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1 Coordinate systems on the ellipsoid

1.1 Basic ellipsoidal geometry

The ellipse is defined as the set of points whose sum of distances to two Brennpunktefoci is constant. This

definition provides a curve in two-dimensional space. The zweiachsigbi-axial ellipsoid in 3d space is the

result of rotating the ellipse around one of its axes.

Inspection of fig. 1.1, in which we choose a point on the major axis (left panel), tells us that

this sum must be (a + x) + (a − x) = 2a, the length of the major axis. The quantity a is

called the lange
Halbachse

semi-major axis.

b

a

a+x

a-xx

a ab

ae

Figure 1.1: Planar geometry of the ellipse.

But then, for a point on the minor axis, see right panel, we have a symmetrical configuration.

The distance from this point to each of the foci is a. The length b is called the kurze
Halbachse

semi-minor

axis. Knowing both axes, we can express the distance to focus and centre of the ellipse. It is√
a2 − b2. Usually it is expressed as a proportion e of the semi-major axis a:

(ae)2 + b2 = a2 =⇒ e2 =
a2 − b2

a2
, or b =

√

1− e2 a .

The proportionality factor e is called the Exzentrizitäteccentricity; the out-of-centre distance ae is known

as the linear eccentricity, often denoted by the parameter E.

A point on the ellipsoidal surface can be defined either by curvilinear coordinates, ellipsoidal

coordinates or by Cartesian coordinates. The use of curvilinear coordinates appeals more

to our intuition and has for a long time been the standard method of representing points in

space. Ellipsoidal coordinates will lead to the geodetic coordinates discussed in Chapter 1.2.
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1 Coordinate systems on the ellipsoid

Figure 1.2: Geodetic Coordinates {ϕ, λ}.
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Three-dimensional Cartesian coordinates have gained in importance after measurements to

satellites became a major component of geodetic operations.

Curvilinear coordinates The curvilinear representation makes use of the fact that the point

has to be on the surface of the ellipsoid, and position can thus be defined by two coordinates.

This will be the approach taken in this chapter. In the Cartesian representation, three coor-

dinates are needed because the surface is embedded in three-dimensional space. In practice,

this difference is of little significance because measurements take place in 3D space and are

not confined to the surface of an ellipsoid. Thus, the curvilinear as well as the Cartesian

representation requires a three-tupel of numbers to define a position in space. Therefore, a

third coordinate, the ellipsoidal height h, has to be defined to represent measurements by

curvilinear coordinates. The concept is given in Figure 1.2.

Since the ellipsoid is a close approximation of the geoid, the concepts outlined in Chapters

2.1 and 2.2 can easily be transferred to the ellipsoid. Thus, natural coordinates and the local

astronomic system have their equivalents in ellipsoidal geometry. The main simplification is

due to the rotational symmetry of the biaxial ellipsoid. Thus, in contrast to the situation

on the geoid, each meridian plane has the same geometric properties. The longitude λ is the

same for all curvilinear systems on the ellipsoid and it is therefore possible to restrict the

discussion to an arbitrary meridian plane. In this plane, the x and y axes in the equatorial

plane can be replaced by the p-axis which is defined as the intersection of the meridian plane

with the equatorial plane, see Figure 1.2. Thus, a point in the meridian plane is either defined

by the latitude or by the coordinates p and z. Different definitions of the latitude are possible

and three of them will be discussed in this chapter.

Once p and z have been defined, the {x, y}-coordinates in a suitably defined Cartesian system,

as for instance the ct-system, can be obtained from

x = p cos λ, (1.1)

y = p sinλ.

Thus, the transformation into a three-dimensional Cartesian system is given if λ is known.

8



1.1 Basic ellipsoidal geometry
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Figure 1.3: Ellipsoidal geometry.

Ellipsoidal coordinates Using a parametrical formulation of ellipsoidal coordinates {ϕ, λ},
for points on the ellipsoid the transformation from ellipsoidal to Cartesian coordinates reads:






x

y

z




 =






N(ϕ) cosϕ cos λ

N(ϕ) cos ϕ sin λ

N(ϕ)(1 − e2) sinϕ




 , with: N(ϕ) =

a
√

1− e2 sin2 ϕ
(1.2a)

For points above the ellipsoidal surface, we have to add the ellipsoidal height h in normal

direction as follows: 




x

y

z




 =






(N + h) cosϕ cos λ

(N + h) cosϕ sin λ

(N(1− e2) + h) sinϕ




 (1.2b)

A closed analytical solution for the reverse transformation from Cartesian to geodetic coor-

dinates does exist. Here, however, we will simply apply an iteration. First off, longitude can

be determined by: tan λ = y
x . But geodetic latitude and height must be solved iteratively

together. To that end we introduce the coordinate p again (distance to z-axis):

p =
√

x2 + y2 = (N + h) cosϕ

iteration equation 1: h =
p

cosϕ
−N(ϕ)

z = (N(1− e2) + h) sinϕ =⇒ z

p
=
N(1− e2) + h

N + h
tanϕ

iteration equation 2: ϕ = arctan

(
z

p

N + h

N(1− e2) + h

)

With the two equations above, the iteration runs as shown in Figure 1.4.

i) Starting value i = 0: h0 = 0 (just assume point on surface, if no better information

available).

ii) Starting latitude: ϕ0 = arctan(z
p

1
(1−e2)) from iteration equation 2.
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1 Coordinate systems on the ellipsoid

start

x, y, z

λ = arctan x
y

p =
√

x2 + y2

starting values

i = 0, h0 = 0

ϕ0 = arctan
(

z
p

1
(1−e)2

)

N(ϕi) = a√
1−e2 sin2 ϕi

hi+1 = p
cos ϕi

−N(ϕi)

ϕi+1 = arctan
(

z
p

N(ϕi)+hi+1

N(ϕi)(1−e2)+hi+1

)

|hi+1 − hi| < εh

|ϕi+1 − ϕi| < εϕ
i := i+ 1

end

ϕ, λ

no

yes

Figure 1.4: Iterative transformation from Cartesian to ellipsoidal coordinates.

iii) N(ϕ0) = . . .

iv) hi+1 = p
cos ϕi

−N(ϕi) from iteration equation 1.

v) ϕi+1 = arctan
(

z
p

N(ϕi)+hi+1

N(ϕi)(1−e2)+hi+1

)

from iteration equation 2 again.

vi) N(ϕi+1) = and so on.

vii) Iteration until convergence is achieved

|hi+1 − hi| < εh

|ϕi+1 − ϕi| < εϕ

It ends with achieved convergence when the differences between the values of h and ϕ from

last and current iteration steps are beneath a certain threshold εh or εϕ.
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1.2 Geodetic coordinates

Figure 1.5: Local Geode-

tic System.

1.2 Geodetic coordinates

In Chapter 2.2, astronomical coordinates {Φ,Λ} will be defined. They are given by the

direction of the gravity vector in the ct-system. This vector is normal to the equipotential

surface passing through the point under consideration.

Geodetic coordinates {ϕ, λ} are defined in a similar way. They are given by the direction

of the normal to the ellipsoid in the ct-system. This vector corresponds to the normal

gravity vector if the ellipsoidal surface is the equipotential surface defined by the reference

potential U . Geodetic coordinates are important because they are close approximations of

the ‘observables’ Φ and Λ.

The local geodetic system is defined in the same way as the local astronomic system, except

that the reference figure is the ellipsoid, not the geoid, see Figure 1.5. We therefore have:

Local Geodetic Frame (lg)

origin: at point P

primary axis (z): orthogonal to ellipsoid at P

secondary axis (x): tangent to geodetic meridian pointing north

tertiary axis (y): orthogonal in a left-handed system

Note, that the z-axis coincides with the ellipsoidal normal at P and points in the direction

opposite to the normal gravity vector γ at P if the normal ellipsoid is used. The (x, y)-plane

coincides with the plane tangent to the ellipsoid at P and normal to γ. The x-axis lies in

the meridian plane and is oriented to north. The y-axis is oriented eastward. Thus the local

geodetic system is left-handed.
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1 Coordinate systems on the ellipsoid

Figure 1.6: Deflection of the vertical in north-south direction (ξ).

The vector n normal to the ellipsoid is

nε =






cosϕ cos λ

cosϕ sin λ

sinϕ




 (1.3)

in complete analogy to equation (2.8). Thus, as before, ϕ and λ define the direction of the

surface normal in space.

Geodetic coordinates {ϕ, λ} are very close to astronomic coordinates {Φ,Λ}. The difference

does usually not exceed ±1′ and more typically is 15′′ or less.

The quantities

ξ = Φ− ϕ, (1.4)

η = (Λ− λ) cosϕ.

are the deflections of the vertical, as described in Chapter 2.3. Here they are geometrically

interpreted as changes in direction between the astronomic and the geodetic coordinate sys-

tems. The north-south deflection ξ is shown in Figure 1.6. Deflections of the vertical will be

further discussed in Chapter 2.3.

The parameters {ϕ, λ} can also be considered as coordinates on the ellipsoidal surface. The

coordinate lines of the system are:

parallels: ϕ = const.,

meridians: λ = const.

The transformation of geodetic surface coordinates into p and z will be discussed in chap-

ter 1.3. Transformation of three-dimensional geodetic coordinates into Cartesian coordinates

and vice versa have been shown in the introduction of this chapter in the point ellipsoidal

coordinates.

It should be noted that rotational symmetry which is true for geodetic coordinates does not

hold for astronomic coordinates. They refer to the geoid which is not rotationally symmetric.

In the literature, geodetic coordinates are frequently called geographical coordinates.
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1.3 The geocentric latitude

Global Geodetic coordinate systems may refer to ellipsoids of different dimensions and dif-

ferent origins. Although all of them are ‘close’ to the ct-system in some sense, they are not

always identical to it. Such systems are called Global Geodetic Systems and are defined by

Global Geodetic System (g)

origin: geometrical centre of the ellipsoid

primary axis (z): rotation axis of the ellipsoid

secondary axis (x): meridian of Greenwich

tertiary axis (y): orthogonal in a right-handed system

Global Geodetic Systems are widely used in geodesy to link the local coordinate systems to

a global reference. They may differ in origin, orientation, and ellipsoid dimensions from the

ct-system. The reasons for these differences are historical and major efforts are currently

made to refer all coordinates to a unique global reference system such as the ct-system. The

practical implementation of such a system via GPS satellites (IGS) will be discussed in a

later chapter.

1.3 The geocentric latitude

Another way to descpribe latitude is the geocentric latitude ϕz, which refers to the center

of the ellipsoid (fig. 1.7). The main difference between geodetic and geocentric latitude is

their behaviour concerning the surface of the ellipsoid. From the implicit formulation of the

ellipsoid, we can derive the surface normal vector simply by taking the gradient:

3D 2D

x2

a2
+
y2

a2
+
z2

b2
= 1 = f(x, y, z)

p2

a2
+
z2

b2
= 1 = f(p, z)

∇f = 2









x
a2

y
a2

z
b2









∇f = 2






p
a2

z
b2














x

y

z









=









N cosϕ cos λ

N cosϕ sin λ

N(1− e2) sinϕ














p

z




 =






N cosϕ

N(1− e2) sinϕ






From fig. 1.7 the link between geocentric and geodetic latitude becomes clear:

tanϕz = z
p (see figure)

tanϕ = z
b2 : p

a2 = a2z
b2p

(from ∇f)

}

=⇒ tanϕz =
b2

a2
tanϕ = (1− e2) tanϕ ≡ z

p
.
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1 Coordinate systems on the ellipsoid

Figure 1.7: Normal vector ∇f vs.

radial direction r and

link between geodetic

latitude ϕ and geo-

centric latitude ϕz.
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Figure 1.8: Geodetic latitude ϕ, reduced

latitude ϕred and geocentric

latitude ϕz, connected by

tanϕz = b
a tanϕred = b2

a2 tanϕ .
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1.4 The reduced latitude

The concept of the reduced latitude ϕred of the point P on the surface of the ellipsoid with

semiaxes a and b is given in Fig. 1.8. It shows a section of the ellipsoid along the meridian

plane (z, p). The distance p of the point P from the z-axis is the radius of the parallel

p =
√

x2 + y2.

The parametric representation of the meridian ellipse can be derived from Fig. 1.8. From the

circle with radius a we get

p′ = p = a cosϕred and z′ = a sinϕred. (1.5)

From the circle with radius b we obtain

z = z′ = b sinϕred. (1.6)

The reduced latitude is obtained by projecting the ellipse on the concentric circle with radius

a. It is convenient to use in derivations and is important in the theory of ellipsoidal mappings.
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1.5 Curvature

geodetic latitude:






x

y

z






ε

= N






cosϕ cos λ

cosϕ sin λ

(1− e2) sinϕ




 , N = N(ϕ) = a√

1−e2 sin2 ϕ

reduced latitude:






x

y

z






ε

=






a cosϕred cos λ

a cosϕred sinλ

b sinϕred






geocentric latitude:






x

y

z






ε

= r






cosϕz cos λ

cosϕz sinλ

sinϕz




 , r = r(ϕz) = b√

1−e2 cos2 ϕz

Table 1.1: Transformation of ellipsoidal surface coordinates into cartesian coordinates.

ψ

s = R ψ
R

ds = R dψ

dψ

Figure 1.9: Finite and infinitesimal arc

length on the sphere.

1.5 Curvature

Sphere An infinitesimal arc length ds on the sphere is related to its infinitesimal central

angle simply by multiplying by the sphere’s radius R, see fig. 1.9:

ds = R dψ .

This is more or less the translation of dψ in angular measure into linear measure. However,

it leads to a more fundamental concept, as the quantity

ρ =
1

R
=

dψ

ds

is called the Krümmungcurvature. The radius R is known as the
Krümmungs-
radius

radius of curvature. In general, the cur-

vature of a surface is a local quantity, that is, it depends on position. On the sphere, though,

curvature is constant. Thus, surface of constant curvature can be added as a definition of

the sphere.

15



1 Coordinate systems on the ellipsoid

Ellipsoid On the ellipsoid, on the other hand, the curvature is a local measure. To be more

precise:

ρ = ρ(ϕ,α) ,

that is, the curvature is latitude and direction dependent. It is a function of latitude ϕ and

onAzimut azimuth α. At every point on the ellipsoid there will be a direction in which the curvature

is maximal and a direction in which it is minimal. Each direction spans up a surface through

the local normal vector. Such surfaces are calledNormalschnitte normal sections, see fig. 1.11.

As might be expected, the two extremes in curvature take place

i) in theMeridian-
schnitt

meridian section, and

ii) in the prime vertical normal section, which is perpendicular to the meridian section and

tangent to the local latitude circle.

Note that the plane through a latitude circle by itself is not a normal section.

Let us consider the curvature and its variations in the meridian and in the equator. The

latitude dependence is obvious from fig. 1.10 (left panel). At the equator, the smaller circle

fits the ellipse in an optimal way. Its radius is the radius of curvature. It is clear that this

radius of curvature is smaller than the semi-major axis a. At the pole, though, the best

fitting circle has the largest possible radius, larger than a. Thus the curvature at the pole,

ρ(ϕ = 90◦), is minimum.

RP RE
p

z

x

y

a

a > RE

Figure 1.10: Latitude dependence of curvature in the meridian plane (left) and azimuth de-

pendence at the equator (right).

At the pole, no directional dependence can exist, as all meridian planes are normal sections.

At the equator, though, there will be a clear difference in curvature between meridian plane

(as discussed above) and in the equator plane. The equatorial normal section of the ellipsoid

is a circle, see fig. 1.10. The radius of curvature at the equator in East-West direction is

therefore a and the curvature ρ(ϕ = 0◦, α = 90◦) = 1/a. In the previous paragraph, we

already concluded that the radius of curvature at the equator in North-South direction was

smaller than a.
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1.5 Curvature

North-South – meridian section

→M(ϕ) = a
1− e2

(1− e2 sin2 ϕ)
3

2

East-West – normal section

→N(ϕ) = a
1

(1− e2 sin2 ϕ)
1

2

Figure 1.11: Normal and meridian section with corresponding radii of curvature.

Main radii of curvature This behaviour is not only valid at the equator. At every latitude

we will see the minimum radius of curvature (and hence the maximum curvature) in the

meridian plane and the maximum radius of curvature in the prime vertical normal section.

They are known, respectively, as the

Meridian-
krümmungs-
radius

meridian radius of curvature M(ϕ) and
Normal-
krümmungs-
radius

normal radius

of curvature N(ϕ). The latter radius is exactly the quantity that we know already from (1.2).

The corresponding equations and some examples are given in the following table.

in meridian in prime vertical

general M(ϕ) = a
1− e2

(1− e2 sin2 ϕ)3/2
N(ϕ) = a

1

(1− e2 sin2 ϕ)1/2

at equator M(0◦) = a(1− e2) N(0◦) = a

at pole M(90◦) =
a√

1− e2
N(90◦) =

a√
1− e2

The table indeed confirms that the smallest radius of curvature is in North-South direction:

M(0◦) < N(0◦). Moreover, at the poles there is no azimuth dependence: M(90◦) = N(90◦).

Gauss curvature The radius of a best fitting sphere at a certain latitude is the Gauss radius

of curvature:

RG =
√
MN =

a
√

1− e2

1− e2 sin2 ϕ
.
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1 Coordinate systems on the ellipsoid

Mean curvature The mean curvature is defined by:

ρM =
1

RM
=

1

2

(
1

M
+

1

N

)

.

Curvature in arbitrary direction The mathematician Euler developed a formula that relates

the curvatures in North-South direction ρ(α = 0◦) and in East-West direction ρ(α = 90◦) to

the curvature in arbitrary direction:

ρ(α) =
1

Rα
=

sin2 α

N
+

cos2 α

M
. (1.7)

1.6 The direct and inverse geodetic problem on the ellipsoid

The shortest path between two points on a curved surface is called ageodätische
Linie

geodesic. Solving

the direct and inverse geodetic problem on the ellipsoid would require finding and describing

geodesics on the ellipsoid. This is a mathematically demanding topic, particularly if analytical

solutions are attempted. To exemplify the level of complexity on the ellipsoid, it is remarked

that a geodesic is in general not a closed curve, like the great circle on the sphere. It suffices

to say that the geodesic is described by a set of three coupled ordinary differential equations,

that may be solved numerically.

Meridian arc AMeridianbogen meridian arc s is a special geodesic. It is described by a single differential

equation:
ds

dϕ
= M(ϕ) ,

which is of course the reverse of the definition of a differential arc length (compare the

spherical case):

ds = M(ϕ) dϕ .

Therefore, the meridian arc length between two points at different latitudes is

s1,2 =

2∫

1

ds =

ϕ2∫

ϕ1

M(ϕ) dϕ ,

which can be evaluated by numerical quadrature.

1.7 Example: geodetic and geocentric latitude

Assuming the GRS80-ellipsoid with semi-major axis aE = 6 378 137 m and semi-minor axis

bE = 6 356 752.3 m, we derive the eccentricity e and linear eccentricity E.

e2 =
a2

E − b2
E

a2
E

=0.006694

E = aE · e =521 854 m
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1.7 Example: geodetic and geocentric latitude

From 1.3 we obtain the link between geodetic and geocentric latitude (assuming h = 0 m).

p = N cosϕ

z = N(1− e2) sinϕ

}

=⇒ tanϕz =
z

p
= (1− e2) tanϕ =

b2
E

a2
E

tanϕ

With a geodetic latitude of ϕ = 45◦ we compute the difference in comparison to the geocentric

latitude.

ϕ = 45◦ ⇒ tanϕ = 1⇒ tanϕz =
b2

E

a2
E

⇒ ϕz = 44◦.81⇒ ∆ϕ ≈ 0◦.19 ≈ 11′

This latitude difference seems small, but its influence on the earth’s surface certainly is not.

0◦.19
π

180◦
aE ≈ 21.4 km !
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2 Natural coordinates (e, g)

2.1 Level surfaces and plumb lines (H, C)

In this section, the direction of the Schwerevektorgravity vector and the characteristics of the surface

orthogonal to it will be discussed.

Let us start by setting

W (x, y, z) = WP = const.. (2.1)

The surfaces defined in this way are surfaces of constant potential, called Äquipoten-
zialflächen

equipotential sur-

faces or in case of the gravity potential, level surfaces. They coincide with the surface of a

homogeneous fluid in equilibrium, which explains the term level surface. In first approxima-

tion the idealized surfaces of lakes can be considered as such level surfaces. They approximate

W = const. for a specific value WP.

Differentiating W = W (x, y, z) with respect to x, y, z gives

dW =
∂W

∂x
dx+

∂W

∂y
dy +

∂W

∂z
dz

or in vector notation

dW = gradW · dr = ∇W · dr (2.2)

where drT = ( dx, dy, dz) is a displacement vector and

∇W = gradW =

(
∂W

∂x
,
∂W

∂y
,
∂W

∂z

)

.

Let dr lie in the equipotential surface W (x, y, z) = WP, then dW = 0 and (2.2) becomes

∇W · dr = 0,

or using the gravity vector g = ∇W

g · dr = 0 on W (x, y, z) = WP. (2.3)

If the dot product of two non-zero vectors is equal to zero, then the vectors are orthogonal

to one another. Since g 6= 0 and dr 6= 0, the gravity vector g must be orthogonal to dr, i. e.

g ⊥ dr.

This means that the gravity vector is normal to the equipotential surface passing through the

point P. It is therefore simple to find the direction of the gravity vector on the surface of the

Earth. It is orthogonal to the surface established by a level bubble, or, in other words, the
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2 Natural coordinates (e, g)

Figure 2.1: Level Surfaces, Plumb Lines, Geoid.

bubble represents the level surface in that specific point. This principle is used extensively

when levelling geodetic instruments. The lines which intersect all level surfaces of the Earth

orthogonally are calledLotlinien plumb lines. They are curved lines and the gravity vector is obviously

tangent to the plumb line at the points of intersection. A good approximation of such a

tangent, and therefore of the direction of gravity, is the string holding a plumb bob.

Each specificWP defines a different equipotential surface. The particular equipotential surface

which coincides with the idealized surface of the oceans is called the geoid. The name was

proposed by Listing to describe the figure of the Earth. The geoid is used as a reference

surface for the orthometric height system. It defines the height H of a point at the physical

surface of the Earth by its distance from the geoid measured along the plumb line, see Fig. 2.1.

The following properties of the Earth’s equipotential surfaces are of importance in geodesy:

• they are continuous surfaces,

• they never cross each other,

• they are not parallel to one another,

• their curvature changes smoothly from point to point.

To define H mathematically, let us use equation (2.2) again

dW = g · dr.

Let dr point upward along the plumb line, see Figure 2.2, i. e. |dr| = dH.
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2.1 Level surfaces and plumb lines (H, C)

Figure 2.2: Definition of Orthometric Height.

Thus,

dW = g · dr = |g| · |dr| cos(g, dr) = g dH cos(180◦)

and therefore

dW = −g dH. (2.4)

This is the fundamental equation for height definition. It is often rewritten in the form

dH = − dW

g
. (2.5)

Equation (2.5) defines the height in terms of potential differences and gravity. Since gravity

cannot be measured inside the Earth, different approximations for g inside the Earth are

made. Thus, different height systems are possible.

Integrating

HP =

P∫

0

dH = −
P∫

0

1

g
dW = −1

g̃

P∫

0

dW = −WP −W0

g̃
=
W0 −WP

g̃
=
CP

g̃
(2.6)

where W0 gravity potential at the geoid, WP gravity potential at P, C geopotenzielle
Kote

geopotential number .

(2.5) can be written as

Height =
C

g̃
, (2.7)

where g̃ is the mean gravity between surface point P and its footprint at the geoid along the

plumbline. The resulting height is called orthometric height which is the length of the curved

plumbline between P and geoid.

The SI unit of geopotential numbers is m2

s2 .

However, in literature sometimes the non-standard geopotential units ( g.p.u.) are used, i. e.

1 g.p.u. = 1 kGal ·m. Since globally g̃ is approximately 0.98 kGal, geopotential numbers in

g.p.u. are always close to heights above the geoid in meters.
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2 Natural coordinates (e, g)

The system of natural coordinates can therefore be expressed by either one of the two coor-

dinate triples

Φ,Λ,H or Φ,Λ, C

The first has a simple geometrical explanation but introduces some assumptions in the def-

inition of H. The second is more precise in terms of defining the coordinates but lacks the

intuitive geometrical meaning. In both cases, the coordinates can be uniquely expressed by

potential differences and gradients of W , thus explaining Bruns’s (1878) concise statement:

“The task of geodesy is the determination of the potential function W (x, y, z)”.

2.2 Astronomical latitude (Φ) and longitude (Λ)

In the introduction to this chapter, the system of natural coordinates has been described as

a system whose axes are defined by directions which are physically meaningful in terrestrial

space as e. g. the directions of the gravity vector and theDrehachse spin axis of the Earth. How can these

spatial directions be related to positions in an Earth-fixed coordinate system? It is obvious

from the preceding sections that the gravity potential and its gradients are important in this

context. They define the direction of the gravity vector by gradients of W in an Earth-fixed

Cartesian {x, y, z}-system. The relationship between gradW and {x, y, z} will be briefly

discussed in this section.

The simplest representation of the gravity vector is obtained in the Local Astronomic System

(la) which is defined by:

Local Astronomic System (la)

Origin: At point P

Primary axis (z): Orthogonal to level surface at P

(WP = const.)

Secondary axis (x): Tangent to astronomic meridian pointing

north

Tertiary axis (y): Orthogonal in a left-handed system

In this system, which is shown in Figure 2.3, the gravity vector has the coordinates

gg = gradW =






0

0

−g




 .

To relate this representation to that in an Earth-fixed Cartesian system, let us first define

such a system:
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2.2 Astronomical latitude (Φ) and longitude (Λ)

xe

z
e

y
e

Figure 2.3: Local Astronomic System and Astronomic Coordinates (bottom left) and direc-

tion of normal vector in terms of Φ and Λ on the celestial sphere (top right).

Conventional Terrestrial System (ct)

Origin: Centre of mass of the Earth

Primary axis (z): Conventional (or mean) spin axis of the

Earth

Secondary axis (x): Intersection of the conventional (or mean)

equator plane and the mean meridian

plane of Greenwich

Tertiary axis (y): Orthogonal in a right-handed system

This coordinate system is of fundamental importance in geodesy. It will be more rigorously

defined in Chapter 4, where the terms mean or conventional get a proper definition. The

plane orthogonal to the conventional spin axis is called conventional Äquatorebeneequator plane.

The direction of g in the ct-system is given by two angles, astronomic latitude Φ and astro-

nomic longitude Λ. The definition of Λ is tied to the definition of the astronomic Meridianebenemeridian

plane.

The astronomic meridian plane of a point P is the plane containing the gravity vector at P and

the parallel to the conventional rotation axis of the Earth through P. Thus, it is orthogonal

to the conventional equator plane. The astronomic longitude Λ is the angle between the

astronomic meridian planes of two points. The convention is that the angle Λ is counted

counterclockwise from the mean astronomic meridian plane of Greenwich.

The astronomic latitude Φ of a point P is the smallest angle between the conventional equator

plane and the vector normal to the level surface in P measured in the meridian plane of P. The
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2 Natural coordinates (e, g)

normal vector is opposite in direction to the gravity vector in P. The angle Φ is conventionally

counted from the mean equator plane positive towards the north pole and negative towards

the south pole.

The normal vector n has the form

ne =






cos Φ cos Λ

cos Φ sin Λ

sin Φ




 . (2.8)

Using this definition of the normal vector n, the gravity vector g can be expressed as

ge = −gn (2.9)

and substituting (2.8) into (2.9), we get

ge = gradW =






∂W/∂x

∂W/∂y

∂W/∂z




 =






Wx

Wy

Wz




 = −g






cos Φ cos Λ

cos Φ sin Λ

sin Φ




 . (2.10)

Formula (2.10) shows an interesting connection between physics and geometry. Starting

from physics (gravity potential), the astronomic coordinates {Φ,Λ} can be derived and the

geometry of space (e. g. curvature of the Earth’s surface) can be determined.

Formula (2.10) defines the gradients of the gravity potential in terms of astronomic coordi-

nates Φ and Λ. The reverse formulas expressing Φ and Λ as gradients of the gravity potential,

can also be obtained.

From (2.10) we have

W 2
x +W 2

y = g2 cos2 Φ(cos2 Λ + sin2 Λ) = g2 cos2 Φ

and
Wz

√

W 2
x +W 2

y

=
−g sin Φ

g cos Φ
= − tan Φ.

Also
Wy

Wx
= tan Λ.

Thus,

Φ = arctan
−Wz

√

W 2
x +W 2

y

(2.11)

Λ = arctan
Wy

Wx

Formula (2.11) shows that, if the gravity potential W (x, y, z) is given, the coordinates Φ and

Λ can always be determined.

To describe the position of a point in three-dimensional space, three coordinates are needed.

They can be Cartesian {x, y, z},krummlinig curvilinear {j, l, h}, or some other coordinate triple. Φ and

Λ give the position of a point on an equipotential surface. It makes sense, therefore, to define

the third coordinate as being orthogonal to this surface. It has been mentioned before that

this coordinate is called the orthometric height H if the reference surface is the geoid.
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2.3 Gravity disturbance

δg

g
γ

P

γ
∆r

g

γ

P

P0

z
γ

z
γ

z
g

γ

Figure 2.4: Definition of gravity disturbance (left) and gravity anomaly (right).

2.3 Gravity disturbance

The scalar Schwere-
störung

gravity disturbance is defined as:

δg = g(r)− γ(r) or δg = gP − γP . (2.12)

The vectorial version would be something like δgP = gP − γP, which is visualized in fig. 2.4.

However, before doing the subtraction both vectors g and γ must be in the same coordinate

system. This is usually not the case. Normal gravity is usually expressed in the local geodetic

γ-frame, whereas g is usually expressed in the local astronomic g-frame. The coordinate

system is indicated by a superindex.

gg =






0

0

−g




 and γγ =






0

0

−γ




 .

Before subtraction one of these vectors should be expressed in the coordinate system of the

other. This is achieved through the following detour over global coordinate systems:

rγ = S1R2(1
2π − ϕ)R3(λ)rε (2.13a)

rg = S1R2(1
2π − Φ)R3(Λ)re (2.13b)

rε = R1(ε1)R2(ε2)R3(ε3)re (2.13c)

in which the e-frame denotes the conventional terrestrial system and the ε-frame denotes the

global geodetic one. The angles εi represent a orientation difference between these two global
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2 Natural coordinates (e, g)

systems. It is assumed that their origins coincide. Combination of these transformations

gives us the transformation between the two local frames:

rγ = S1R2(1
2π − ϕ)R3(λ)R1(ε1)R2(ε2)R3(ε3)R3(−Λ)R2(Φ− 1

2π)S1rg

• neglect εi

• lot of calculus

• small angle approximation

=






1 (Λ− λ) sinϕ (Φ− ϕ)

−(Λ− λ) sinϕ 1 (Λ− λ) cosϕ

−(Φ− ϕ) −(Λ− λ) cosϕ 1




 rg (2.14a)

=






1 δΛ sinϕ δΦ

−δΛ sinϕ 1 δΛ cosϕ

−δΦ −δΛ cosϕ 1




 rg (2.14b)

=






1 ψ ξ

−ψ 1 η

−ξ −η 1




rg = R1(η)R2(−ξ)R3(ψ) rg . (2.14c)

Between (2.14a) and (2.14b) we made use of the following definitions:

Latitude disturbance: δΦ = ΦP − ϕP , (2.15a)

Longitude disturbance: δΛ = ΛP − λP . (2.15b)

The matrix element ψ = δΛ sinϕ = η tanϕ is actually one of the contributions to the azimuth

disturbance (see below). The step from (2.14b) to (2.14c) made use of the definition of the

deflection of the vertical:

Deflection in N-S: ξ = δΦ , (2.16a)

Deflection in E-W: η = δΛ cosϕ . (2.16b)

Remark 2.1 Remind that the orientation difference between the two global frames e and ε,

represented by the angular datum parameters εi, has been neglected. The corresponding full

transformation would become somewhat more elaborate. The equations are still manageable,

though, since εi are small angles.

We know our gravity vector g in the g-frame. Using (2.14c) it is easily transformed into the

γ-frame now:

gγ = −g






ξ

η

1




 .

Finally, we are able to subtract the normal gravity vector from the gravity vector to get the

vector gravity disturbance, see also fig. 2.5:

δgγ = gγ − γγ =






−gξ
−gη
−g




−






0

0

−γ




 =






−gξ
−gη
−δg




 =






−γξ
−γη
−δg




 . (2.17)
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2.3 Gravity disturbance
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yγ
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Figure 2.5: The gravity disturbance δg

projected into the local geode-

tic frame is decomposed into

deflections of the vertical

(γξ, γη) and scalar gravity

disturbance δg.

The latter change from g into γ is allowed because the deflection of the vertical is such a

small quantity that the precision of the quantity by which it is multiplied doesn’t matter.

The gravity vector is the gradient of the gravity potential. Correspondingly, the normal

gravity vector is the gradient of the normal potential. Thus we have:

δg = ∇W −∇U = ∇(W − U) = ∇T ,

i.e. the gravity disturbance vector is the gradient of the disturbing potential. We can write

the gradient for instance in local Cartesian or in spherical coordinates. Written out in com-

ponents:

Local Cartesian:







∂T

∂x
= −γξ

∂T

∂y
= −γη

∂T

∂z
= −δg

Spherical:







1

r

∂T

∂ϕ
= −γδΦ

1

r cosϕ

∂T

∂λ
= −γδΛ cosϕ

∂T

∂r
= −δg

(2.18)

The rhs of each of these 6 equations represent the observable, the lhs the unknowns (deriva-

tives of T ).

Zenith and azimuth disturbances. Without going into too much detail the derivation of

zenith and azimuth disturbances is straightforward. We can write any position vector rγ in

geodetic azimuth (α) and zenith (z). Similarly, any rg can be written in astronomic azimuth

(A) and zenith (Z). The transformation between both is known from (2.14c):





sin z cosα

sin z sinα

cos z




 =






1 ψ ξ

−ψ 1 η

−ξ −η 1











sinZ cosA

sinZ sinA

cosZ




 .
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2 Natural coordinates (e, g)

After some manipulation one can derive:

Azimuth disturbance: δA = AP − αP = ψ + cot z(ξ sinα− η cosα) , (2.19a)

Zenith disturbance: δZ = ZP − zP = −ξ cosα− η sinα . (2.19b)

Recommended additional reading

• Torge (1991): Chapter 2,

• Vanicek and Krakiwsky (1982): Chapter 6,

• Heiskanen and Moritz (1967): Chapters 1.1, 1.2, 2.1–2.4.

Test your knowledge

i) How would you build a sensor to measure gravity on the surface of the Earth?

ii) A plumbline is defined as the line intersecting all level surfaces orthogonally. If you

determine astronomic coordinates at the geoid and at a point at height H above the

geoid measured along the plumbline, will the astronomic coordinates be the same?

iii) If the level surfaces of the Earth were all parallel, what could you say about the figure

of the Earth, its density, and its angular rotation.

iv) The gravity potential W for a small region of the Earth is approximated by

W (x, y, z) =
GM

R

{

1− a1

(
z

R

)2

+ a2 − a3
xy

R2

}

+
1

2
ω2(x2 + y2).

Determine the astronomic coordinates of the point with coordinates

x = 2800 km, y = 2900 km, z = 5000 km

if

a1 = 1.6·10−3, a2 = 0.65·10−3, a3 = 0.6·10−5, R = 6371 km, ω = 0.7292·10−4 s−1.

v) The system of natural coordinates can either be expressed by the coordinates {Φ,Λ,H}
or by {Φ,Λ, C}. Explain the difference between them and discuss situations where you

would use one or the other.

vi) Which advantages do you see in using a ct-system instead of an la-system?
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3 Rotation

kinematics Gravity related measurements take generally place on non-static platforms: sea-

gravimetry, airborne gravimetry, satellite gravity gradiometry, inertial navigation. Even mea-

surements on a fixed point on Earth belong to this category because of the Earth’s rotation.

Accelerated motion of the reference frame induces inertial accelerations, which must be taken

into account in physical geodesy. The rotation of the Earth causes a centrifugal acceleration

which is combined with the gravitational attraction into a new quantity: gravity. Other

inertial accelerations are usually accounted for by correcting the gravity related measure-

ments, e.g. the Eötvös correction. For these and other purposes we will start this chapter by

investigating velocity and acceleration in a rotating frame.

dynamics One of geodesy’s core areas is determining the orientation of Earth in space. This

goes to the heart of the transformation between inertial and Earth-fixed reference systems.

The solar and lunar gravitational fields exert a torque on the flattened Earth, resulting in

changes of the polar axis. We need to elaborate on the dynamics of solid body rotation to

understand how the polar axis behaves in inertial and in Earth-fixed space.

geometry Newton’s laws of motion are valid in inertial space. If we have to deal with

satellite techniques, for instance, the satellite’s ephemeris is most probably given in inertial

coordinates. Star coordinates are by default given in inertial coordinates: right ascension α

and declination δ. Moreover, the law of gravitation is defined in inertial space. Therefore,

after understanding the kinematics and dynamics of rotation, we will discuss the definition

of inertial reference systems and their realizations. An overview will be presented relating

the conventional inertial reference system to the conventional terrestrial one.

3.1 Geometry: rotation basics

properties of rotation matrices Rotations are performed by rotation matrices Ri. Their

dimension is 2×2 in two-dimensional and 3×3 in three-dimensional coordinate systems. The

lower index defines the axis around which the rotation is carried out, e.g. R1(α) is a rotation

around the x-axis by the angle α. The matrices have certain properties.

i) Rotated vectors are invariant, i.e. their length doesn’t change.

ii) Rotations are not commutative:

Ri(α)Rj(β) 6= Rj(β)Ri(α) .
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3 Rotation

iii) Rotations are associative:

Ri(α)[Rj(β)Rk(γ)] = [Ri(α)Rj(β)]Rk(γ) .

iv) Rotations around the same axis are additive:

Ri(α)Ri(β) = Ri(α+ β) .

v) The inverse equals the transposed matrix:

RT = R−1 ⇐⇒ RTR = I .

passive rotation in 2D A passive rotation is a rotation of the coordinate system as shown

in fig. 3.1 on the left side. The coordinates in the new system (x′,y′) have to be computed

by a multiplication of a rotation matrix to the given points (1, 0)T and (0, 1)T on the axes.

The new coordinates are known by trigonometry, which gives one column of the unknown

rotation matrix per point.

r′ = R(α)r (3.1)

Point 1 :

(

cosα

− sinα

)

=

(

cosα . . .

− sinα . . .

)(

1

0

)

Point 2 :

(

sinα

cosα

)

=

(

. . . sinα

. . . cosα

)(

0

1

)

⇓

R(α) =

(

cosα sinα

− sinα cosα

)

(3.2)

Remark 3.1 The direction of rotation is mathematically positive, i.e. counterclockwise, be-

cause the first axis (x) is turned towards the second axis (y).

active rotation in 2D Active rotation doesn’t change the coordinate system but actually

moves the point itself. The rotation of the two points from above in the same coordinate

system leads to different new points (cf. fig. 3.1, right).

Point 1 :

(

cosα

sinα

)

=

(

cosα . . .

sinα . . .

)(

1

0

)

Point 2 :

(

− sinα

cosα

)

=

(

. . . − sinα

. . . cosα

)(

0

1

)

⇓

R(α) =

(

cosα − sinα

sinα cosα

)

(3.3)

The difference between active and passive rotation is the position of the negative sign. Because

we are dealing with different coordinate systems, we use passive rotation.
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3.1 Geometry: rotation basics
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Figure 3.1: Passive rotation of the coordinate system (left) and active rotation of a point

(right) in two-dimensional space.

Remark 3.2 Active and passive rotation are linked by

Rpassive = RT

active = R−1
active .

passive rotation in 3D Rotation around the first axis in three-dimensional space is a passive

two-dimensional rotation of the (y,z)-plane. The two-dimensional matrix is extended by a

row and a column fixing the x-axis.

R1(α) =






1 0 0

0 cosα sinα

0 − sinα cosα




 (3.4)

Rotating around the z-axis follows the same scheme.

R3(γ) =






cos γ sin γ 0

− sin γ cos γ 0

0 0 1




 (3.5)

Remark 3.3 The rotation direction stays counterclockwise, because also the y-axis moves

towards the z-axis. In the next step, z will move in direction of x because the positive rotation

can be defined by Zyklische

Permutation

cyclic permutation:

z y

x
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3 Rotation

y=y'

z

z'

y=y'

z
z'

x
x'

β

β

(0,0,1)

(1,0,0)

x

x'

β

β

(0,0,1)

(1,0,0)

Figure 3.2: Three-dimensional rotation around y-axis simplified by directly looking on the

(x,z)-plane.

The matrix looks different for the rotation axis y. With fig. 3.2, the matrix can be built like

the two-dimensional ones looking on the (x,z)-plane.

R2(β) =






cos β 0 − sin β

0 1 0

sin β 0 cosβ




 (3.6)

Euler rotation Every rotation can be represented by a series of three rotations around one

of the three axes each. The Euler1 rotations use the rotation around one axis (mostly R3)

twice (cf. fig. 3.3).

REuler(α, β, γ) = R3(γ)R1(β)R3(α) (3.7)

Cardan rotation Another often used representation in praxis is the Cardan2 rotation, which

consists of three rotations around three different axes. They are also called Tait3-Bryan4

rotations. There are two main applications:

i) Cardan rotation in vehicle and aircraft engineering

RCardan(Ψ,Θ,Φ) = R1(Φ)R2(Θ)R3(Ψ) . (3.8)

The angles are

1Leonhard Euler (1707–1783), Swiss mathematician and physicist.
2Gerolamo Cardano (1501–1576), Italian mathematician.
3Peter Guthrie Tait (1831–1901), Scottish mathematical physicist.
4George H. Bryan (1864–1928), British physicist.
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3.1 Geometry: rotation basics

x
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y
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z=z'
z'
'=
z'
''

β

�

γ

β

α

β

γ

Figure 3.3: Euler ro-

tation

sequence

R3(γ)R1(β)R3(α).

• Gieryaw,
Steuerkurs

heading or azimuth Ψ

• Nickpitch Θ

• Rollroll Φ .

ii) Cardan rotation for the exterior orientation in photogrammetry

RCardan(ω,ϕ, κ) = R3(κ)R2(ϕ)R1(ω) . (3.9)

Here the order is first roll angle ω, then pitch ϕ and heading κ.

differential rotation The angles used for transformations between different reference sys-

tems are often small. This allows the simplification of the trigonometric functions sinα ≈ α
and cosα ≈ 1 for small angles α→ 0. As a consequence, the rotation matrices can be written

differently.

R1 =






1 0 0

0 cosα sinα

0 − sinα cosα






α→0
=






1 0 0

0 1 α

0 −α 1




 = I + αL1, L1 =






0 0 0

0 0 1

0 −1 0




 (3.10a)

R2 =






cos β 0 − sin β

0 1 0

sin β 0 cos β






β→0
=






1 0 −β
0 1 0

β 0 1




 = I + βL2, L2 =






0 0 −1

0 0 0

1 0 0




 (3.10b)

R3 =






cos γ sin γ 0

− sin γ cos γ 0

0 0 1






γ→0
=






1 γ 0

−γ 1 0

0 0 1




 = I + γL3, L3 =






0 1 0

−1 0 0

0 0 0




 . (3.10c)
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3 Rotation

The matrices L1, L2, L3 are so-calledGenerator-
matrizen

generator matrices. They allow the separation of the

angle and the matrix, which is especially useful when we apply Euler or Cardan rotations for

differential angles.

REuler(α, β, γ) = (I + γL3)(I + βL2)(I + αL3)

= I + γL3 + βL1 + αL3 + αγL3L3 + βγL2L3 + αβL2L3
︸ ︷︷ ︸

=0

= I + γL3 + βL1 + αL3

=






1 α+ γ −β
−(α+ γ) 1 0

β 0 1




 . (3.11)

If written in the same additive form, the Cardan rotation for differential angles looks more

intuitive and is commonly used in coordinate transformations.

RCardan(α, β, γ) = (I + γL3)(I + βL2)(I + αL1) = I + αL1 + βL2 + γL3

=






1 γ −β
−γ 1 α

β −α 1




 . (3.12)

3.2 Kinematics: acceleration in a rotating frame

Let us consider the situation of motion in a rotating reference frame and let us associate

this rotating frame with the Earth-fixed frame. The following discussion on velocities and

accelerations would be valid for any rotating frame, though.

Inertial coordinates, velocities and accelerations will be denoted with the index i. Earth-fixed

quantities get the index e. Now suppose that a time-dependent rotation matrix R = R(α(t)),

applied to the inertial vector ri, results in the Earth-fixed vector re. We would be interested

in velocities and accelerations in the rotating frame. The time derivations must be performed

in the inertial frame, though.

From Rri = re we get:

ri = RTre (3.13a)

⇓ time derivative

ṙi = RTṙe + ṘTre (3.13b)

⇓ multiply by R

Rṙi = ṙe +RṘTre

= ṙe + Ωre (3.13c)
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3.2 Kinematics: acceleration in a rotating frame

The matrix Ω = RṘT is called Cartan5 matrix. It describes the rotation rate, as can be seen

from the following simple 2D example with α(t) = ωt:

R =

(

cosωt sinωt

− sinωt cosωt

)

⇒ Ω =

(

cosωt sinωt

− sinωt cosωt

)

ω

(

− sinωt − cosωt

cosωt − sinωt

)

=

(

0 −ω
ω 0

)

It is useful to introduce Ω. In the next time differentiation step we can now distinguish

between time dependent rotation matrices and time variable rotation rate. Let’s pick up the

previous derivation again:

⇓ multiply by R
T

ṙi = RTṙe +RTΩre (3.13d)

⇓ time derivative

r̈i = RTr̈e + ṘTṙe + ṘTΩre +RTΩ̇re +RTΩṙe

= RTr̈e + 2ṘTṙe + ṘTΩre +RTΩ̇re (3.13e)

⇓ multiply by R

Rr̈i = r̈e + 2Ωṙe + ΩΩre + Ω̇re

⇓ or the other way around

r̈e = Rr̈i − 2Ωṙe − ΩΩre − Ω̇re (3.13f)

This equation tells us that acceleration in the rotating e-frame equals acceleration in the

inertial i-frame—in the proper orientation, though—when 3 more terms are added. The

additional terms are called inertial accelerations. Analyzing (3.13f) we can distinguish the

four terms at the right hand side:

i) Rr̈i is the inertial acceleration vector, expressed in the orientation of the rotating frame.

ii) 2Ωṙe is the so-called Coriolis6 acceleration, which is due to motion in the rotating frame.

iii) ΩΩre is the centrifugal acceleration, determined by the position in the rotating frame.

iv) Ω̇re is sometimes referred to as Euler7 acceleration or inertial acceleration of rotation.

It is due to a non-constant rotation rate.

Remark 3.4 Equation (3.13f) can be generalized to moving frames with time-variable origin.

If the linear acceleration of the e-frame’s origin is expressed in the i-frame with b̈
i
, the only

change to be made to (3.13f) is Rr̈i → R(r̈i − b̈
i
).

5Élie Joseph Cartan (1869–1951), French mathematician.
6Gaspard Gustave de Coriolis (1792–1843).
7Leonhard Euler (1707–1783).
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3 Rotation

Properties of the Cartan matrix Ω. Cartan matrices are skew-symmetric, i.e. ΩT = −Ω.

This can be seen in the simple 2D example above already. But it also follows from the

orthogonality of rotation matrices:

RRT = I =⇒ d

dt
(RRT) = ṘRT

︸ ︷︷ ︸

ΩT

+RṘT

︸ ︷︷ ︸

Ω

= 0 =⇒ ΩT = −Ω . (3.14)

A second interesting property is the fact that multiplication of a vector with the Cartan

matrix equals the cross product of the vector with a corresponding rotation vector:

Ωr = ω × r (3.15)

This property becomes clear from writing out the 3 Cartan matrices, corresponding to the

three independent rotation matrices:

R1(ω1t) ⇒ Ω1 =






0 0 0

0 0 −ω1

0 ω1 0






R2(ω2t) ⇒ Ω2 =






0 0 ω2

0 0 0

−ω2 0 0






R3(ω3t) ⇒ Ω3 =






0 −ω3 0

ω3 0 0

0 0 0












general
=⇒ Ω =






0 −ω3 ω2

ω3 0 −ω1

−ω2 ω1 0




 . (3.16)

Indeed, when a general rotation vector ω = (ω1, ω2, ω3)T is defined, we see that:





0 −ω3 ω2

ω3 0 −ω1

−ω2 ω1 0











x

y

z




 =






ω1

ω2

ω3




×






x

y

z




 .

The skew-symmetry (3.14) of Ω is related to the fact ω × r = −r × ω.

Exercise 3.1 Convince yourself that the above Cartan matrices Ωi are correct, by doing the

derivation yourself. Also verify (3.15) by writing out lhs and rhs.

Using property (3.15), the velocity (3.13c) and acceleration (3.13f) may be recast into the

perhaps more familiar form:

ṙe = Rṙi −ω × re (3.17a)

r̈e = Rr̈i − 2ω × ṙe − ω × (ω × re)− ω̇ × re (3.17b)

Inertial acceleration due to Earth rotation

Neglecting precession, nutation and polar motion, the transformation from inertial to Earth-

fixed frame is given by:

re = R3(gast)ri or→ re = R3(ωt)ri . (3.18)
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3.3 Dynamics: precession, nutation, polar motion

The latter is allowed here, since we are only interested in the acceleration effects, due to the

rotation. We are not interested in the rotation of position vectors. With great precision, one

can say that the Earth’s rotation rate is constant: ω̇ = 0 The corresponding Cartan matrix

and its time derivative read:

Ω =






0 −ω 0

ω 0 0

0 0 0




 and Ω̇ = 0 .

The three inertial accelerations, due to the rotation of the Earth, become:

Coriolis: −2Ωṙe = 2ω






ẏe

−ẋe

0




 (3.19a)

centrifugal: −ΩΩre = ω2






xe

ye

0




 (3.19b)

Euler: −Ω̇re = 0 (3.19c)

The Coriolis acceleration is perpendicular to both the velocity vector and the Earth’s rotation

axis. The centrifugal acceleration is perpendicular to the rotation axis and is parallel to the

equator plane.

Exercise 3.2 Determine the direction and the magnitude of the Coriolis acceleration if you

are driving from Calgary to Banff with 100 km/h.

Exercise 3.3 How large is the centrifugal acceleration in Calgary? On the equator? At the

North Pole? And in which direction?

3.3 Dynamics: precession, nutation, polar motion

Instead of linear velocity (or momentum) and forces we will have to deal with Drehimpulsangular mo-

mentum and Drehmomenttorques. Starting with the basic definition of angular momentum of a point

mass, we will step by step arrive at the angular momentum of solid bodies and their tensor

of inertia. In the following all vectors are assumed to be given in an inertial frame, unless

otherwise indicated.

Angular momentum of a point mass The basic definition of angular momentum of a point

mass is the cross product of position and velocity: L = mr× v. It is a vector quantity. Due

to the definition the direction of the angular momentum is perpendicular to both r and v.
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3 Rotation

In our case, the only motion v that exists is due to the rotation of the point mass. By

substituting v = ω × r we get:

L = mr × (ω × r) (3.20a)

= m






x

y

z




×











ω1

ω2

ω3




×






x

y

z











= m






ω1y
2 − ω2xy − ω3xz + ω1z

2

ω2z
2 − ω3yz − ω1yx+ ω2x

2

ω3x
2 − ω1zx− ω2zy + ω3y

2






= m






y2 + z2 −xy −xz
−xy x2 + z2 −yz
−xz −yz x2 + y2











ω1

ω2

ω3






= Mω . (3.20b)

The matrix M is called theMassen-
trägheitsmo-

ment

tensor of inertia. It has units of [kg m2]. Since M is not an

ordinary matrix, but a tensor, which has certain transformation properties, we will indicate

it by boldface math type, just like vectors.

Compare now the angular momentum equation L = Mω with the linear momentum equation

p = mv, see also tbl. 3.1. It may be useful to think of m as a mass scalar and of M as a mass

matrix. Since the mass m is simply a scalar, the linear momentum p will always be in the

same direction as the velocity vector v. The angular momentum L, though, will generally be

in a different direction than ω, depending on the matrix M .

Exercise 3.4 Consider yourself a point mass and compute your angular momentum, due to

the Earth’s rotation, in two ways:

i) straightforward by (3.20a), and

ii) by calculating your tensor of inertia first and then applying (3.20b).

Is L parallel to ω in this case?

Angular momentum of systems of point masses The concept of tensor of inertia is easily

generalized to systems of point masses. The total tensor of inertia is just the superposition

of the individual tensors. The total angular momentum reads:

L =
N∑

n=1

mnrn × vn =
N∑

n=1

Mnω . (3.21)

Angular momentum of a solid body We will now make the transition from a discrete to a

continuous mass distribution. Symbolically:

lim
N→∞

N∑

n=1

mn · · · =
∫∫

Ω

∫

. . . dm .
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3.3 Dynamics: precession, nutation, polar motion

Again, the angular momentum reads L = Mω. For a solid body, the tensor of inertia M is

defined as:

M =

∫∫

Ω

∫






y2 + z2 −xy −xz
−xy x2 + z2 −yz
−xz −yz x2 + y2




 dm

=









∫∫∫
(y2 + z2) dm − ∫∫∫ xy dm − ∫∫∫ xz dm

∫∫∫
(x2 + z2) dm −

∫∫∫
yz dm

symmetric
∫∫∫

(x2 + y2) dm









.

The diagonal elements of this matrix are called moments of inertia. The off-diagonal terms

are known as products of inertia.

Exercise 3.5 Show that in vector-matrix notation the tensor of inertia M can be written as:

M =
∫∫∫

(rTrI − rrT) dm .

Torque If no external torques are applied to the rotating body, angular momentum is con-

served. A change in angular momentum can only be effected by applying a torque T :

dL

dt
= T = r × F . (3.22)

Equation (3.22) is the rotational equivalent of ṗ = F , see tbl. 3.1. Because of the cross-

product, the change in the angular momentum vector is always perpendicular to both r and

F . Try to intuitively change the axis orientation of a spinning wheel by applying a force to

the axis and the axis will probably go a different way. If no torques are applied (T = 0) the

angular momentum will be constant, indeed.

Table 3.1: Comparison between linear and rotational dynamics

linear rotational

point mass solid body

linear momentum p = mv L = mr × v L = Mω angular momentum

force
dp
dt = F dL

dt = r × F dL
dt = T torque

Three cases will be distinguished in the following:

i) T is constant −→ precession,

which is a secular motion of the angular momentum vector in inertial space,

ii) T is periodic −→ nutation (or forced nutation),

which is a periodic motion of L in inertial space,

iii) T is zero −→ free nutation, polar motion,

which is a motion of the rotation axis in Earth-fixed space.
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3 Rotation

Precession The word precession is related to the verb to precede, indicating a steady, secular

motion. In general, precession is caused by constant external torques. In the case of the Earth,

precession is caused by the constant gravitational torques from Sun and Moon. The Sun’s

(or Moon’s) gravitational pull on the nearest side of the Earth is stronger than the pull on

the other side. At the same time the Earth is flattened. Therefore, if the Sun or Moon is not

in the equatorial plane, a torque will be produced by the difference in gravitational pull on

the equatorial bulges. Note that the Sun is only twice a year in the equatorial plane, namely

during the equinoxes (beginning of Spring and Fall). The Moon goes twice a month through

the equator plane.

Thus, the torque is produced because of three simultaneous facts:

i) the Earth is not a sphere, but rather an ellipsoid,

ii) the equator plane is tilted with respect to the ecliptic by 23.◦5 (the obliquity ε) and also

tilted with respect to the lunar orbit,

iii) the Earth is a spinning body.

If any of these conditions were absent, no torque would be generated by solar or lunar

gravitation and precession would not take place.

As a result of the constant (or mean) part of the lunar and solar torques, the angular mo-

mentum vector will describe a conical motion around the northern ecliptical pole (nep) with

a radius of ε, see fig. 3.5 and fig. 3.6. The northern celestial pole (ncp) slowly moves over an

ecliptical latitude circle. It takes the angular momentum vector 25 765 years to complete one

revolution around the nep. That corresponds to 50.′′3 per year.

NEP

vernal
equinox

winter
solstice

ecliptic

autumnal
equinox

summer
solstice

Sun
x y

z

x y

z

x y

z

x y

z

NCP

Figure 3.4: The Earth’s rotation around the sun which causes the seasons and the precession

effect.

42



3.3 Dynamics: precession, nutation, polar motion

NCP

NEP

ecliptic

equator

ε

ε

precession
cone

Figure 3.5: Obliquity ε with regard to the ecliptic.

Nutation The word nutation is derived from the Latin for to nod. Nutation is a periodic

(nodding) motion of the angular momentum vector in space on top of the secular precession.

There are many sources of periodic torques, each with its own frequency:

i) The orbital plane of the moon rotates once every 18.6 years under the influence of the

Earth’s flattening. The corresponding change in geometry causes also a change in the

lunar gravitational torque of the same period. This effect is known as Bradley nutation.

ii) The sun goes through the equatorial plane twice a year, during the equinoxes. At those

time the solar torque is zero. Vice versa, during the two solstices, the torque is maximum.

Thus there will be a semi-annual nutation.

iii) The orbit of the Earth around the Sun is elliptical. The gravitational attraction of the

Sun, and consequently the gravitational torque, will vary with an annual period.

iv) The Moon passes the equator twice per lunar revolution, which happens roughly twice

per month. This gives a nutation with a fortnightly period.

Polar motion Polar motion deals with the phenomenon of polar wander, i.e. the movement

of the Earth’s rotation vector in the Earth-fixed system. This is called free nutation as well.

Note that the rotation axis in inertial space remains constant in the considered case of T = 0.

To mathematically approach polar motion, we remember the definition of angular momentum

and torque in inertial system:

dLi

dt
= T i and

dLi

dt
= 0 in inertial space.

But as we know, angular momentum and earth’s rotation vector are not aligned. That’s the

difference to linear dynamics in the comparison of tbl. 3.1: While p and v are pointing in the

same direction, their rotational equivalents L and ω don’t. This leads to the question:

What happens in Earth-fixed space?
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3 Rotation

ε

NCP
NEP

mean

NCPT

mean

NCP0

true

NCPT

Figure 3.6: Conical motion around the nep with radius ε.

From Equation (3.13c) we had

Rri = ṙe + Ωre = ṙe + ω × re , (3.23)

and apply the same transformation to the angular momentum, which is also a kinematic

quantity:

RL̇
i

= L̇
e

+ ω ×Le = RT i = T e (3.24a)

⇓ L = Mω

T e = Ṁω + Mω̇ + ω ×Mω (3.24b)

⇓ T = 0

0 = Ṁω + Mω̇ + ω ×Mω (3.24c)

⇓ assuming Ṁ = 0

0 = Mω̇ + ω ×Mω (3.24d)

As the tensor of inertia M describes our system, the principal axes can be computed by a

Hauptachsen-
transformation

body-axis transformation. M can be diagonalized by the eigenvalue decomposition

M = QΛQT = Q






A 0 0

0 B 0

0 0 C




QT . (3.25)

Defining the conventional terrestrial reference system by theFigurenachsen body axes and taking an ellipsoid

as the Earth’s approximated shape, we can set B = A and represent our ellipsoid by

M =






A 0 0

0 A 0

0 0 C





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3.3 Dynamics: precession, nutation, polar motion

with

A = 8.0131 · 1037 kg m2

C = 8.0394 · 1037 kg m2 .

The Earth-fixed (e) system is attached to the principal axes, i.e. the Earth’s body axes.

Using the results from Equation (3.25), Equation (3.24d) can be written as:

Mω̇ + ω ×Mω = 0





Aω̇1

Aω̇2

Cω̇3




+






ω1

ω2

ω3




×






Aω1

Aω2

Cω3




 = 0 (3.26)

We must be aware of the two assumptions made: Ṁ was set 0 in (3.24d) and the Earth’s

shape was approximated by an ellipsoid.

Under these approximations we derive the differential equations that describe polar motion

in the body axes frame:






Aω̇1 + (C −A)ω2ω3 = 0

Aω̇2 + (C −A)ω3ω1 = 0

Cω̇3 = 0

(3.27)

These so-called Euler equations are a system of coupled non-linear homogeneous ordinary

differential equations. They describe the rotation of a rigid, rotationally symmetric body,

which is in that case the motion of ω in the Earth-fixed system ee. Solving non-linear

differential equations is challenging. However, in this case we can solve for ω3 first:

Cω̇3 = 0 ⇒ ω3 = constant (3.28a)

⇒







ω̇1 + C−A
A ω3ω2 = 0

ω̇2 − C−A
A ω3ω1 = 0

(3.28b)

If we now set µ = C−A
A ω3 = 3.27 · 10−3ω3:

⇒







ω̇1 + µω2 = 0

ω̇2 − µω1 = 0

(3.28c)

Differentiating the first equation yields
..
ω1 + µω̇2 = 0 and inserting ω̇2 = µω1 from above

leads to:

..
ω1 + µ2ω1 = 0 (3.29a)
..
ω2 + µ2ω2 = 0 . (3.29b)

The ω2-equation arises in the same way.
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3 Rotation
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 = body axis

ω = rotation axis
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Figure 3.7: Effect of polar motion from Earth-fixed ee to inertial system ei where ω ≈ Li is

fixed.

These are the equations of the harmonic oscillator with the known solution

ω1(t) = a cos(µt+ ϕ) (3.30a)

ω2(t) = a sin(µt+ ϕ) (3.30b)

ω3 = const. . (3.30c)

This is the so-called Euler motion with amplitude a and phase ϕ (both to be determined

from the initial state) and angular frequency µ. The period Tµ = 2π
µ = A

C−ATω3
= 306 days

is the Euler period.

Interpretation of polar motion The equations above lead to two viewpoints depending on

the choice of reference:

i) In the Earth-fixed system, the ω-vector describes a conical motion around the ze-axis,

which is a body axis of the Earth.

ii) In the inertial system, the body axis is rotating around ω. The Earth wobbles.

This happens when ω and the body axis are not aligned, which is the case if our assumptions

from above are not fulfilled. In reality, the Earth isn’t an ellipsoid, so

M 6=






A 0 0

0 A 0

0 0 C






and the tensor of inertia won’t remain constant due to mass transports caused by hydrology,

geodynamics and oceonagraphy.

Ṁ 6= 0

Effects in geophysics Observations in 19th century by S. C. Chandler8 and later by the

International Latitude Service validated the theory delivered by Euler. Basically, there are

three effects of polar motion which can be observed (cf. fig. 3.8):

8Seth Carlo Chandler (1846–1913), American astronomer.
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3.3 Dynamics: precession, nutation, polar motion
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Figure 3.8: xp- and yp-component of the polar motion from 1980–2017. Besides the annual

period a longer lasting periodic modulation and a small drift can be seen.

i) The Chandler wobble: Due to the free oscillation of the body axis, the Chandler period

of T = 435 d is observed instead of the 306 days predicted by Euler. That’s because the

Earth is a non-rigid (elastoviscous) body.

ii) Additionally, an annual period T = 1 yr caused by mass transports leads to an interfer-

ence of annual and Chandler period.

iii) A polar drift caused by Ṁ 6= 0 of ca. 3–4 mas/yr (10 cm/yr).

All combined, these points lead to an amplitude of a = 0′′.3 which corresponds about 9 m on

the surface of the Earth.

With a varying pole the latitude ϕ changes: The e-system is time-dependent due to polar

motion. A correction of polar motion leads to the conventional terrestrial e0-system.
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3 Rotation
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4 Transformations between conventional

inertial and Earth-fixed reference systems

ei0 ←→ ee0

4.1 Precession i0 ←→ ı̄

Newcomb1 formulated the transition from the mean inertial reference system at epoch T0 to

the mean instantaneous one i0 → ı̄ as:

rı̄ = Pri0
= R3(−z)R2(θ)R3(−ζ0)ri0

. (4.1)

Figure 4.2 explains which rotations need to be performed to achieve this transformation.

First, a rotation around the north celestial pole at epoch T0 (ncp0) shifts the mean equinox

at epoch T0 (à̄0) over the mean equator at T0. This is R3(−ζ0). Next, the ncp0 is shifted

along the cone towards the mean pole at epoch T (ncpT ). This is a rotation R2(θ), which

also brings the mean equator at epoch T0 is brought to the mean equator at epoch T . Finally,

a last rotation around the new pole, R3(−z) brings the mean equinox at epoch T (à̄T ) back

to the ecliptic. The required precession angles are given with a precision of 1′′ by:

ζ0 = 2306.′′2181T + 0.′′301 88T 2

θ = 2004.′′3109T − 0.′′426 65T 2

z = 2306.′′2181T + 1.′′094 68T 2

The time T is counted in Julianische
Jahrhunderte

Julian centuries (of 36 525 days) since J2000.0, i.e. January 1, 2000,

12h
ut1. It is calculated from calendar date and universal time (ut1) by first converting to

the so-called Julian day number (jd), which is a continuous count of the number of days. In

the following Y,M,D are the calendar year, month and day

Julian days jd = 367Y − floor(7(Y + floor((M + 9)/12))/4)

+ floor(275M/9) +D + 1721 014 + ut1/24 − 0.5

time since J2000.0 in days d = jd− 2451 545.0

same in Julian centuries T =
d

36 525

Exercise 4.1 Verify that the equinox moves approximately 50′′ per year indeed by projecting

the precession angles ζ0, θ, z onto the ecliptic. Use T = 0.01, i.e. one year.
1Simon Newcomb (1835–1909), Canadian-American astronomer and applied mathematician.
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4 Transformations between conventional inertial and Earth-fixed reference systems

4.2 Nutation ı̄←→ i

The following transformation describes the transition from the mean instantaneous inertial

reference system to the true instantaneous one ı̄→ i:

ri = Nrı̄ = R1(−ε−∆ε)R3(−∆ψ)R1(ε)r ı̄ . (4.2)

Again, fig. 4.2 explains the individual rotations. First, the mean equator at epoch T is rotated

into the ecliptic around à̄T . This rotation, R1(ε), brings the mean north pole towards the

nep. Next, a rotation R3(−∆ψ) lets the mean equinox slide over the ecliptic towards the

true instantaneous epoch. Finally, the rotation R1(−ε−∆ε) brings us back to an equatorial

system, to the true instantaneous equator, to be precise. The nutation angles are known as

nutation in obliquity (∆ε) and nutation in (ecliptical) longitude (∆ψ). Together with the

obliquity ε itself, they are given with a precision of 1′′ by:

ε = 84 381.′′448 − 46.′′8150T

∆ε = 0.◦0026 cos(f1) + 0.◦0002 cos(f2)

∆ψ = −0.◦0048 sin(f1)− 0.◦0004 sin(f2)

with

f1 = 125.◦0 − 0.◦052 95 d

f2 = 200.◦9 + 1.◦971 29 d

The obliquity ε is given in seconds of arc. Converted into degrees we would have ε ≈ 23.◦5

indeed. On top of that it changes by some 47′′ per Julian century. The nutation angles are

not exact. The above formulae only contain the two main frequencies, as expressed by the

time-variable angles f1 and f2. The coefficients to the variable d are frequencies in units of

degree/day:

f1 : frequency = 0.052 95 ◦/day ⇒ period = 18.6 years

f2 : frequency = 1.971 29 ◦/day ⇒ period = 0.5 years

The angle f1 describes the precession of the orbital plane of the moon, which rotates once

every 18.6 years. The angle f2 describes a half-yearly motion, caused by the fact that the

solar torque is zero in the two equinoxes and maximum during the two solstices. The former

has the strongest effect on nutation, when we look at the amplitudes of the sines and cosines.

4.3 GAST i←→ e

For the transformation from the instantaneous true inertial system i to the instantaneous

Earth-fixed sytem e we only need to bring the true equinox to the Greenwich meridian. The

angle between the x-axes of both systems is the Greenwich Actual Siderial Time (gast).

Thus, the following rotation is required for the transformation i→ e:

re = R3(gast)re . (4.3)
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4.4 Polar motion e←→ e0

The angle gast is calculated from the Greenwich Mean Siderial Time (gmst) by applying a

correction for the nutation.

gmst = ut1 + (24 110.548 41 + 8640 184.812 866T + 0.093 104T 2 − 6.2 10−6 T 3)/3600

+ 24n

gast = gmst + (∆ψ cos(ε+ ∆ε))/15

Universal time ut1 is in decimal hours and n is an arbitrary integer that makes 0 ≤ gmst <

24.

4.4 Polar motion e←→ e0

The following transformation describes the transition from the instantaneous Earth-fixed sys-

tem to the conventional terrestrial one e→ e0. To correct for polar motion the Conventional

International Origin (CIO) is defined as the mean pole of the years 1900–1905 measured

by the International Latitude Service. A translation on the surface by xp, yp leads to the

instantaneous pole defined by the ze-axis. The axis through the CIO is the ze0
-axis of the

conventional terrestrial system e0.

The transformation from instantaneous (true) terrestrial to the conventional terrestrial sys-

tem reads

re0
= R2(−xp)R1(−yp)re . (4.4)

xp and yp are derived from observations of the International Earth Rotation and Reference

Systems Service (iers). Written as differential rotations, (4.4) can be expressed by

re0
=






1 0 xp

0 1 −yp

−xp yp 1




 re . (4.5)

CIO
    = BIH84.0
    = ze0

-axis

x = Greenwich

y = 90° W

ze-axis

xp

yp
Figure 4.1: From instantaneous to conven-

tional terrestrial system by cor-

rection of polar motion.

4.5 Conventional inertial reference system

Not only is the International Earth Rotation and Reference Systems Service (iers) responsible

for the definition and maintenance of the conventional terrestrial coordinate system itrs
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4 Transformations between conventional inertial and Earth-fixed reference systems

(International Terrestrial Reference System) and its realizations itrf. The iers also defines

the conventional inertial coordinate system, called icrs (International Celestial Reference

System), and maintains the corresponding realizations icrf.

system The icrs constitutes a set of prescriptions, models and conventions to define at any

time a triad of inertial axes.

i) origin: barycentre of the solar system (6= Sun’s centre of mass),

ii) orientation: mean equator and mean equinox à̄0 at epoch J2000.0,

iii) time system: barycentric dynamic time tdb,

iv) time evolution: formulae for P and N .

frame A coordinate system like the icrs is a set of rules. It is not a collection of points

and coordinates yet. It has to materialize first. The International Celestial Reference Frame

(icrf) is realized by the coordinates of over 600 that have been observed by Very Long

Baseline Interferometry (vlbi). The position of the quasars, which are extragalactic radio

sources, is determined by their right ascension α and declination δ.

Classically, star coordinates have been measured in the optical waveband. This has resulted in

a series of fundamental catalogues, e.g. FK5. Due to atmospheric refraction, these coordinates

cannot compete with vlbi-derived coordinates. However, in the early nineties, the astrometry

satellite Hipparcos collected the coordinates of over 100 000 stars with a precision better

than 1 milliarcsecond. The Hipparcos catalogue constitutes the primary realization of an

inertial frame at optical wavelengths. It has been aligned with the icrf.
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4.5 Conventional inertial reference system

ecliptic

true equator
@ epoch T

mean
equator
@ epoch T

mean
equator
@ epoch T0

θ

∆ψ z

θ

ζ0

àT

à̄T

à̄0

nep ncp0

ncpT∆ψ ζ0

z

ε

ε+ ∆ε

Figure 4.2: Motion of the true and mean equinox along the ecliptic under the influence of

precession and nutation. This graph visualizes the rotation matrices P and N of

4.6. Note that the drawing is incorrect or misleading to the extent that i) The

precession and nutation angles are grossly exaggerated compared to the obliquity

ε, and ii) ncp0 and ncpT should be on an ecliptical latitude circle 90◦ − ε. That

means that they should be on a curve parallel to the ecliptic, around nep.
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4 Transformations between conventional inertial and Earth-fixed reference systems

4.6 Summary

A. Transformation from conventional inertial (i0) to conventional terrestrial
system (e0)






cos Φ cos Λ

cos Φ sin Λ

sin Φ




 = R2(−xP) R1(−yP) R3(gast) R1(−ε−∆ε) R3(−∆ψ) R1(ε)

R3(−z) R2(θ) R3(−ζ0)






cos δ cosα

cos δ sinα

sin δ






Required computations:

1. Julian Day (jd):

Y : year, M : month, D: day, T : time since J2000.0 in Julian centuries

jd = 367 Y − floor(7 (Y + floor((M + 9)/12))/4) + floor(275 M/9)

+ D + 1721 014 + ut1/24 − 0.5

d = jd − 2451 545.0

T =
d

36 525

2. Precession (precise to 1′′): P = R3(−z) R2(θ) R3(−ζ0)

ζ0 = 2306.′′2181 T + 0.′′301 88 T 2

θ = 2004.′′3109 T − 0.′′426 65 T 2

z = 2306.′′2181 T + 1.′′094 68 T 2

3. Nutation (precise to 1′′): N = R1(−ε0 −∆ε) R3(−∆ψ) R1(ε0)

ε0 = 84 381.′′448 − 46.′′8150 T

∆ψ = −0.◦0048 sin(f1) − 0.◦0004 sin(f2), with f1 = 125.◦0 − 0.◦052 95 d

∆ε = 0.◦0026 cos(f1) + 0.◦0002 cos(f2), with f2 = 200.◦9 + 1.◦971 29 d

4. Greenwich Mean Siderial Time (gmst) and Greenwich Apparent Siderial Time (gast):

gmst = (ut1 · 3600 + 24 110.548 41 + 8640 184.812 866 T + 0.093 104 T 2

− 6.2 10−6 T 3)/3600 + 24n

gast = gmst + (∆ψ cos(ε0 + ∆ε))/15

utc = cet− 1

ut1 = utc + ∆ut
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4.6 Summary

ut1 is in decimal hours, n is an arbitrary integer that makes 0 ≤ gmst < 24

cet denotes Central European Time (=mez).

B. Transformation from local astronomic system (g) to local geodetic system (γ)

rγ = R3(∆A) R2(−ξ) R1(η) rg with

ξ = Φ − ϕ

η = (Λ− λ) cosϕ

∆A = (Λ− λ) sinϕ

C. Transformation from global geodetic system (ε) to local geodetic system (γ)

rγ = S1 R2(
π

2
− ϕ) R3(λ)

(

rε − rε
0,γ

)

D. Transformation from conventional terrestrial system (e0) to local astronomic
system (g)

rg = S1 R2(
π

2
− Φ) R3(Λ)

(

re0 − re0

0,g

)

E. Transformation from global geodetic system (ε) to conventional terrestrial
system (e0)

re0 = re0

0,ε + λ R1(ε1) R2(ε2) R3(ε3) rε

F. Transformation from instantaneous terrestrial system (e) to conventional
terrestrial system (e0)

re0 = R2(−xP) R1(−yP) re
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5 Time systems

Time is the fourth coordinate in four-dimensional space-time. As for the coordinate systems

in the previous chapters, we can discuss concepts like origin, scale, time-evolution and the

distinction between a system and its realization (a frame). For these reasons alone time

must be considered in a course on coordinate systems in geodesy. Moreover, the three space

coordinates are strongly interwoven with time in several ways:

i) The unit of length, the metre, is defined in terms of the amount of time it takes a light

wave to travel through vacuum.

ii) Most distance measurement techniques are basically timing techniques. For instance,

a gps pseudo-range is a measured time difference between satellite and receiver clocks,

turned into a length measure by multiplying with the speed of light: ρ = cτ . So we

also have: dρ = cdτ . A ranging precision of 1 cm requires a timing precision of 33 ps =

3.3 · 10−11 s.

iii) Many geodetic positioning techniques make use of satellites (gps, slr, doris) or astro-

nomical objects (astronomical geodesy, vlbi). The rotation of the Earth and the high

velocity of satellites—about 8 km
s for low Earth orbiters—require precise timing.

iv) The transformation between inertial and terrestrial coordinate systems requires the angle

gast, the Greenwich Actual Sidereal Time. The Earth rotation is 360◦/day or 15′′/s,

which amounts to about 450 m
s at the equator.

sidereal solar atomic civilian

gmst ut1 utc TZ

gast ut0 tai jd

ut TGPS

nutation Eq.E.

αÀ̄ ∆ut ∆Z

polar

motion
∆Λp

Eq.T.

leap

seconds
n

N,A0, A1

Figure 5.1: Overview: Time systems
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5 Time systems

5.1 Preliminary considerations

Time The word time can be understood in three senses. First, it means epoch, which is an

instant, or a point in time. One can speak of the epoch of a gps measurement. Second, time

can be understood as an interval, which is just the difference between two epochs. The third

sense is time scales, i.e. the division of an interval in time units.

Remark 5.1 As an example, take the crossing of a star through a meridian on a certain day

as epoch 1. The meridian crossing on the next day is epoch 2. The interval between these

epochs is called sidereal1 day. Dividing up this interval in 24h = 1440m = 86 400s defines the

sidereal time scale. Note that such a division in sidereal seconds is in contradiction to the

definition of seconds in the SI System.

Three classes of time systems and the transformations between them will be discussed:

i) sidereal time which refers to the stars,

ii) solar or universal time which refers to the Sun,

iii) atomic time which refers to atomic phenomena.

The former two categories are natural time. They describe a natural phenomenon, namely

the rotation state of the Earth in space. The latter time system rather describes a physical

phenomenon, namely oscillations of atoms or molecules. We will close the discussion with a

few words on calendar dates and Julian Day Numbers.

There are several criteria for time systems, which may partly be contradictory.

i) The time scale should be stable, i.e. a second now should last exactly as long as it lasted

yesterday. There should preferably be no drift or periodic effects in the time definition.

If we only think that the Earth is slowly spinning down, this criterion is hard to meet in

the long term.

ii) It should be accessible. It shouldn’t be necessary, for instance, to perform complicated

astronomic observations to get a time reading.

iii) It should still be available or accessible on the long term. The astronomical observation

of the Babylonians can still be used. On the other hand it is doubtful whether our highly

precise atomic clocks are of any use to future civilizations.

iv) For many purposes, the time system should be physically meaningful. For those purposes

natural time is the preferable time system.

5.2 Sidereal time

Sternzeit Sidereal time is the angle in the equator plane between a given meridian and the equinox

à. This angle is conventionally expressed in units of hours, of which there are 24 in a full

1Sidereal derives from the Latin sidus (plural sidera): star.
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5.2 Sidereal time

circle: 1h = 15◦. According to this definition, sidereal time describes the orientation of Earth

in inertial space. One sidereal day is the interval between two consecutive transits of the

equinox (or of any star) through the meridian. This corresponds to a full revolution of the

Earth around its axis.

If we take the true equinox àT as a reference, we speak of Actual Sidereal Time (ast). With

the mean equinox à̄T we get Mean Sidereal Time (mst). If the particular meridian is the

observer’s local meridian we get Local Sidereal Time. On the other hand, the angle between

Greenwich and the equinox is the Greenwich Sidereal time. All 4 potential combinations are

summarized in tbl. 5.1.

local meridian Greenwich

true equinox last gast

mean equinox lmst gmst

Table 5.1: Sidereal time.

LAST A description of sidereal time begins with the fundamental astronomical triangle on

the celestial sphere, cf. fig. 5.2. This figure shows last as an angle between local meridian

(the x-axis of the hour angle system) and true equinox (the x-axis of the instantaneous inertial

system). Moreover, by including the hour circle of a given star, this figure relates last to

the hour angle h and the right ascension α:

last = α+ h . (5.1)
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Figure 5.2: The fundamental astronomical triangle (left) and its projection on the equator

plane (right).
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5 Time systems

GAST Instead of the local meridian, we can take the Greenwich meridian, see fig. 5.3.

The difference between them is the astronomical longitude Λ. Thus we get the simple but

fundamental relation:

gast = last− Λ = α+ h− Λ , (5.2)

which says that time and longitude are intimately connected. We can in principle obtain

astronomical longitude from combined measurement of time (through gast) and observation

to a given star (through h), if we take the star’s right ascension from a catalogue. This

observation is even simpler for stars passing the local meridian, in which case we have h = 0.

Such transits are called upper culmination if the star passes between zenith and north pole.

A transit below the pole star is known as lower culmination.
ho

ur
ci

rc
le

T

NP

localmeridian

G
reen

w
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α h

LAST

Λ

*

GAST

Figure 5.3: last vs. gast.

LMST and GMST One of the criteria for a useful time system is the stability of the time

scale. This stability is not given in case of actual sidereal time. Because of nutation, the

equinox will move back and forth over the ecliptic by the angle ∆ψ, the nutation in longitude.

The angles last and gast are relative to a time dependent reference point.

The circles drawn so far represent the equator. To correct for nutation, we have to apply

the projection of ∆ψ on the equator. With the obliquity ε between ecliptic and equator, this

projection becomes ∆ψ cos ε. This is called the Equation of the Equinox or Eq.E.

Eq.E. = ∆ψ cos ε , (5.3a)

= last− lmst , (5.3b)

= gast− gmst . (5.3c)

The variability in the Equation of the Equinox is only of the order of magnitude of roughly

1s, see fig. 5.4. For a stable definition of a sidereal time system this is relevant, though.
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5.2 Sidereal time
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Equation of Equinoxes (from nutation.m)

Figure 5.4: The Equation of the Equinox from a model nutation, containing only the 18.6

year and the semi-annual period.

One sidereal day is given as the time interval between two successive crossings of the mean

equinox à̄T through the local meridian. Such a crossing, during which lmst = 0 is the

sidereal noon. The sidereal day is subdivided in 24 sidereal hours of 60 sidereal minutes of

60 sidereal seconds. It is important to repeat the word sidereal here, since these time units

are slightly different from the solar equivalents in the next section.

All sidereal time angles are presented in fig. 5.5, from which we summarize the following

formulas:

last− gast = lmst− gmst = Λ

last− lmst = gast− gmst = Eq.E.

last = α+ h

(5.4)

Remark 5.2 Note that the mean sidereal time refers to the mean equinox. This mean equinox

is affected by precession, however. The mean equinox slides nearly uniformly over the ecliptic.

For this reason the stability of the mean sidereal times as defined here is not endangered. It

does mean, though, that a mean sidereal day is 0.0084 s shorter than a full revolution of the

Earth in a conventional inertial system.
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Figure 5.5: The four basic types of sidereal time.

5.3 Solar or Universal time

A civilian time system must be based on the motion of the Sun2. Instead of taking the

equinox as a reference, we now take the Sun. Intuitively one associates noon (12h) to the

transition of the Sun through the local meridian. This intuitive solar time definition will

require some refinement, though.

One solar day is the time span between two successive meridian transits of the Sun. This

interval is divided in 24 (solar) hours of 60 minutes of 60 seconds. Opposed to a sidereal day,

however, one solar day does not correspond to a full revolution of the Earth around its axis.

Since the Earth moves around the sun once a year, one solar day is consequently slightly more

then a full revolution. A year consists of 365.242 solar days. After one solar day, the Earth

has travelled on average 360◦

365.242 d = 0◦.985 65/d of its orbit around the Sun. This corresponds

to 3m56s.33 per day.

1 mean solar day = 1 mean sidereal day + 3m56s.33 .

Consequently, a solar second is longer than a sidereal second. The scale factor between these

time scales can be determined by considering that the number of sidereal days within a year

is exactly one more than the amount of solar days. Therefore:

scale factor: F =
1 solar day

1 sidereal day
=

366.242

365.242
= 1.002 737 91 . (5.5)

2We will use the symbol À for the Sun.
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5.3 Solar or Universal time
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Figure 5.6: Difference (as angle β) between a solar and sidereal day relative to the sun (left)

and the Earth (right).

LT, UT Figure 5.7 graphically explains the basic definition of local solar time (lt): it is the

hour angle of the Sun hÀ, i.e. the angle between local and solar meridian. However, since we

associate noon with a zero hour angle, we have to add 12h:

lt = hÀ + 12h . (5.6a)

Similarly, by taking the Greenwich meridian, we get Greenwich solar time. This is known as

true universal time (ut). It is called true because it refers to the real Sun:

ut = hGr
À

+ 12h . (5.6b)

Local and Greenwich solar time are simply related by adding or subtracting the longitude:

lt = ut + Λ . (5.6c)

local

meridian

6789h

h:
;<>>?@ABC
meridian

U789h

h:
DF

HIHI

J J

Figure 5.7: The basic local (left) and Greenwich (right) solar time.

Refinement 1: UT0 Just like the true equinox was not suitable to define a stable sidereal

time system, the motion of the true Sun is not homogeneous enough to define a stable solar

time system. The reason for the non-uniform motion is twofold:
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5 Time systems

i) ellipticity of the Earth’s orbit around the Sun. According to Kepler’s area law, the Earth

moves faster near thePerihel perihelion (the point closest to the Sun). We would observe the

Sun lagging behind and speeding up again in a seasonal rhythm.

ii) obliquity between equator and ecliptic plane.

Therefore, a fictitious mean Sun (À̄) is introduced that moves along the equator with uniform

speed. The difference between the true and fictitious Sun, projected onto the equator, is called

Equation of Time, see fig. 5.8:

Eq.T. = αÀ̄ − αÀ = hÀ − hÀ̄ . (5.7)

The Equation of Time can reach values of up to ±15 minutes.
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Figure 5.8: Equation of Time (left) and definition of UT0 (right).

Remark 5.3 The equation of time is often visualized by the so-called analemma. This is an

8-shaped curve, which is attained by a parametric plot of x = Eq.T. versus the solar decli-

nation y = δÀ. The latter varies between the tropics (±ε) through the year. The analemma

can also be attained photographically by opening the lens of a stationary camera every day at

noon (standard time).

Employing the mean Sun, the first refinement to ut consists of correcting for the inhomoge-

neous solar motion. The result is called ut0:

ut0 = ut− Eq.T. = hGr
À̄

+ 12h . (5.8)

Refinement 2: UT1 Because of polar motion, the instantaneous longitude of any meridian

and therefore the associated solar time changes. To correct for this variability we will refer to
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5.3 Solar or Universal time

the conventional terrestrial pole. The corresponding solar time for the conventional Greenwich

meridian is called Greenwich mean time or ut1:

ut1 = ut0 + ∆Λp , (5.9a)

= ut0− (xp sin Λ + yp cos Λ) tan Φ , (5.9b)

= hḠr
À̄

+ 12h . (5.9c)

The result is a relatively stable time system for civilian time keeping purposes, based on a

physical and observable phenomenon: the orientation of the Earth with respect to the mean

Sun.
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Figure 5.9: Mean Greenwich meridian and ut1 (left) and conversion between solar and side-

real time (right).

Length Of Day After these two refinement steps, ut1 will still not be stable. Due to mass

redistributions on and in the Earth, the length of a mean solar day will not be constant.

This fluctuation will become apparent after comparing every Lenght Of a solar Day (lod)

to 86 400 atomic seconds, cf. next section. The difference, or excess lod is at the millisecond

level, see fig. 5.10.

Remark 5.4 A further refinement is sometimes made in order to correct for predictable

periodic length-of-day variations. The resulting solar time is called ut2.

Conversion solar ↔ sidereal time The conversion between solar and sidereal time is

straightforward. Figure 5.9 (right) shows the mean equinox, the mean solar meridian and

the mean Greenwich meridian. From this figure we can easily verify:

gmst = αÀ̄ + hḠr
À̄
, (5.10a)

= αÀ̄ + ut1− 12h . (5.10b)
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Figure 5.10: Excess Length-Of-Day.

The right ascension of the mean Sun is given by the internationally adopted formula (iau

1976):

αÀ̄ = 18h41m50s.548 41 + 8640 184.812 866T +O(T 2) ,

in which T is the time since the reference epoch J2000.0 (January 1, 2000, noon), counted

in Julian centuries of 36 525 days. Thus, T = d/36 525 with d = jd − 2451 545.0. The right

ascension of the mean Sun is counted in seconds. Thus, the factor in the second term at the

right hand side has units of second per Julian century. Indeed, the number 8640 184.812 866

corresponds to one full circle (= 24h) per year or 3m56s.33 per day. With this formula for the

mean solar right ascension, we get the following conversion:

gmst = ut1 + 24 110.548 41 + 8640 184.812 866T +O(T 2) . (5.10c)

Again, this formula is in seconds. Moreover, an integer times 24h might have to be added in

order to keep gmst ∈ [0; 24h].

Alternatively, we could make use of the scale factor F , defined in (5.5) to perform the conver-

sion. Consider for that purpose that if the mean Sun crosses the mean Greenwich meridian,

we have ut1 = 12h ⇔ hḠr
À̄

= 0h. Consequently:

at mean noon: gmst0 = αÀ̄,0 .

Therefore, a short-term (daily) conversion formula, that only requires tabulated daily values

of gmst0, i.e. values of αÀ̄ at noon, would be:

gmst = F (ut1− 12h) + gmst0 ,

= 1.002 737 91 (ut1 − 12h) + gmst0 . (5.11)
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5.4 Atomic time

5.4 Atomic time

The second was originally defined as the fraction 1/86 400 of a mean solar day. Since the

Earth’s rotation shows irregularities at millisecond level in addition to a slowly decreasing spin

rate, this definition became obsolete in the 20th century. With the advent of high precision

frequency standards, based on atomic or molecular oscillations, the second was redefined in

1967:

The second is the duration of 9192 631 770 periods of the radiation corresponding

to the transition between the two hyperfine levels of the ground state of the 133Cs

caesium 133) atom. — 13th CGPM, 1967

Moreover, clocks based on this atomic principle, should be resting at sea level. According to

relativity theory a moving clock, or a clock that changes its potential energy level, will show

a different clock rate3.

Nowadays, Cesium clocks achieve a stability below 100 ps per day, i.e. a relative precision

of 10−15. More recently this stability was improved by up to two orders of magnitude by

hydrogen masers and optical ion traps. This should be compared to the aforementioned

astronomical definition, which may achieve a stability of 1 ms per day, i.e. a relative precision

of 10−8.

Two main realizations of atomic time exist.

TAI The International Atomic Time (or Temps Atomique International) is maintained by

the Bureau International des Poids et Mesures (bipm) from the readings of more than

200 atomic clocks located in metrology institutes and observatories in more than 30

countries around the world. The tai is a weighted average of these clock readings.

TGPS GPS system time is given by its Composite Clock (CC). The CC or paper clock consists

of all 5 monitor stations and satellite frequency standards. Since a different set of clocks

is used for this realization of atomic time, TGPS will be different from tai. Apart from

a constant offset of 19 s there will be small deviations up to µs level. These differences

are broadcast in the navigation message as parameters A0 and A1.

UTC The highly stable atomic tai and the universal time ut1 will diverge over the years,

see fig. 5.11, as the daily lod values accumulate . The difference ut1− tai will increase in

a non-homogeneous manner. This effect is caused by the spinning down of the Earth and by

irregularities in the spin rate.

As a compromise, i.e. to keep atomic and solar time close to each other, Universal Time

Coordinated (utc) is introduced. The stable time scale of utc is inherited from tai. The trick

to stay close to ut1 is to introduce Schalt-
sekunden

leap seconds, such that the difference ∆ut = utc−ut1 ≤
0.9 s. The resulting time system meets all criteria, mentioned in the introduction:

i) stability: stable definition of the second,

ii) accessibility: through atomic clocks and radio broadcast,

3Atomic clocks on-board gps satellites are corrected for these relativistic effects.
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Figure 5.11: Atomic time scales and ut1.

iii) meaningfulness: very close to mean solar time, i.e. the rotation phase of the Earth.

The corresponding formulas:

∆ut = utc− ut1 ≤ 0.9 s , (5.12a)

leap seconds: utc− tai = n ∈ N . (5.12b)

Leap seconds are issued by the International Earth Rotation Service (iers), either at July 1

or January 1. The iers makes a decision whenever ∆ut comes close to the condition (5.12a).

This system started in 1972 with n = 10s. The last leap second was issued January 1, 2017,

bringing the total to n = 37 s.

At the start of gps system time at midnight January 6, 1980, the difference between TGPS

and tai was 19 s. Leap seconds are neither applied to TGPS nor to tai. As a consequence,

ut1 and utc are drifting away from gps time as well. Thus, TGPS is now 13 s apart from

utc. In general:

TGPS − utc = N − f(A0, A1), with N ∈ N and f(A0, A1) < 1µs . (5.13)

5.5 Calendar time

The utc is the basis of standard time4, in which the Earth is roughly divided in 24 meridional

zones extending 15◦ in longitude. Each individual zone has one single civilian time system,

which differs an integer amount of hours from utc. This guarantees that civilian time is

never off by more than half an hour compared to true local time. In reality the situation is

4One of the most prominent fathers of standard time was the Canadian engineer Sir Sandford Fleming
(1827–1915), surveyor for the Canadian Pacific Railway.
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Figure 5.12: ∆ut since 1972.

slightly more complex, depending on local geography and state boundaries. Some zones even

have a non-integer difference ∆Z to utc.

standard time: TZ = utc + ∆Z . (5.14)

e.g. Mountain Standard Time = utc− 7h ,

Central European Time = utc + 1h .

Julian Days Civilian time is counted in the Gregorian Calendar in days (D), months (M)

and years (Y ). Since the length of months is variable and since some years (leap years)

have an additional day, it is difficult to calculate time intervals in terms of days. For geode-

tic, astronomic and chronological purposes a chronological counting of days would be more

practical. This is exactly what Julian Day Numbers are.

Remark 5.5 The Gregorian calendar reform was issued by Pope Gregory in 1582. It was

motivated by the need for a correct determination of the date of Easter. The preceding Julian

calendar—named after Julius Caesar—made use of Julian centuries of 36 525 days. Since

the tropical year is slightly shorter than 365.25 days, the Julian calendar is one day out of

sync after about 131 years. To make up for this error 10 days were skipped in October 1582

and the rule for leap years was changed. In the Julian calendar every fourth year was a leap

year. In the Gregorian calendar years that are divisible by 100 are no leap years anymore.

As an exception, years divisible by 400 are leap years.

The Julian Day system starts counting at noon on January 1, −47125. A new Julian Day,

i.e. a new integer Julian Day Number, starts at noon. This makes sense for astronomical

5When counting days and years chronologically, the year preceding 1 ad, i.e. 1 bc, becomes the year 0. In
general the year Y bc becomes −(Y − 1). Thus, the starting year −4712 would be 4713 bc.
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purposes (hour angle equals zero). Many algorithms to compute Julian Day numbers from

calendar dates exist. For instance:

jd = 367Y − floor(7(Y + floor((M + 9)/12))/4)

+ floor(275M/9) +D + 1721 014 + ut1/24 − 0.5 , (5.15a)

mjd = jd− 2400 000.5 . (5.15b)

The latter is the Modified Julian Day, which starts at midnight November 16–17, 1858. It

guarantees that at most 5 digits are required in the period from 1859 to about 2130. The 0.5

at the end means that a new mjd starts at midnight.

Exercise 5.1 Sputnik 1 was launched October 4, 1957, 19.h44 Greenwich time. What was

the corresponding Julian Day?

Exercise 5.2 How many days have passed between your birthday and January 1, 2000?

5.6 Overview and summary of formulas

sidereal solar atomic civilian

gmst ut1 utc TZ

gast ut0 tai jd

ut TGPS

nutation Eq.E.

αÀ̄ ∆ut ∆Z

polar

motion
∆Λp

Eq.T.

leap

seconds
n

N,A0, A1
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5.6 Overview and summary of formulas

local time — Greenwich time For local sidereal vs. Greenwich sidereal time we have:

last− gast = lmst− gmst = Λ

For local solar time (true or mean) vs. uti, similar equations hold.

inertial — Earth-fixed

last = α+ h

actual time — mean time Due to nutation (sidereal) or to the combined effect of

eccentricity of Earth’s orbit and obliquity of ecliptic (solar):

sidereal: last− lmst = gast− gmst = Eq.E. = ∆ψ cos ε

solar: ut− ut0 = αÀ̄ − αÀ = hGr
À
− hGr

À̄
= Eq.T.

sidereal — solar

gmst = αÀ̄ + hḠr
À̄

= αÀ̄ + ut1− 12h

= ut1 + 6h41m50s.548 41 + 8640 184s.812 866 T +O(T 2)

UT1 — UT0 Due to polar motion:

ut1− ut0 = ∆Λp = −(xp sin Λ + yp cos Λ) tan Φ

solar — atomic Due to (remaining) non-uniform Earth rotation:

utc− ut1 = ∆ut
def.
≤ 0s.9

TAI — UTC Leap seconds due to Earth’s spin-down and definition of ∆ut:

tai− utc = n[s] ∈ N
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6 The Greek alphabet

α A alpha

β B beta

γ Γ gamma

δ ∆ delta

ε, ε E epsilon

ζ Z zeta

η H eta

θ, ϑ Θ theta

ι I iota

κ K kappa

λ Λ lambda

µ M mu

ν N nu

ξ Ξ ksi

o O omicron

π,̟ Π pi

ρ, ̺ P rho

σ, ς Σ sigma

τ T tau

υ Υ upsilon

ϕ, ϕ Φ phi

χ X chi

ψ Ψ psi

ω Ω omega
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