:

4̂ ⊥ 0

Subtracting 4̂ from the vector of observations ~ leads to the point ~̂ = 0Ĝ that is on the line and

closest to ~. This is the vector of adjusted observations. Being on the line means that ~̂ is consistent.

If we now substitute 4̂ = ~−0Ĝ , the least squares criterion leads us subsequently to optimal estimates

of G , ~ and 4:

orthogonality 4̂ ⊥ 0 0T4̂ = 0 (2.3a)

0T(~ − 0Ĝ) = 0 (2.3b)

normal equations 0T0Ĝ = 0T~ (2.3c)

LS estimate of G Ĝ = (0T0)−10T~ (2.3d)

LS estimate of ~ ~̂ = 0Ĝ = 0(0T0)−10T~ (2.3e)

LS estimate of 4 4̂ = ~ − ~̂ = [� − 0(0T0)−10T]~ (2.3f)

sum square residuals 4̂T4̂ = ~T [� − 0(0T0)−10T]~ (2.3g)
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2.1 Adjustment with observation equations

Exercise 2.1 Call the matrix in square brackets % and convince yourself that the sum of squares of the

residuals (the squared length of 4̂) in the last line indeed follows from the line above. Two things should

be shown: that % is symmetric, and that %% = % .

The least squares criterion leads us to the above algorithm. Indeed, the combination matrix reads

! = �T.

A calculus view

Let us define the Lagrangian or cost function:

L0 (G) =
1

2
4T4 , (2.4)

which is half of the sum of square residuals. Its graph would be a parabola. The factor 1
2
shouldn’t

worry us. If we find the minimum L0 , then any scaled version of it is also minimized. The task is

now to find the Ĝ that minimizes the Lagrangian. With 4 = ~−0G we get the minimization problem:

min
Ĝ
L0 (G) = min

Ĝ

1

2
(~ − 0G)T(~ − 0G)

= min
Ĝ

(
1

2
~T~ − G0T~ + 1

2
0T0G2

)
.

The term 1
2
~T~ is just a constant that doesn’t play a role in the minimization. The minimum occurs

at the location where the derivative of L0 is zero (necessary condition):

dL0

dG
(Ĝ) = −0T~ + 0T0Ĝ = 0 .

The solution of this equation, which happens to be the normal equation (2.3c), is the Ĝ we are looking

for:

Ĝ = (0T0)−10T~ .

To make sure that the derivative does not give us a maximum, we must check that the second

derivative of L0 is positive at Ĝ (sufficiency condition):

d2L0

dG2
(Ĝ) = 0T0 > 0 ,

which is a positive constant for all G indeed.

Projectors

Figure 2.1 shows that the optimal, consistent ~̂ is obtained by an orthogonal projection of the original

~ onto the line 0G . Mathematically this was translated by (2.3e) as:

~̂ = 0(0T0)−10T~ (2.5a)

⇐⇒ ~̂ = %0~ (2.5b)

with %0 = 0(0T0)−10T . (2.5c)

15



2 Least squares adjustment

The matrix %0 is an orthogonal projector. It is an idempotent matrix, meaning:

%0%0 = 0(0T0)−10T0(0T0)−10T = %0 . (2.6)

It projects onto the line 0G along a direction orthogonal to 0. With this projection in mind, the

property %0%0 = %0 becomes clear: if a vector has been projected already, the second projection has

no effect anymore.

Also (2.3f) can be abbreviated:

4̂ = ~ − %0~ = (� − %0) ~ = %⊥0 ~ ,

which is also a projection. In order to give 4̂ the vector ~ is projected onto a line perpendicular to

0G along the direction 0. And, of course, %⊥0 is idempotent as well:

%⊥0 %
⊥
0 = (� − %0) (� − %0) = � − 2%0 + %0%0 = � − %0 = %⊥0 .

Moreover, the definition (2.5c) makes clear that %0 and %
⊥
0 are symmetric. Therefore the square sum

of residuals (2.3g) could be simplified to:

4̂T4̂ = ~T%⊥0
T
%⊥0 ~ = ~T%⊥0 %

⊥
0 ~ = ~T%⊥0 ~ .

At a more fundamental level the definition of the orthogonal projector %⊥0 = � − %0 can be recast

into the equation:

� = %0 + %⊥0 .

Thus, we canzerlegen decompose every vector, say I, into two components: one in component in a subspace

defined by %0 , the other mapped onto a subspace by %⊥0 :

I = �I =
(
%0 + %⊥0

)
I = %0I + %⊥0 I .

In the case of ls adjustment, the subspaces are defined by the range space R(0) and its orthogonal

complement R(0)⊥:
~ = %0~ + %⊥0 ~ = ~̂ + 4̂ ,

which is visualized in fig. 2.1.

Numerical example

With 0 = (1 1)T we will follow the steps from (2.3):

(0T0)Ĝ = 0T~ ←→ 2Ĝ = ~1 + ~2

Ĝ = (0T0)−10T~ ←→ Ĝ =
1

2
(~1 + ~2) (average)

~̂ = 0(0T0)−10T~ ←→
(
~̂1
~̂2

)
=
1

2

(
~1 + ~2
~1 + ~2

)

4̂ = ~ − ~̂ ←→
(
4̂1
4̂2

)
=
1

2

(
~1 − ~2
−~1 + ~2

)
(error distribution)

4̂T4̂ ←→ 1

2
(~1 − ~2)2 (least squares)

16



2.2 Adjustment with condition equations

Exercise 2.2 Verify that the projectors are

%0 =
1

2

(
1 1

1 1

)
and %⊥0 = � − %0 =

1

2

(
1 −1
−1 1

)

and check the equations ~̂ = %0~ and 4̂ = %⊥0 ~ with the numerical results above.

2.2 Adjustment with condition equations

In the ideal case, in which the measurements ~1 and ~2 are without error, both observations would

be equal: ~1 = ~2 or ~1 − ~2 = 0. In matrix notation:

(
1 −1

) (
~1
~2

)
= 0 =⇒ 1T

1×2
~
2×1
= 0

1×1
. (2.7)

In reality, though, both observations do contain errors, i.e. they are not equal: ~1−~2 ≠ 0 or 1T~ ≠ 0.

Instead of 0 one would obtain a Widerspruchmisclosure F . If we recast the observation equation into ~ − 4 = 0G ,
it is clear that it is (~ − 4) that has to obey the above condition:

1T(~ − 4) = 0 =⇒ F := 1T~ = 1T4 . (2.8)

In this Bedingungs-

gleichung

condition equation the vector 4 is unknown. The task of adjustment according to the model

of condition equations is to find the smallest possible 4 that fulfills the condition (2.8). At this stage,

the model of condition equations does not involve any kind of parameters G .

A geometric view

The condition (2.8) describes a line with normal vector 1 that goes through the point ~. This line is

the set of all possible vectors 4 . We are looking for the shortest 4 , i.e. the point closest to the origin.

Figure 2.2 makes it clear that 4̂ is perpendicular to the line 1T4 = F . So 4̂ lies on a line through 1.

Geometrically, 4̂ is achieved by projecting ~ onto a line through 1. Knowing the definition of the

projectors from the previous section, we here define the following Schätzungenestimates by using the projector

%1 :

4̂ = %1~ = 1 (1T1)−11T~ = 1 (1T1)−1F (2.9a)

~̂ = ~ − 4̂ = ~ − 1 (1T1)−11T~

= [� − 1 (1T1)−11T]~ = %⊥1 ~ (2.9b)

4̂T4̂ = ~T%1~ = ~T1 (1T1)−11T~ (2.9c)

Exercise 2.3 Confirm that the orthogonal projector %1 is idempotent and verify that the equation for

4̂T4̂ is correct.
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2 Least squares adjustment

(a) The condition equation describes a line inR2,

perpendicular to 1 and going through ~. We

are looking for a point 4 on this line.

(b) Least squares adjustment with condition

equations means orthogonal projection of ~

onto the line through 1. This guarantees the

shortest 4 .

Figure 2.2

Numerical example

With 1T =

(
1 −1

)
we get

1T1 = 2 =⇒ (1T1)−1 = 1

2

%1 = 1 (1T1)−11T =
1

2

(
1

−1

) (
1 −1

)
=
1

2

(
1 −1
−1 1

)

=⇒ 4̂ = %1~ =
1

2

(
~1 − ~2
−~1 + ~2

)

%⊥1 = � − %1 =

(
1 0

0 1

)
− 1

2

(
1 −1
−1 1

)
=
1

2

(
1 1

1 1

)

=⇒ ~̂ = %⊥1 ~ =
1

2

(
~1 + ~2
~1 + ~2

)

These results for ~̂ and 4̂ are the same as those for the adjustment with observation equations. The

estimator ~̂ describes the mean of the two observations, whereas the estimator 4̂ distributes the

inconsistencies equally. Also note that %
1
= %⊥0 and vice versa.

18



2.2 Adjustment with condition equations

A calculus view

Alternatively we can again determine the optimal 4 by minimizing the target function L1 (4) = 4T4 ,
but now under the condition 1T(~ − 4) = 0:

min
4̂
L1 (4) = 4T4 under 1T(~ − 4) = 0 , (2.10a)

min
4̂,_̂

L1 (4, _) =
1

2
4T4 + _T(1T~ − 1T4) . (2.10b)

The main trick here – due to Lagrange – is to not consider the condition as a constraint or limitation

of the minimization problem. Instead, the minimization problem is extended. To be precise, the

condition is added to the original cost function, multiplied by a factor _. Such factors are called

Lagrangian multipliers. In case of more than one condition, each gets its own multiplier. The target

function L1 is now a function of 4 and _.

The minimization problem now exists in finding the 4̂ and _̂ that minimize the extended L1 . Thus

we need to derive the partial derivatives of L1 towards 4 and _. Next, we impose the conditions that

these partial derivatives are zero when evaluated in 4̂ and _̂.

mL
m4
(4̂, _̂) = 0 =⇒ 4̂ − 1_̂ = 0

mL
m_
(4̂, _̂) = 0 =⇒ 1T~ − 1T4̂ = 0

In matrix terms, the minimization problem leads to:

(
� −1
−1T 0

) (
4̂

_̂

)
=

(
0

−1T~

)
. (2.11)

Because of the extension of the original minimization problem, this system is square. It might be

inverted in a straightforward manner, see also A.1. Instead, we will solve it stepwise. First, rewrite

the first line:

4̂ − 1_̂ = 0 =⇒ 4̂ = 1_̂ .

This result is then used to eliminate 4̂ in the second line:

1T~ − 1T1_̂ = 0 ,

which is solved by:

_̂ = (1T1)−11T~ .

With this result we go back to the first line:

4̂ − 1 (1T1)−11T~ = 0 ,

which is finally solved by:

4̂ = 1 (1T1)−11T~ = %1~ .

This is the same estimator 4̂ as (2.9a).
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2 Least squares adjustment

2.3 Synthesis

Both the calculus and geometric approach provide the same ls estimators. This is due to

%0 = %⊥1 and %1 = %⊥0 ,

as can be seen in fig. 2.3. The deeper reason is that 0 is perpendicular to 1:

1T0 =

(
1 −1

) (
1

1

)
= 0 , (2.12)

which fundamentally connects the model with observation equations to the model with condition

equations. Starting with the observation equation, and applying the orthogonality, one ends up with

the condition equation:

~ = 0G + 4 1T−→ 1T~ = 1T0G + 1T4 1T0=0−→ 1T~ = 1T4 .

Figure 2.3: Least squares adjustment with

observation equations and

with condition equations in

terms of the projectors %0 and

%1 .
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3 Generalizations

In this chapter we will apply several generalizations. First we will take the ls adjustment problems

to higher dimensions. What we will basically do is replace the vector 0 by an (< × =) matrix �

and replace the vector 1 by an (< × (< − =)) matrix �. The basic structure of the projectors and

estimators will remain the same.

Moreover, we need to be able to formulate the 2 ls problems with constant terms:

~ = �G + 00 + 4 and �T(~ − 4) = 10 .

Next, we will deal with nonlinear observation equations and nonlinear condition equations. This

will involve linearization, the use of approximate values, and iteration.

We will also touch upon the datum problem, which arises if � contains dependent columns. Math-

ematically we have rank� < = so that the normal matrix has det�T� = 0 and is not invertible.

At the endwewill merge bothmodels in order to establish the so-called general model of adjustment

theory.

3.1 Higher dimensions: the G-model (observation equations)

The vector of observations ~, the vector of inconsistencies 4 and their respective ls-estimators will

be (< × 1) vectors. The vector G will contain = unknown parameters. Thus the redundancy, that is

the number of redundant observations, is:

redundancy: A =< − = .

Geometry

~ = �G +4 is the multidimensional extension of~ = 0G +4 with given (reduced) Absolutglied-

vektor

vector of observations

~.

We split � in its = column vectors 08
<×1

, 8 = 1, . . . , =

�
<×=

= [ 01
<×1
, 02
<×1
, 03
<×1
, . . . , 0=

<×1
]

~
<×1

=

=∑
8=1

08
<×1

G8
1×1
+ 4

<×1
,

which span an =-dimensional vector space as a subspace of E< .
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3 Generalizations

Example:< = 3, = = 2 ( ~
<×1

spans an E
3)

(a) The vectors ~, 01 and 02 all lie in R
3. (b) To see that ~ is inconsistent, the space

spanned by 01 and 02, is shown as the base

plane. It is clear that the observation vector

is not in this plane ~ ∉ R(�), i.e. ~ cannot be

written as a linear combination of 01 and 02.

Figure 3.1

4̂ = %⊥�~ = [� −�(�T�)−1�T]~

~̂ = %�~ = �(�T�)−1�T~ = �Ĝ

Ĝ = (�T�)−1�T~

(�T�)−1 existsgenau dann,

wenn

iff rank� = = = rank(�T�).

Calculus

L� (G) =
1

2
4T4

=
1

2
(~ −�G)T(~ −�G)

=
1

2
~T~ − 1

2
~T�G − 1

2
GT�T~ + 1

2
GT�T�G

G−→ min

mL
mG
(Ĝ) = 0 =⇒ 4̂ = ~ − ~̂ = [� −�(�T�)−1�T]~ = %⊥�~
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3.2 The datum problem

Solution approach 1: reduce solution space

• Fix 3 = dimN(�) unknowns and eliminate corresponding columns in � so that the rank of

A, rank� = = − 3 , is full.

• Move fixed unknowns to the observation vector, e.g. fix �1:

=⇒
©­­«
ℎ12 + �1

ℎ13 + �1

ℎ32

ª®®¬
=

©­­«
1 0

0 1

1 −1

ª®®¬

(
�2

�3

)

Solution approach 2: augment solution space

Augment solution space by adding 3 = dimN(�) constraints, e.g.

�1 = 0 =⇒
(
1 0 0

) ©­­«
�1

�2

�3

ª®®¬
= 0 ∼ �T

3×=
G
=×1

= 2
3×1

In order to remove the rank deficiency of �, matrix �T must be chosen in such a way that

rank

(
[�T

=×<
| �

=×3
]
)
= = .

�� = 0, however is not required. As an example, �T
= [1,−1, 0] is not permitted. The approach of

augmenting the solution space is far more flexible as compared to approach 1: no changes of original

quantities ~, � are necessary. Even curious constraints are allowed as long as datum deficiency is

resolved. However, we are faced with the constrained Lagrangian

L� (G, _) =
1

2
4T4 + _(�TG − 2)

=
1

2
~T~ − ~T�G + 1

2
GT�T�G + _(�TG − 2)

mL�

mG
= −�T~ +�T�G + �_ = 0

mL�

m_
= �TG − 2 = 0

=⇒
(
�T� �

�T 0

)
(=+3 )×(=+3 )

(
Ĝ

_̂

)
(=+3 )×1

=

(
�T~

2

)
=⇒ "Î = E
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3.3 Linearization of non-linear observation equations

General multi-D formulation

~8 = 58 (G 9 ), 8 = 1, . . . ,<; 9 = 1, . . . , =

G 9,0 −→ ~8,0 = 58 (G 9,0)

Δ~1 =
m51

mG1

����
0

ΔG1 +
m51

mG2

����
0

ΔG2 + · · · +
m51

mG=

����
0

ΔG=

Δ~2 =
m52

mG1

����
0

ΔG1 +
m52

mG2

����
0

ΔG2 + · · · +
m52

mG=

����
0

ΔG=

...

Δ~< =
m5<

mG1

����
0

ΔG1 +
m5<

mG2

����
0

ΔG2 + · · · +
m5<

mG=

����
0

ΔG= .

Terms of second order and higher have been neglected.

=⇒
©­­­­«

Δ~1
Δ~2
...

Δ~<

ª®®®®¬
=

©­­­«

m51
mG1

m51
mG2
· · · m51

mG=
...

. . .
...

m5<
mG1

m5<
mG2
· · · m5<

mG=

ª®®®¬

��������
0︸                      ︷︷                      ︸

Jacobian matrix �

©­­­­«

ΔG1
ΔG2
...

ΔG=

ª®®®®¬
∼ Δ~ = �(G0) ΔG

Planar distance observation:

B8 9 =

√
(G 9 − G8)2 + (~ 9 − ~8)2

?−→ ~ = �G

answer: linearize, Taylor series expansion

Linearization of planar distance observation equation (given Taylor point of expansion is G08 , ~
0
8 , G

0
9 ,

~09 = approximate values of unknown point coordinates); explicit differentiation

B8 9
“measured”

=

√
(G 9 − G8)2 + (~ 9 − ~8)2 =

√
G28 9 + ~28 9

G8 = G
0
8 + ΔG8 , ~8 = ~

0
8 + Δ~8 ,

G 9 = G
0
9 + ΔG 9 , ~ 9 = ~

0
9 + Δ~ 9

B8 9 =

√(
G09 + ΔG 9 −

(
G08 + ΔG8

) )2
+

(
~09 + Δ~ 9 −

(
~08 + Δ~8

) )2

=

√(
G09 − G08

)2
+

(
~09 − ~08

)2
︸                           ︷︷                           ︸

= B08 9 (distance from

approximate coordinates)

+
mB8 9

mG8

����
0

ΔG8 +
mB8 9

mG 9

����
0

ΔG 9 +
mB8 9

m~8

����
0

Δ~8 +
mB8 9

m~ 9

����
0

Δ~ 9
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3 Generalizations

mB8 9

mG8
=
mB8 9

mG8 9

mG8 9

mG8
=
1

2

1√
G28 9 + ~28 9

2G8 9 (−1) = −
G 9 − G8
B8 9

mB8 9

mG 9
= +

G 9 − G8
B8 9

,
mB8 9

m~8
= −

~ 9 − ~8
B8 9

,
mB8 9

m~ 9
= +

~ 9 − ~8
B8 9

=⇒ ΔB8 9 := B8 9 − B08 9︸  ︷︷  ︸
“reduced observation”

=

(
−G0

9−G0
8

B08 9
− ~09−~08

B08 9

G0
9−G0

8

B08 9

~09−~08
B08 9

) ©­­­­«

ΔG8
Δ~8
ΔG 9
Δ~ 9

ª®®®®¬
Δ~ = �(G0) ΔG

Sometimes it is more convenient to use implicit differentiation within the linearization of observa-

tion equations.

Depart from B28 9 =
(
G 9 − G8

)2 + (
~ 9 − ~8

)2
instead from B8 9 and calculate the total differential:

2/B8 9 dB8 9 = 2/
(
G 9 − G8

) (
dG 9 − dG8

)
+ 2/

(
~ 9 − ~8

) (
d~ 9 − d~8

)
Solve for dB8 9 , introduce approximate value and switch from d −→ Δ:

ΔB8 9 := B8 9 − B08 9 =
G09 − G08
B08 9

(
ΔG 9 − ΔG8

)
+
~09 − ~08
B08 9

(
Δ~ 9 − Δ~8

)

Grid bearings:

)8 9 = arctan
G 9 − G8
~ 9 − ~8

=⇒ Linearized grid bearing observation equation:

)8 9 = )
0
8 9 +

1

1 +
(
G0
9−G0

8

~09−~08

)2
(
− 1

~09 − ~08
ΔG8 +

G09 − G08
(~09 − ~08 )2

Δ~8 +
1

~09 − ~08
ΔG 9 −

G09 − G08
(~09 − ~08 )2

Δ~ 9

)

= ) 0
8 9 +
(~09 − ~08 )2

(B08 9 )2

(
− 1

~09 − ~08
ΔG8 +

G09 − G08
(~09 − ~08 )2

Δ~8 +
1

~09 − ~08
ΔG 9 −

G09 − G08
(~09 − ~08 )2

Δ~ 9

)

= ) 0
8 9 −

~09 − ~08
(B08 9 )2

ΔG8 +
G09 − G08
(B08 9 )2

Δ~8 +
~09 − ~08
(B08 9 )2

ΔG 9 −
G09 − G08
(B08 9 )2

Δ~ 9

Directions:

A8 9 = )8 9 − l8 (l8 additional unknown)

=⇒ linearization of bearing observation equation (see also Fig. 3.3)
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3.3 Linearization of non-linear observation equations

Figure 3.3: Linearization of bearing observation equation, bearing A8 9 , orientation unknown l8 .

A8 9 = )8 9 − l8

= arctan
G 9 − G8
~ 9 − ~8

− l8

= A 08 9 −
~09 − ~08
(B08 9 )2

ΔG8 +
G09 − G08
(B08 9 )2

Δ~8 +
~09 − ~08
(B08 9 )2

ΔG 9 −
G09 − G08
(B08 9 )2

Δ~ 9 − l8

Angles:

U8 9: = )8: −)8 9

= arctan
G: − G8
~: − ~8

− arctan
G 9 − G8
~ 9 − ~8

=⇒ Linearized angle observation equation:

U8 9: = ) 0
8: −)

0
8 9 +

(
−
~0
:
− ~08
(B0
8:
)2
+
~09 − ~08
(B08 9 )2

)
ΔG8 +

(
G0
:
− G08
(B0
8:
)2
−
G09 − G08
(B08 9 )2

)
Δ~8

+
~0
:
− ~08
(B0
8:
)2

ΔG: −
G0
:
− G08
(B0
8:
)2

Δ~: −
~09 − ~08
(B08 9 )2

ΔG 9 +
G09 − G08
(B08 9 )2

Δ~ 9

= U08 9: + . . .

3D intersection with additional vertical angles

3D distances:

38 9 =

√
(G 9 − G8)2 + (~ 9 − ~8)2 + (I 9 − I8)2 (8 = 1, . . . , 4; 9 ≡ %)

. . . linearization as usual.
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3 Generalizations

Vertical angles:

V8 9 = arccot

√
(G 9 − G8)2 + (~ 9 − ~8)2

I 9 − I8
other trigonometric relations applicable

= arccot
B8 9

I 9 − I8

= V08 9 −
1

1 +
(

B8 9
I 9−I8

)2 · . . . ΔG8 + . . . Δ~8 + . . . + . . . ΔI 9

Attention: physical units!

Figure 3.4: 3D intersection and vertical angles.

Iteration (see fig. 3.5)

Linearization (see 3.3) of the functional model ~ = 5 (G) yields the linear model:

Δ~ =
d5

dG

����
G0

ΔG + 4 = �(G0) ΔG + 4 .

The datum problem again

• Matrix �
<×=

is rank deficient (rank� < =),

• � has linear dependent columns,

• �G = 0 has non-trivial solution Ghom ≠ 0, i.e. the null space N(�) of � is not empty,

• det(�T�) = 0,

• �T� has zero eigenvalues.
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5.1 A-Model: Adjustment of observation equations

184868.1 184868.3 184868.5

725139.5

725139.7
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G

X/m

Y/
m

 

 

10cm

Error Ellipses

Approximate Point
Adjusted Point

Figure 5.20: Detailed view of point G.
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H
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Figure 5.21: Detailed view of point H.

185962.9 185963.1 185963.3 185963.5
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I
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10cm
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Figure 5.22: Detailed view of point I.
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5.1.7 Polynomial fit

Observations: ~8 , 8 = 1, . . . ,<.

Given: fixed x-coordinates G8 , 8 = 1, . . . ,<.

Find parameters 0= , = = 0, . . . , =max of fitting polynomial

5 (G) = ~ =

=max∑
==0

0=G
= .

Possible additional restrictions:

(a) tangent in (GT, ~T) should pass through (GP, ~P) or

(b) fitting polynomial should pass through (GQ, ~Q) or

(c) unknown coefficient 0: shall get the numerical value 0̃: .

Figure 5.23: Fitting polynomials of different degrees.

Observation equation

~8 =

=max∑
==0

0=G
= + 48 ,

~1 = 00G
0
1 + 01G11 + 02G21 + . . . + 41,

...

~< = 00G
0
< + 01G1< + 02G2< + . . . + 4< .

Vandermonde matrix �

©­­­­«

~1
~2
...

~<

ª®®®®¬︸︷︷︸
~

=

©­­­­«

1 G1 · · · G=max

1

1 G2 · · · G=max

2
...
...

1 G< · · · G=max
<

ª®®®®¬︸                ︷︷                ︸
�

©­­­­«

00
01
...

0=max

ª®®®®¬︸   ︷︷   ︸
b

+
©­­­­«

41
42
...

4<

ª®®®®¬︸︷︷︸
4

.
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5 Geomatics examples

b) adjusted polynomial shall pass through the point (GQ, ~Q)

~Q =

=max∑
==0

0=G
=
Q =⇒ �Tb = ~Q, �T =

(
1 GQ G2Q . . . G

=max

Q

)
.

c) The unknown coefficient 0: should have the fixed numerical value 0̃: .

�Tb = 0̃: , �T =

[
0 . . . 1︸︷︷︸

position : + 1

. . .
]

or eliminate unknown 0: from b by setting it to 0̃: from the very beginning.

Examples

G8 =
[
−1, 0, 1, 2, 3, 4, 5

]T
,

~8 =
[
1.3, 0.8, 0.9, 1.2, 2.0, 3.5, 4.1

]T
.

1) No restrictions: see Fig. 5.24.

2) With tangent restriction: see Fig. 5.25.

3) With point restriction: see Fig. 5.26.

4) With coefficient restriction: see Fig. 5.27.

−1 0 1 2 3 4 5
0

2

4

3rd order polynomial: 4̂T4̂ = 1.7 · 10−1

−1 0 1 2 3 4 5
0

2

4

1st order polynomial: 4̂T4̂ = 2.5

−1 0 1 2 3 4 5
0

2

4

2nd order polynomial: 4̂T4̂ = 3.4 · 10−1

−1 0 1 2 3 4 5
0

2

4

4th order polynomial: 4̂T4̂ = 7.5 · 10−2

−1 0 1 2 3 4 5
0

2

4

6th order polynomial: 4̂T4̂ = 2.4 · 10−29

−1 0 1 2 3 4 5
0

2

4

5th order polynomial: 4̂T4̂ = 8.8 · 10−4

Figure 5.24: Polynomial fit without restrictions.
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5.1 A-Model: Adjustment of observation equations

−1 0 1 2 3 4 5
0

2

4

3rd order polynomial: 4̂T4̂ = 2.1 · 10−1

−1 0 1 2 3 4 5
0

2

4

1st order polynomial: 4̂T4̂ = 6.3

−1 0 1 2 3 4 5
0

2

4

2nd order polynomial: 4̂T4̂ = 4.7 · 10−1

−1 0 1 2 3 4 5
0

2

4

4th order polynomial: 4̂T4̂ = 2.1 · 10−1

−1 0 1 2 3 4 5
0

2

4

6th order polynomial: 4̂T4̂ = 1.3 · 10−2

−1 0 1 2 3 4 5
0

2

4

5th order polynomial: 4̂T4̂ = 5.1 · 10−2

Figure 5.25: Polynomial fit with tangent restriction: tangent in GT = 1, ~̂T(GT) shall pass through the

point GP = 4, ~P = 2.
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0
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3rd order polynomial: 4̂T4̂ = 2.8

−1 0 1 2 3 4 5
0

2

4

1st order polynomial: 4̂T4̂ = 3.1

−1 0 1 2 3 4 5
0

2

4

2nd order polynomial: 4̂T4̂ = 2.9

−1 0 1 2 3 4 5
0

2

4

4th order polynomial: 4̂T4̂ = 2.5

−1 0 1 2 3 4 5
0

2

4

6th order polynomial: 4̂T4̂ = 1.3

−1 0 1 2 3 4 5
0

2

4

5th order polynomial: 4̂T4̂ = 1.4

Figure 5.26: Polynomial fit with point restriction: adjusted polynomial shall pass through the point

GQ = 1.5, ~Q = 2.
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−1 0 1 2 3 4 5
0

2

4

3rd order polynomial: 4̂T4̂ = 3.5 · 10−1

−1 0 1 2 3 4 5
0

2

4

1st order polynomial: 4̂T4̂ = 1.0 · 101

−1 0 1 2 3 4 5
0

2

4

2nd order polynomial: 4̂T4̂ = 3.9 · 10−1

−1 0 1 2 3 4 5
0

2

4

4th order polynomial: 4̂T4̂ = 3.4 · 10−1

−1 0 1 2 3 4 5
0

2

4

6th order polynomial: 4̂T4̂ = 3.7 · 10−4

−1 0 1 2 3 4 5
0

2

4

5th order polynomial: 4̂T4̂ = 1.2 · 10−3

Figure 5.27: Polynomial fit with coefficient restriction: coefficient 0̂1 shall vanish, i. e. 0̂1 = 0.

More examples: Various straight line fits. For the numerics, the values on page 74 were reused.

1) Straight line fit using A-Model, with inconsistencies 4~8 in observations~8 (&
−1
~ = � ). Observation

equation: ~8 = 00 + 01G8 .

Results (see also figure 5.28):

0̂0 = 0.907, 0̂1 = 0.532, 4̂T%4̂ = 2.505,

~̂ =
[

0.375, 0.907, 1.439, 1.971, 2.504, 3.036, 3.568
]T
,

4̂~ =
[

0.925, −0.107, −0.539, −0.771, −0.504, 0.464, 0.532
]T
.

−1 0 1 2 3 4 5
0

1

2

3

4

G

~

data points
adjusted data
residuals

Figure 5.28: A-model with inconsistencies in ~8 , uniform weights.
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5.2 B-Model: Adjustment of condition equations

5.2.1 Planar triangle 1

Figure 5.30: Triangle observed by angles

Observations: angles U , V , W

Unknowns: inconsistencies 4U , 4V , 4W =⇒ linear function

5 (4U , 4V , 4W ) = (U − 4U ) + (V − 4V ) + (W − 4W ) − 180° = 0 .

Model adjustment condition equations

�T(~ − 4) − 180° = �T~ − 180° − �T4 = F − �T4 = 0

with 4 =
(
4U , 4V , 4W

)T
, ~ =

(
U, V, W

)T
and F = �T~ − 180° (“misclosure”).
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5.2 B-Model: Adjustment of condition equations

5.2.2 Planar triangle 2

Figure 5.31: Triangle observed by angles and distances.

Observations: angles U , V , distances 0, 1

Unknowns: inconsistencies 40 , 41 , 4U , 4V =⇒ non-linear function 5

5 (40, 41, 4U , 4V ) = (0 − 40) sin(V − 4V ) − (1 − 41) sin(U − 4U ) = 0,

linearized with respect to the “Taylor point” (400, 401, 4
0
U , 4

0
V
) =: |0

5
(
40, 41, 4U , 4V

)
= 5

(
400, 4

0
1, 4

0
U , 4

0
V

)
+ m5

m40

����
0

(
40 − 400

)
+ m5

m41

����
0

(
41 − 401

)

+ m5

m4U

����
0

(
4U − 40U

)
+ m5

m4V

����
0

(
4V − 40V

)
!
= 0,

5
(
400, 4

0
1, 4

0
U , 4

0
V

)
= (0 − 400) sin(V − 40V ) − (1 − 4

0
1) sin(U − 4

0
U )

= 0 sin(V − 40V ) − sin(V − 4
0
V )4

0
0 − 1 sin(U − 40U ) + sin(U − 40U )401,

m5

m40

����
0

(
40 − 400

)
= − sin(V − 40V )

(
40 − 400

)
= − sin(V − 40V )40 + sin(V − 4

0
V )4

0
0,

m5

m41

����
0

(
41 − 401

)
= sin(U − 40U )

(
41 − 401

)
= sin(U − 40U )41 − sin(U − 40U )401,

m5

m4U

����
0

(
4U − 40U

)
=

(
1 − 401

)
cos(U − 40U )

(
4U − 40U

)
=

(
1 − 401

)
cos(U − 40U )4U −

(
1 − 401

)
cos(U − 40U )40U ,

m5

m4V

����
0

(
4V − 40V

)
= −

(
0 − 400

)
cos(V − 40V )

(
4V − 40V

)

= −
(
0 − 400

)
cos(V − 40V )4V +

(
0 − 400

)
cos(V − 40V )4

0
V .

Model adjustment condition equations

F − �T4 = 0 with 4 =
(
40, 41, 4U , 4V

)T
.
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5.3 Mixed model

5.3 Mixed model

5.3.1 Straight line fit using A-model with pseudo observation equations

Example: Straight line fit using A-Model, with inconsistencies 4G8 and 4~8 in both observations G8
and~8 (&

−1
~ = &−1G = � , % = diag(&−1~ , &−1G )). For the numerics, the values on page 74 have been used.

Unknown parameters 00, 01, Ḡ8 , 8 = 1, . . . ,<

~8 − 4~8 = 00 + 01(G8 − 4G8 ) = 00 + 01Ḡ8 (5.1)

G8 − 4G8 = Ḡ8 (5.2)

Approximate values: 00 = 0
0
0 + Δ00, 01 = 001 + Δ01, Ḡ8 = Ḡ80 + ΔḠ8 .

Linearized equations 5.1 and 5.2:

~8 − (000 + 001Ḡ08 )︸              ︷︷              ︸
Δ~8

−4~8 = Δ00 + 001ΔḠ8 + Ḡ08 Δ01

G8 − Ḡ08 − 4G8 = ΔḠ8 .

This leads to

Δ~8 − 4~8 = Δ00 + 001ΔḠ8 + Ḡ08 Δ01

and

ΔG8 − 4G8 = ΔḠ8 .

In matrix notation: (
Δ~ − 4~
ΔG − 4G

)
2<×1

=

(
�1

�2

)
2<×(<+2)

©­­«
Δ00
Δ01
ΔḠ

ª®®¬
(<+2)×1

=

(
�1

�2

)
Δb

where

�1
<×(<+2)

=

©­­­­«

1 Ḡ01 0
0
1 . . . 0 0

1 Ḡ02 0 001 . . . 0
...
...

...
...
. . .

...

1 Ḡ0< 0 0 . . . 001

ª®®®®¬
; �2

<×(<+2)
=

©­­­­«

0 0 1 . . . 0 0

0 0 0 1 . . . 0
...
...
...
...
. . .

...

0 0 0 0 . . . 1

ª®®®®¬
.

Results: Initial approximate values for unknown parameters:

000 = 0.800, 001 = 0.550, Ḡ08 = G8 .

Parameters (after 20 iterations, ‖Δ̂b ‖ < 10−12):

0̂0 = 0.829, 0̂1 = 0.571, 4̂T%4̂ = 1.921
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5.3 Mixed model

5.3.2 Straight line fit using extended B-Model

Example: Straight line fit using extended B-Model with &−1~ = &−1G = � , % = diag(&−1~ , &−1G ).

Non linear condition equation with unknowns 00, 01:

~8 − 4~8 −
(
00 + 01(G8 − 4G8 )

)
= 0

Initial approximate values 40G8 = 0, 40~8 = 0, 000, 0
0
1 so that

4G8 = 4
0
G8
+ Δ4G8 , 4~8 = 4

0
~8
+ Δ4~8 , 00 = 0

0
0 + Δ00, 01 = 0

0
1 + Δ01 .

~8 − 40~8 −
(
000 + 001(G8 − 40G8 )

)
− Δ4~8 − Δ00 − Δ01(G8 − 40G8 ) + 0

0
1Δ4G8 = 0

~8 − 40~8 −
(
000 + 001(G8 − 40G8 )

)
− 4~8 + 40~8 −

[
1 (G8 − 40G8 )

] [
Δ00
Δ01

]
+ 0014G8 − 00140G8 = 0

~8 − (000 + 001G8)︸             ︷︷             ︸
F8

−
[
1 (G8 − 40G8 )

]
︸               ︷︷               ︸

�8

[
Δ00
Δ01

]
︸ ︷︷ ︸

Δb

+
[
001 −1

]
︸    ︷︷    ︸

�8
T

[
4G8
4~8

]
︸︷︷︸

48

= 0

�
<×2

= −



1 G1 − 40G1
1 G2 − 40G2
...

...

1 G< − 40G<


; Δb

2×1
=

[
Δ00
Δ01

]
; 4

2<×1
=

[
4G1 · · · 4G< 4~1 · · · 4~<

]T
=

[
4G
4~

]
;

�T

<×2<
=


001 −1

. . .
. . .

001 −1


=

[
001�<, −�<

]
; F

<×1
= ~ − (000 + 001G) .

Lagrangian:

L(Δb, 4, _) = 1

2
4T%4 + _T(F +�Δb + �T4) −→ min

Δb,4,_

mL
m4
(4̂, _̂, Δ̂b) = %

2<×2<
4̂

2<×1
+ �

2<×<
_̂

<×1
= 0

2<×1

mL
mΔb
(4̂, _̂, Δ̂b) = �T

2×<
_̂

<×1
= 0

2×1

mL
m_
(4̂, _̂, Δ̂b) = �T

<×2<
4̂

2<×1
+ �

<×2
Δ̂b
2×1

= −F
<×1

Results (see also figure 5.33):

0̂0 = 0.829, 0̂1 = 0.571, 4̂T%4̂ = 1.921

~̂ =
[

0.514, 0.822, 1.277, 1.782, 2.409, 3.209, 3.787
]T

4̂~ =
[

0.786, −0.022, −0.377, −0.582, −0.409, 0.291, 0.313
]T

Ĝ =
[
−0.551, −0.012, 0.785, 1.668, 2.766, 4.166, 5.179

]T
4̂G =

[
−0.449, 0.012, 0.215, 0.332, 0.234, −0.166, −0.179

]T
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−1 0 1 2 3 4 5
0

1

2

3

4

G

~

data points
adjusted data
residuals

Figure 5.33: Extended B-model with inconsistencies in G8 and ~8 , uniform weights.

Example: The following results and figure show the cases for the previous two examples, ob-

servations having weights (%G = &−1G ≠ � , %~ = &−1~ ≠ � , % = diag (%G , %~)). We introduce the

weights

diag %G =
[

3, 9, 8, 4, 5, 7, 10
]T

diag %~ =
[

2, 8, 7, 5, 10, 8, 6
]T

Both, the A-model with inconsistencies 4G8 and 4~8 and the extended B-model, give identical results.

Due to % ≠ � residuals are not orthogonal to the adjusted line. See figure 5.34.

0̂0 = 0.5512, 0̂1 = 0.6580, 4̂T%4̂ = 7.6931

~̂ =
[

0.208, 0.620, 1.124, 1.633, 2.281, 3.288, 3.895
]T

4̂~ =
[

1.092, 0.180, −0.224, −0.433, −0.281, 0.212, 0.205
]T

Ĝ =
[
−0.521, 0.105, 0.871, 1.644, 2.630, 4.159, 5.081

]T
4̂G =

[
−0.479, −0.105, 0.129, 0.356, 0.370, −0.159, −0.081

]T

−1 0 1 2 3 4 5
0

1

2

3

4

G

~

data points
adjusted data
residuals

Figure 5.34: Extended B-model with inconsistencies in G8 and ~8 , non-uniform weights.
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5.3 Mixed model

5.3.3 2D Similarity Transformation

The following two tables (see Niemeier, 2008, pg. 374–375) give coordinates with respect to the

source (D, E)-system and the target (G,~)-system. Points 1–4 are identical to both systems (con-

trol points). We assume inconsistencies in both source and target system coordinates and they are

uncorrelated having equal unit variances, i. e.

%G = &−1G = � , %~ = &−1~ = � , %D = &−1D = � , %E = &
−1
E = � , % = diag(%G , %~, %D, %E) .

Table 5.51: Source coordinates.

Point D/m E/m

1 14 029.640 12 786.840

2 14 914.630 12 535.560

3 14 771.830 11 404.660

4 13 221.620 11 840.320

13 14 735.090 12 127.380

14 14 253.840 11 923.950

15 13 603.740 11 836.700

16 14 291.760 12 495.310

17 13 931.500 12 307.610

Table 5.52: Target coordinates.

Point G/m ~/m

1 19 405.518 23 159.823

2 20 291.232 22 909.817

3 20 150.035 21 778.202

4 18 598.550 22 211.755

A 2D similarity transformation (Helmert transformation) to transform the set of coordinates from

the source system to the target system will be performed.

[
G8
~8

]
︸︷︷︸
target

= _

[
cosU sinU

− sinU cosU

] [
D8
E8

]
︸︷︷︸
source

+
[
CG
C~

]

Usual adjustment: only target coordinates G8 and ~8 have inconsistencies

G8 − 4G8 = _D8 cosU + _E8 sinU + CG ,

~8 − 4~8 = −_D8 sinU + _E8 cosU + C~ .

Mixed model approach I: A-modelwith inconsistencies in both [G8 , ~8] and [D8 , E8] coordinates
(8 = 1, . . . , ? , with ? number of control points).

G8 − 4G8 = _D̄8 cosU + _Ē8 sinU + CG ,

~8 − 4~8 = −_D̄8 sinU + _Ē8 cosU + C~,

D8 − 4D8 = D̄8 ,

E8 − 4E8 = Ē8 .
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5.3.4 2D Affine Transformation Model I

Example: 6-parameter affine transformation – model I

The numerical data on page 85 (from Niemeier, 2008, pg. 374–375) are transformed using the 6-

parameter affine transformtion

[
G8
~8

]
︸︷︷︸
target

=

[
_1 0

0 _2

]
︸  ︷︷  ︸
scale factors

[
1 :

0 1

]
︸︷︷︸
shear

[
cosU sinU

− sinU cosU

] [
D8
E8

]
︸︷︷︸
source

+
[
CG
C~

]
.

Mixedmodel approach I: A-modelwith inconsistencies in both (G8 , ~8) and (D8 , E8) coordinates.

G8 − 4G8 = _1D̄8 (cosU − : sinU) + _1Ē8 (sinU + : cosU) + CG ,

~8 − 4~8 = −_2D̄8 sinU + _2Ē8 cosU + C~,

D8 − 4D8 = D̄8 ,

E8 − 4E8 = Ē8 .

Approximate values:

CG = C0G + ΔCG , U = U0 + ΔU, D̄8 = D̄
0
8 + ΔD̄8 , _1 = _

0
1 + Δ_1,

C~ = C0~ + ΔC~, : = :0 + Δ:, Ē8 = Ē
0
8 + ΔĒ8 _2 = _

0
2 + Δ_2, .

Linearization:

G8 − 4G8 =
(
_01D̄

0
8 (cosU0 − :0 sinU0) + _01Ē08 (sinU0 + :0 cosU0) + C0G

)
︸                                                                      ︷︷                                                                      ︸

G0
8

+ΔCG

+
(
−_01D̄08 (sinU0 + :0 cosU0) + _01Ē08 (cosU0 − :0 sinU0)

)
︸                                                                  ︷︷                                                                  ︸

08

ΔU

+
(
D̄08 (cosU0 − :0 sinU0) + Ē08 (sinU0 + :0 cosU0)

)
︸                                                         ︷︷                                                         ︸

18

Δ_1 +
(
−_01D̄08 sinU0 + _01Ē08 cosU0

)
︸                              ︷︷                              ︸

58

Δ:

+ _01 (cosU0 − :0 sinU0)︸                      ︷︷                      ︸
6

ΔD̄8 + _01 (sinU0 + :0 cosU0)︸                     ︷︷                     ︸
ℎ

ΔĒ8 ,

~8 − 4~8 =
(
−_02D̄08 sinU0 + _02Ē08 cosU0 + C0~

)
︸                                     ︷︷                                     ︸

~08

+ΔC~ +
(
−_02 (D̄08 cosU0 + Ē01 sinU0)

)
︸                              ︷︷                              ︸

28

ΔU

+ (−D̄08 sinU0 + Ē08 cosU0)︸                        ︷︷                        ︸
38

Δ_2 −_02 sinU0︸      ︷︷      ︸
@

ΔD̄8 + _02 cosU0︸    ︷︷    ︸
A

ΔĒ8 .
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B Statistical Tables

B.1 Standard Normal Distribution z

Computation of one-sided level of significance U = 1 −
:U∫
−∞

5 (G) dG and

two-sided level of significance U = 2

:1−U/2∫
−∞

5 (G) dG .

0

a

k
a

f(x)

x 0

a/2a/2

f(x)

x

=k
1-

a

2
-

-ka

2
-

k a

2
-

k
1-

a

2
-

∞-∞-

:U 0 1 2 3 4 5 6 7 8 9

0.0 0.5000 0.4960 0.4920 0.4880 0.4840 0.4801 0.4761 0.4721 0.4681 0.4641

0.1 0.4602 0.4562 0.4522 0.4483 0.4443 0.4404 0.4364 0.4325 0.4286 0.4247

0.2 0.4207 0.4168 0.4129 0.4090 0.4052 0.4013 0.3974 0.3936 0.3897 0.3859

0.3 0.3821 0.3783 0.3745 0.3707 0.3669 0.3632 0.3594 0.3557 0.3520 0.3483

0.4 0.3446 0.3409 0.3372 0.3336 0.3300 0.3264 0.3228 0.3192 0.3156 0.3121

0.5 0.3085 0.3050 0.3015 0.2981 0.2946 0.2912 0.2877 0.2843 0.2810 0.2776

0.6 0.2743 0.2709 0.2676 0.2643 0.2611 0.2578 0.2546 0.2514 0.2483 0.2451

0.7 0.2420 0.2389 0.2358 0.2327 0.2296 0.2266 0.2236 0.2206 0.2177 0.2148

0.8 0.2119 0.2090 0.2061 0.2033 0.2005 0.1977 0.1949 0.1922 0.1894 0.1867

0.9 0.1841 0.1814 0.1788 0.1762 0.1736 0.1711 0.1685 0.1660 0.1635 0.1611

1.0 0.1587 0.1562 0.1539 0.1515 0.1492 0.1469 0.1446 0.1423 0.1401 0.1379

1.1 0.1357 0.1335 0.1314 0.1292 0.1271 0.1251 0.1230 0.1210 0.1190 0.1170

1.2 0.1151 0.1131 0.1112 0.1093 0.1075 0.1056 0.1038 0.1020 0.1003 0.0985

1.3 0.0968 0.0951 0.0934 0.0918 0.0901 0.0885 0.0869 0.0853 0.0838 0.0823

1.4 0.0808 0.0793 0.0778 0.0764 0.0749 0.0735 0.0721 0.0708 0.0694 0.0681
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B.2 Central j2-Distribution

Computation of critical value :U = j2
1−U ;A,_=0 (A degrees of freedom).

c
2

0

a

ka

f(x)

x

r, =0l
c

2

0

a/2

f(x)

x

r, =0l

a/2

k a
2-

k1-a
2-

A\U 0.995 0.990 0.975 0.950 0.900 0.500

1 0.000 0.000 0.001 0.004 0.016 0.455

2 0.010 0.020 0.051 0.103 0.211 1.386

3 0.072 0.115 0.216 0.352 0.584 2.366

4 0.207 0.297 0.484 0.711 1.064 3.357

5 0.412 0.554 0.831 1.145 1.610 4.351

6 0.676 0.872 1.237 1.635 2.204 5.348

7 0.989 1.239 1.690 2.167 2.833 6.346

8 1.344 1.646 2.180 2.733 3.490 7.344

9 1.735 2.088 2.700 3.325 4.168 8.343

10 2.156 2.558 3.247 3.940 4.865 9.342

11 2.603 3.053 3.816 4.575 5.578 10.34

12 3.074 3.571 4.404 5.226 6.304 11.34

13 3.565 4.107 5.009 5.892 7.042 12.34

14 4.075 4.660 5.629 6.571 7.790 13.34

15 4.601 5.229 6.262 7.261 8.547 14.34

16 5.142 5.812 6.908 7.962 9.312 15.34

17 5.697 6.408 7.564 8.672 10.09 16.34

18 6.265 7.015 8.231 9.390 10.86 17.34

19 6.844 7.633 8.907 10.12 11.65 18.34

20 7.434 8.260 9.591 10.85 12.44 19.34

21 8.034 8.897 10.28 11.59 13.24 20.34

22 8.643 9.542 10.98 12.34 14.04 21.34

23 9.260 10.20 11.69 13.09 14.85 22.34

24 9.886 10.86 12.40 13.85 15.66 23.34

25 10.52 11.52 13.12 14.61 16.47 24.34

26 11.16 12.20 13.84 15.38 17.29 25.34

27 11.81 12.88 14.57 16.15 18.11 26.34

28 12.46 13.56 15.31 16.93 18.94 27.34

29 13.12 14.26 16.05 17.71 19.77 28.34

30 13.79 14.95 16.79 18.49 20.60 29.34
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B.3 Non-central j2-Distribution

B.3 Non-central j2-Distribution

Computation of power of test W = 1 − V
(Non-centrality parameter _, A = 1 degrees of freedom).

_\U 0.100 0.010 0.001 _\U 0.100 0.010 0.001

1.000 0.264 0.058 0.011 11.000 0.953 0.771 0.510

1.250 0.302 0.073 0.015 11.250 0.956 0.782 0.525

1.500 0.339 0.088 0.019 11.500 0.960 0.793 0.540

1.750 0.375 0.105 0.025 11.750 0.963 0.803 0.555

2.000 0.410 0.123 0.030 12.000 0.966 0.813 0.569

2.250 0.443 0.141 0.037 12.250 0.968 0.822 0.583

2.500 0.475 0.160 0.044 12.500 0.971 0.831 0.597

2.750 0.506 0.179 0.051 12.750 0.973 0.840 0.610

3.000 0.535 0.199 0.060 13.000 0.975 0.848 0.624

3.250 0.563 0.220 0.068 13.250 0.977 0.856 0.637

3.500 0.590 0.240 0.078 13.500 0.979 0.864 0.649

3.750 0.615 0.261 0.088 13.750 0.980 0.871 0.662

4.000 0.639 0.282 0.098 14.000 0.982 0.878 0.674

4.250 0.662 0.304 0.110 14.250 0.983 0.885 0.686

4.500 0.683 0.325 0.121 14.500 0.985 0.891 0.698

4.750 0.704 0.346 0.133 14.750 0.986 0.897 0.709

5.000 0.723 0.367 0.146 15.000 0.987 0.903 0.720

5.250 0.741 0.388 0.159 15.250 0.988 0.908 0.731

5.500 0.758 0.409 0.172 15.500 0.989 0.913 0.741

5.750 0.774 0.429 0.186 15.750 0.990 0.918 0.751

6.000 0.790 0.450 0.200 16.000 0.991 0.923 0.761

6.250 0.804 0.470 0.215 16.250 0.991 0.927 0.771

6.500 0.817 0.490 0.229 16.500 0.992 0.931 0.780

6.750 0.830 0.509 0.244 16.750 0.993 0.935 0.789

7.000 0.842 0.528 0.260 17.000 0.993 0.939 0.797

7.250 0.853 0.546 0.275 17.250 0.994 0.943 0.806

7.500 0.863 0.565 0.291 17.500 0.994 0.946 0.814

7.750 0.873 0.582 0.306 17.750 0.995 0.949 0.822

8.000 0.882 0.600 0.322 18.000 0.995 0.952 0.829

8.250 0.890 0.617 0.338 18.250 0.996 0.955 0.837

8.500 0.898 0.633 0.354 18.500 0.996 0.958 0.844

8.750 0.905 0.649 0.370 18.750 0.996 0.960 0.851

9.000 0.912 0.664 0.386 19.000 0.997 0.963 0.857

9.250 0.919 0.679 0.402 19.250 0.997 0.965 0.864

9.500 0.925 0.694 0.417 19.500 0.997 0.967 0.870

9.750 0.930 0.708 0.433 19.750 0.997 0.969 0.876

10.000 0.935 0.721 0.449 20.000 0.998 0.971 0.881

10.250 0.940 0.734 0.465 20.250 0.998 0.973 0.887

10.500 0.945 0.747 0.480 20.500 0.998 0.975 0.892

10.750 0.949 0.759 0.495 20.750 0.998 0.976 0.897

Calculation inMatlab:

:U = ❝❤✐✷✐♥✈(1 − U, A ) W = 1 − ♥❝①✷❝❞❢(:U , A , _)

139



B Statistical Tables

B.4 Central t-Distribution

Computation of critical value :U = C1−U ;A (A degrees of freedom).

0

a

k
a

f(x)

x 0

a/2a/2

f(x)

x

=k
1-

a

2
-

-ka

2
-

k a

2
-

k
1-

a

2
-

∞-∞-

A\U 0.100 0.050 0.025 0.010 0.005 0.001

1 3.078 6.314 12.71 31.82 63.66 318.3

2 1.886 2.920 4.303 6.965 9.925 22.33

3 1.638 2.353 3.182 4.541 5.841 10.21

4 1.533 2.132 2.776 3.747 4.604 7.173

5 1.476 2.015 2.571 3.365 4.032 5.893

6 1.440 1.943 2.447 3.143 3.707 5.208

7 1.415 1.895 2.365 2.998 3.499 4.785

8 1.397 1.860 2.306 2.896 3.355 4.501

9 1.383 1.833 2.262 2.821 3.250 4.297

10 1.372 1.812 2.228 2.764 3.169 4.144

11 1.363 1.796 2.201 2.718 3.106 4.025

12 1.356 1.782 2.179 2.681 3.055 3.930

13 1.350 1.771 2.160 2.650 3.012 3.852

14 1.345 1.761 2.145 2.624 2.977 3.787

15 1.341 1.753 2.131 2.602 2.947 3.733

16 1.337 1.746 2.120 2.583 2.921 3.686

17 1.333 1.740 2.110 2.567 2.898 3.646

18 1.330 1.734 2.101 2.552 2.878 3.610

19 1.328 1.729 2.093 2.539 2.861 3.579

20 1.325 1.725 2.086 2.528 2.845 3.552
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B.5 Central F-Distribution

Computation of critical value :U = �1−U ;A1,A2,_=0 (A1, A2 degrees of freedom).

0

a/2a/2

k
a/2

k1-a/2

f(x)

x

=F           =
a/2;r ,r2 1

k
1-a/2

F
1-a/2;r ,r1 2

1

0

a

k
a

f(x)

x

Fr ,r1 2

U = 0.10, 1 − U = 0.90
A2\A1 1 2 3 4 5 6 7 8 9 10 12

1 39.86 49.50 53.59 55.83 57.24 58.20 58.91 59.44 59.86 60.19 60.71

2 8.526 9.000 9.162 9.243 9.293 9.326 9.349 9.367 9.381 9.392 9.408

3 5.538 5.462 5.391 5.343 5.309 5.285 5.266 5.252 5.240 5.230 5.216

4 4.545 4.325 4.191 4.107 4.051 4.010 3.979 3.955 3.936 3.920 3.896

5 4.060 3.780 3.619 3.520 3.453 3.405 3.368 3.339 3.316 3.297 3.268

6 3.776 3.463 3.289 3.181 3.108 3.055 3.014 2.983 2.958 2.937 2.905

7 3.589 3.257 3.074 2.961 2.883 2.827 2.785 2.752 2.725 2.703 2.668

8 3.458 3.113 2.924 2.806 2.726 2.668 2.624 2.589 2.561 2.538 2.502

9 3.360 3.006 2.813 2.693 2.611 2.551 2.505 2.469 2.440 2.416 2.379

10 3.285 2.924 2.728 2.605 2.522 2.461 2.414 2.377 2.347 2.323 2.284

11 3.225 2.860 2.660 2.536 2.451 2.389 2.342 2.304 2.274 2.248 2.209

12 3.177 2.807 2.606 2.480 2.394 2.331 2.283 2.245 2.214 2.188 2.147

13 3.136 2.763 2.560 2.434 2.347 2.283 2.234 2.195 2.164 2.138 2.097

14 3.102 2.726 2.522 2.395 2.307 2.243 2.193 2.154 2.122 2.095 2.054

15 3.073 2.695 2.490 2.361 2.273 2.208 2.158 2.119 2.086 2.059 2.017

16 3.048 2.668 2.462 2.333 2.244 2.178 2.128 2.088 2.055 2.028 1.985

17 3.026 2.645 2.437 2.308 2.218 2.152 2.102 2.061 2.028 2.001 1.958

18 3.007 2.624 2.416 2.286 2.196 2.130 2.079 2.038 2.005 1.977 1.933

19 2.990 2.606 2.397 2.266 2.176 2.109 2.058 2.017 1.984 1.956 1.912

20 2.975 2.589 2.380 2.249 2.158 2.091 2.040 1.999 1.965 1.937 1.892

22 2.949 2.561 2.351 2.219 2.128 2.060 2.008 1.967 1.933 1.904 1.859

24 2.927 2.538 2.327 2.195 2.103 2.035 1.983 1.941 1.906 1.877 1.832

26 2.909 2.519 2.307 2.174 2.082 2.014 1.961 1.919 1.884 1.855 1.809

28 2.894 2.503 2.291 2.157 2.064 1.996 1.943 1.900 1.865 1.836 1.790

30 2.881 2.489 2.276 2.142 2.049 1.980 1.927 1.884 1.849 1.819 1.773

40 2.835 2.440 2.226 2.091 1.997 1.927 1.873 1.829 1.793 1.763 1.715

50 2.809 2.412 2.197 2.061 1.966 1.895 1.840 1.796 1.760 1.729 1.680

60 2.791 2.393 2.177 2.041 1.946 1.875 1.819 1.775 1.738 1.707 1.657

80 2.769 2.370 2.154 2.016 1.921 1.849 1.793 1.748 1.711 1.680 1.629

100 2.756 2.356 2.139 2.002 1.906 1.834 1.778 1.732 1.695 1.663 1.612

200 2.731 2.329 2.111 1.973 1.876 1.804 1.747 1.701 1.663 1.631 1.579

500 2.716 2.313 2.095 1.956 1.859 1.786 1.729 1.683 1.644 1.612 1.559

∞ 2.706 2.303 2.084 1.945 1.847 1.774 1.717 1.670 1.632 1.599 1.546
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B.6 Relation between F-Distribution and other distrubutions

j2-Distribution j21−U ;A = A�1−U ;A,∞

Standard Normal Distribution I1−U/2 =
√
�1−U ;1,∞

t-Distribution C1−U/2;A =
√
�1−U ;1,A

g-Distribution g
1−U ;@,A−@,_=

√
A�1−U ;@,A−@,_

A−@+@�1−U ;@,A−@,_
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C Book recommendations and other material

C.1 Scientific books

• Anderson, James M. and Edward M. Mikhail

Surveying. Theory and Practice

7th edition

McGraw-Hill, 1998

ISBN 0-07-015914-9

• Benning, Wilhelm

Statistik in Geodäsie, Geoinformation und Bauwesen

4., überarbeitete und erweiterte Auflage

Wichmann, 2011

ISBN 978-3-87907-512-6

• Beucher, Ottmar

Wahrscheinlichkeitsrechnung und Statistik mit Matlab

Springer, 2007

ISBN 978-3-540-72155-0

• Caspary, Wilhelm and Klaus Wichmann

Auswertung von Messdaten. Statistische Methoden für Geo- und Ingenieurwis-

senschaften

Oldenbourg, 2007

ISBN 978-3-486-58351-9

• Chatterjee, Samprit and Ali S. Hadi

Regresson Analysis by Example

Fourth Edition

John Wiley & Sons, Inc., 2006

ISBN 13 978-0-471-74696-6

• Ghilani Charles D.

Adjustment Computations. Spatial Data Analysis

Fifth Edition

John Wiley & Sons, Inc., 2010

ISBN 978-0-470-46491-5
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C.2 Popular science books, literature

Harcourt Brace & Company, 2005

ISBN 0030105676

• Strang, Gilbert

Introduction to Linear Algebra

4th edition

Wellesley-Cambridge Press, 2009

ISBN 078-0-9802327-1-4

• Strang, Gilbert and Kai Borre

Linear Algebra, Geodesy, and GPS

Wellesley-Cambridge Press, 1997

ISBN 0-9614088-6-3

• Teunissen, P. J. G.

Adjustment theory – an introduction

Delft University Press, 2003

ISBN 13 978-90-407-1974-5

• Teunissen, P. J. G.

Testing theory – an introduction

Delft University Press, 2000–2006

ISBN 13 978-90-407-1975-2

• Teunissen, P. J. G.

Dynamic data processing – recursive least-squares

Delft University Press, 2001

ISBN 13 978-90-407-1976-9

• Wolf, H.

Ausgleichungsrechnung II, Aufgaben und Beispiele zur praktischen Anwendung

Ferd. Dümmlers Verlag, 1979

ISBN 3-427-78361-8

C.2 Popular science books, literature

• Sobel, Dava

Longitude: The True Story of a Lone GeniusWho Solved the Greatest Scientific Prob-

lem of His Time

Fourth Estate, 1996

ISBN 1-85702-502-4

Deutsche Übersetzung:

Längengrad. Die wahre Geschichte eines einsamen Genies, welches das größte wis-

senschaftliche Problem seiner Zeit löste

Berliner Taschenbuch Verlag, 2003

ISBN 3-8333-0271-2
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C Book recommendations and other material

• Kehlmann, Daniel

Die Vermessung der Welt

Rowohlt, Reinbek, 2005

ISBN 3-498-03528-2

C.3 Other material

• Krumm, Friedhelm

Geodetic Network Adjustment Examples
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• Strang, Gilbert

Linear Algebra, MIT Course 18.06
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