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1. Introduction

Dynamic satellite geodesy is the application of celestial mechanics to geodesy. It aims
in particular at describing satellite orbits under the influence of gravitational and non-
gravitational forces. Conversely, if we know how orbit perturbations arise from gravity
field disturbances, we have a tool for gravity field recovery from orbit analysis.

The first part of the course aims at the understanding of the ideal Kepler orbit. These
orbits are completely determined by six initial values, i.e. a position vector r(t0) and a
velocity vector v(t0) with 3 components at a given time point t0. Further orbit locations
can be found by numerical integration of Newton’s equation of motion. If the orbit is Bewegungsgleichung

transformed into so-called Kepler elements, five out of six values will remain constant, Keplerelmente

while the angular anomaly M turns out to be linear in time. An inverse transformation
of Kepler elements into Cartesian coordinates will generate the ideal Kepler orbit as
well.

ri(t0), vi(t0)
 

ri(t), vi(t)
 

a, e, I, Ω, ω, M(t0)
 

a, e, I, Ω, ω, 
M(t)

 

numerical integration

positions & velocities 
at all epochs

initial values of 
position & velocity

Kepler elements
of the initial point

Kepler elements 
of all orbital 
locations

ode-solver

M(t)= M(t0)+n(t-t0)

for t=t0 : Δt : Tt : T

Kepler ⭢  Cartesian 
transformation 

kep2cart

Cartesian ⭢ Kepler 
transformation 

cart2kep

Figure 1.1.: Orbit propagation of a Kepler orbit based on initial position and velocity.



1. Introduction

The second part of the course investigates orbit perturbations, i.e. all effects whichBahnstörungen

causes deviations in positions and velocities in comparison to the Kepler orbit. We
analyze gravitational and non-gravitational perturbations via analytical formulas and
numerical methods. The dominant orbit perturbation is the flattening of the Earth, i.e.
the difference between reference ellipsoid and reference sphere, which causes long term
trends in the orientation of the orbit but not in the shape.
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2. The two-body problem

The two-body problem is concerned with the motion of two gravitating masses, M and
m, for instance planets around the Sun or satellites around the Earth. For convenience
we consider M as the main attracting mass, and the orbiting mass m�M . This is not
a mathematical necessity, though.

2.1. Kepler’s laws

Kepler1 was the first to give a proper mathematical description of (planetary) orbits.
Dissatisfied with the mathematical trickery of the geocentric cosmology, necessary to
explain astronomical observations of planetary motion, he was an early adopter of the
Copernican heliocentric model. Although a mental breaktrough at the time, Kepler even
went further.

Based on observations, most notably from the Danish astronomer Brahe2, Kepler empir-
ically formulated three laws, providing a geometric-kinematical description of planetary
motion. The first two laws were presented 1609 in his Astronomia Nova (The New
Astronomy), the third one 1619 in Harmonice Mundi (Harmony of the World). They
are:

i) Planets move on an elliptical path around the sun, which occupies one of the
focal points.

ii) The line between sun and planet sweeps out equal areas in equal periods of
time.

iii) For a given central body, the cube of the semi-major axes a of satellite is

1Johannes Kepler (1571–1630). Born in Weil der Stadt, lived in Leonberg, studied at Tübingen Uni-
versity. Being unable to obtain a faculty position at Tübingen University, he became mathematics
teacher in Graz. He later became research associate with Tycho Brahe in Prague and — after Brahe
died — succeeded him as imperial mathematician.

2Tycho Brahe (1546–1601). He attended the universities of Copenhagen and Leipzig, and then trav-
eled through the German region, studying further at the universities of Wittenberg, Rostock, and
Basel. During this period his interest in alchemy and astronomy was aroused, and he bought several
astronomical instruments.



2. The two-body problem

proportional to the square of the satellite’s period of revolution T :

a3 ∝ T 2 (2.1)

For two satellites—or celestial bodies—this can be expressed by the ratio(
a1

a2

)3

=

(
T1

T2

)3

(2.2)

which is constant per celestial body. The law also holds in good approximation,
if we use the Sun as central body, although there are several planets and moons
involved:

Table 2.1.: Revolution period T in sidereal years and semi-major axis a in astronomical
units in the solar system

planet – T in year a in AU T 2/a3

Mercury – 0.241 0.387 1.002
Venus – 0.615 0.723 1.000
Earth – 1 1 1
Mars – 1.881 1.524 0.999
Jupiter – 11.863 5.203 0.991
Saturn – 11.863 5.203 0.991

In his formulation of the third law Kepler equated the cube of the mean radiusmittlerer Radius

to T 2. Later we will learn that the current radius r is a function of the semi-
major axis, the eccentricity e and an the eccentric anomaly E

r(a, e, E) = a(1− e cosE). (2.3)

The average of the radius within one revolution

1

2π

∫ 2π

0
r(a, e, E) dE =

1

2π

[
aE − ae sinE

]2π

0
= a (2.4)

is in fact the semi-major axis.

2.1.1. First law: elliptical motion

According to Kepler, planets move in ellipses around the sun. Although that was a
daring statement already at a time when church dogma still prevailed over scientific
thought, Kepler even put the Sun outside the geometric centre of these ellipses. Instead
he asserted that the Sun is at one of the foci.
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2.1. Kepler’s laws

Geometry

An ellipse is defined as the set of points whose sum of distances to both foci is constant.
Inspection of fig. 2.1, in which we choose a point on the major axis (left panel), tells
us that this sum must be (a + x) + (a − x) = 2a, the length of the major axis. The
quantity a is called the semi-major axis. lange Halbachse

b

a
a+x

a-xx
a ab

ae

Figure 2.1.: Geometry of the Kepler ellipse in the orbital plane.

But then, for a point on the minor axis, see right panel, we have a symmetrical config-
uration. The distance from this point to each of the foci is a. The length b is called the
semi-minor axis. Knowing both axes, we can express the distance to focus and centre of kurze Halbachse

the ellipse. It is
√
a2 − b2. Usually it is expressed as a proportion e of the semi-major

axis a:

(ae)2 + b2 = a2 =⇒ e2 =
a2 − b2

a2
, or b =

√
1− e2 a .

The proportionality factor e is called the eccentricity ; the out-of-centre distance ae is Exzentrizität

known as the linear eccentricity.

From mathematics we know the polar equation of an ellipse:

r(ν) =
p

1 + e cos ν
, (2.5)

in which r is the radius, ν the true anomaly and p the parameter of the ellipse (semi wahre Anomalie

Ellipsenparameterlatus rectum). From the left panel of fig. 2.2 we are able to express p in terms of a and
e. We can write down two equations:

1. sum of sides: p+ x = 2a or x2 = 4a2 − 4ap+ p2

11



2. The two-body problem

aeae

x p p r


Figure 2.2.: Parameters of the polar equation for the ellipse.

2. Pythagoras: x2 = p2 + 4a2e2

eliminate x: p2 + 4a2e2 = 4a2 − 4ap+ p2

delete p2: ae2 = a− p

rewrite: p = a(1− e2)

=
b2

a
.

Knowing p, we recast the polar equation (2.5) into:

r(ν) =
a(1− e2)

1 + e cos ν

or
=
a(1 + e)(1− e)

1 + e cos ν
(2.6)

Exercise 2.1 Insert ν = 0 or 180◦ and check whether the outcome of (2.6) makes sense.

The orbital point closest to the mass-bearing focus is called perihelion in case of planetaryPerihel

motion around the Sun (Helios) or perigee for satellite motion around the Earth (Gaia).Perigäum

More generally one can speak of perifocus. The farthest point at ν = 180◦ is called,
respectively, aphelion, apogee or apofocus. Since we are mostly discussing satelliteAphel, Apogäum

motion, we will predominantly use perigee and apogee.

Remark 2.1 (circular orbit) In case of zero eccentricity (e = 0) the ellipse becomes
a circle and a = b = p = r.

2.1.2. Second law: area law

The line through focus and satellite (or planet) sweeps out equal areas A during equal
intervals of time ∆t. This is also known as Kepler’s area law. From the left panel ofFlächensatz

12



2.1. Kepler’s laws

fig. 2.3 it is seen that this effect is most extreme if a time interval around perigee is
compared to one at apogee.

A

A

A

Δt

Δt

Δt

t

t+dt

r(t)

r(t
+d
t)

dν

rdν

dA

Figure 2.3.: Kepler’s area law (left) and infinitesimal area (right).

As a consequence of Kepler’s second law, the angular velocity ν̇ must be variable during
an orbital revolution: fast around perigee and slow around apogee. Bahnumlauf

The infinitesimal picture of this law looks as follows. In an infinitesimal amount of time
dt the satellite travels an arc segment r dν. The infinitesimal, nearly triangular area,
reads dA = 1

2r
2 dν. Therefore:

dA =
1

2
r2 dν ∼ dt

=⇒ r2 dν = c dt

=⇒ r2ν̇ = c

This sheds a different light on the area of Kepler’s law. It is the quantity r2ν̇ that is
conserved. In a later section we will bring this in connection to the conservation of
angular momentum. Here we can see already that, if we write v = rν̇ for linear velocity, Drehimpuls

rv is constant.

Angular Momentum

Consider the epifocal coordinate system in fig. 2.4. In this frame the position and velocity
vector read:

rf =

 r cos ν
r sin ν

0

 and vf =

 ṙ cos ν − rν̇ sin ν
ṙ sin ν + rν̇ cos ν

0

 .

13



2. The two-body problem

Figure 2.4: Epifocal frame: xf to-
wards perigee, zf perpen-
dicular to orbital plane to-
wards angular momentum,
and yf complementary in
right-hand sense.

r

 xf

yf

The angular momentum vector, by its very definition, will be perpendicular to both and
thus perpendicular to the orbital plane:

Lf = rf × vf =

 0
0

rṙ cos ν sin ν + r2 cos2 νν̇ − rṙ sin ν cos ν + r2 sin2 νν̇

 =

 0
0
r2ν̇


2.1.3. Third law: harmony

Kepler’s third law can be rephrased as

The cubes of the semi-major axes3 of the orbits are proportional to the
squares of the revolution periods.

If we cast this law into mathematics, we obtain with proportionality factor c:

a3 ∼ T 2 ⇐⇒ a3 = cT 2 .

The orbital period T is inversely related to the mean orbital angular velocity n:

T =
2π

n
.

The angular velocity n is conventionally referred to as mean motion. We now obtain:mittlere Bewegung

a3 = c
(2π)2

n2
=⇒ n2a3 = c(2π)2 .

After Newton had developed his universal law of gravitation the seemingly arbitrary
constant right hand side turned out to be more fundamental: the gravitational constant
G times the mass M of the attracting body4.

3Kepler: mean radius in the sense of (2.4)
4GME = 3.986 004 415 · 1014 m3

s2

GM� = 1.327 122 440 018 · 1020 m3

s2

14



2.2. Further geometry

n2a3 = GM (2.7)

Although Kepler’s third law is intriguing, the particular combination of powers—a square
and a cube—should not come as a surprise. Compare the situation of a circular orbit
with angular velocity5 ω. The centripetal force (per mass unit) is balanced by the
gravitational attraction:

ω2r =
GM

r2
=⇒ ω2r3 = GM ,

which is of the same form as Kepler’s third law.

Exercise 2.2 Many orbits and orbital features can be calculated using (2.7).

geostationary orbit: n =
2π

1 day
= ωE =⇒ a ≈ 40 000 km

gps: n = 2ωE =⇒ a = . . .

leo: n ≈ 15ωE

satellite at zero height: n ≈ 16ωE =⇒ Schuler frequency

2.2. Further geometry

2.2.1. Three-dimensional orbit description

The Kepler ellipse was defined in size by its semimajor axis a and in shape by its
eccentricity e. The location of the satellite within the orbit was indicated by the true
anomaly ν. In three-dimensional space, though, we need two more parameters to indicate
the orientation of the orbital plane, and again one more to orient the ellipse within this
plane. In total we thus have 6 orbital elements or Kepler elements. The number 6 is
equal to the the sum of 3 Cartesian position coordinates and 3 velocity components.
Please refer to fig. 2.6.

The orbital plane is inclined with respect to the equator. The corresponding angle I is
obviously called inclination. The intersection line between orbital plane and equator is Bahnneigung

the nodal line. The node, in which the satellite crosses the equator from South to North Knotenlinie

is the ascending node. The angle Ω in inertial space between the vernal equinox (or steigender Knoten

Frühlingspunktxi-axis) and ascending node is the right ascension of the ascending node. The angle of

Rektaszension5Unfortunately, the symbol ω is used for the argument of perigee, one of the Kepler elements, and the
angular velocity.

15



2. The two-body problem

Figure 2.5: The eccentricity e is not
involved in Kepler’s third
law. A circular orbit of
radius a apparently has
the same orbital revolu-
tion period as a highly ec-
centric (cigar-shaped) or-
bit of semi-major axis a
as in fig. 2.5. Neverthe-
less, at e = 0 one orbit
has a length of 2πa (the
circumference of a sphere),
whereas if the eccentric-
ity approaches 1, one rev-
olution approaches 4a (2a
forth plus 2a back).

2a
2a

2a

Figure 2.6: Three-dimensional ge-
ometry of the Kepler or-
bit.

zi

xi

yi

perigee

I

u

ω
ν

Ω

satellite
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2.2. Further geometry

perigee ω is counted from ascending node to perigee. The sum of angle of perigee and Perigäumswinkel

true anomaly is referred to as argument of latitude: u = ω + ν. This is a useful angle
for circular and near-circular orbits for which the perigee is not or weakly defined.

We can classify the 6 Kepler elements as follows:

a, e – size and shape of ellipse
Ω, I – orientation of orbital plane in space
ω, ν – position within orbital plane

Another classification is the following:

a, e, I – metric Kepler elements
Ω ω, ν – angular Kepler elements

The three angular Kepler elements are required for the transformation between the orbit
vector rf in the epifocal frame and the vector ri in the inertial frame:

rf = R3(ω)R1(I)R3(Ω)ri ⇔ ri = R3(−Ω)R1(−I)R3(−ω)rf . (2.8)

For the inclination we have in general I ∈ [0◦; 180◦]. Depending on the specific inclination
(range) the orbits are known as:

I = 0◦ – equatorial, prograde
I < 90◦ – prograde
I = 90◦ – polar
I > 90◦ – retrograde
I = 180◦ – equatorial, retrograde

Remark 2.2 A radial projection of the satellite orbit onto the spherical surface of the
Earth provides the ground track, which illustrates the spatial coverage of the mission. Bodenspur

In this mapping, the maximum latitude of the groundtrack is direct related to the incli-
nation:

φmax =

{
I, prograde

180◦ − I, retrograde
(2.9)

2.2.2. Back to the orbital plane: anomalies

From Kepler’s area law it was clear that ν is not uniform in time. In order to describe the
time evolution more explicitly Kepler introduces two more angles: eccentric anomaly E

17



2. The two-body problem

I

max

min

equator
I

prograde retrograde

Figure 2.7.: The inclination determines the maximum and minimum latitude that
ground-tracks can attain: φmin, φmax.

and mean anomaly M . The latter will be uniform in time, in the sense that we will be
able to write M = n(t− t0) later on.

eccentric anomaly Consider fig. 2.8 with the epifocal f -frame and the eccentric x-
frame. In the epifocal frame the position vector reads:

rf (r, ν) =

 r cos ν
r sin ν

0

 , r(ν) =
a(1− e2)

1 + e cos ν
(2.10)

Using the position vector in the eccentric frame we derive:

rx(a,E) =

 a cosE
b sinE

0

 =⇒ rf (a,E) =

 a cosE − ae
a
√

1− e2 sinE
0

 . (2.11)

The ratio of second and first component provides

r sin ν

r cos ν
=
a
√

1− e2 sinE

a cosE − ae
⇔ tan ν =

√
1− e2 sinE

cosE − e
. (2.12)

After some manipulation we determine the current radius:

r = ‖rf (a,E)‖

=
√
a2 cos2E − 2a2e cosE + a2e2 + a2 sin2E − a2e2 sin2E

=

√
a2(cos2E + sin2E)− 2a2e cosE + a2e2(1− sin2E) (2.13)

=
√
a2 − 2a2 cosE + a2e2 cos2E

= a− ae cosE .
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2.2. Further geometry

a
b

aea

E
yx

xx

yf

xf



Figure 2.8.: Definition of eccentric anomaly E from true anomaly ν. The geometric
construction is similar to the definition of a reduced latitude from a geodetic
latitude.

mean anomaly Neither ν nor E is uniform (linear in time). Kepler therefore defined the
mean anomaly M . The following equation is usually referred to as the Kepler equation:

M = E − e sinE . (2.14)

The mean anomaly is a fictitious angle. It cannot be drawn in fig. 2.8. It can only be
calculated from E. But it evolves linearly in time. Thus one can write:

M = n(t− t0) ,

in which t0 stands for the time of perigee passage, where ν = E = M = 0. This allows
us to calculate the orbit evolution over time, say from t0 to t1 by the following scheme:

r, v @ t0 −→ a, e, I, ω,Ω,M0
∆t−→ a, e, I, ω,Ω,M1 −→ r, v @ t1 ,

in which the time step ∆t stands more explicitly for M1 = M0 + n(t1 − t0). The
(Cartesian) position and velocity vectors at t0 are known as the initial state. In summary,
if one wants to know the orbital position and velocity as a function of time, one should
transform the initial state into Kepler elements. In the Kepler element domain, only the
mean anomaly M changes over time. To be precise, it changes linearly with time. After
the time step, the Kepler elements need to be transformed back to position and velocity
again (cf. fig. 2.9).
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2. The two-body problem

ri(t0), vi(t0)
 

ri(t), vi(t)
 

a, e, I, Ω, ω, M(t0)
 

a, e, I, Ω, ω, 
M(t)

 

numerical integration

positions & velocities 
at all epochs

initial values of 
position & velocity

Kepler elements
of the initial point

Kepler elements 
of all orbital 
locations

ode-solver

M(t)= M(t0)+n(t-t0)

for t=t0 : Δt : Tt : T

Kepler ⭢  Cartesian 
transformation 

kep2cart

Cartesian ⭢ Kepler 
transformation 

cart2kep

Figure 2.9.: Determination of a Kepler orbit based on initial positions and velocity.

Reverse Kepler equation For the reverse transformation of the Kepler equation (2.14)
an iteration is required. We first recast it into E = M + e sinE, which on the first
sight is not helpful to calculate E from M . However, since e is usually small, we can
approximate the true anomaly by the iteration Ei+1 = M + e sinEi :

E0 = 0

E1 = M

E2 = M + e sinE1

E3 = M + e sinE2

etc.

Exercise 2.3 Determine the eccentric anomaly E and the true anomaly ν, when the
mean anomaly M = 70.◦4500 and the eccentricity e = 0.345 are given:

M = E0 =
70.45π

180
= 1.229 584

E1 = M + e sinE0 = 1.554 695

E2 = M + e sinE1 = 1.574 539

E3 = M + e sinE2 = 1.574 582
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2.2. Further geometry

E4 = M + e sinE3 = 1.574 581

E4 = 1.574581=̂90.◦2168

For the true anomaly

tan ν =

√
1− e2 sinE

cosE − e
=

0.938 595

−0.348 785

ν = arctan
0.938 595

−0.348 785
= −1.215 006 + π = 1.926 586=̂110.◦3852

the quadrant of the angle must be considered. In several programming languages, this
can be realized by the function atan2(.,.) with two arguments.
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Differences in anomalies for a Kepler orbit with e = 0.2

E-M
-M

Figure 2.10.: Differences of the anomalies E −M and ν −M for an ellipse with the
eccentricity e = 0.2. The three anomalies coincides only in perigee and
apogee, and the values differ up to 20◦.

Remark 2.3 In satellite geodesy, it is very common to note down angles like inclination,
anomalies or latitude and longitude in degrees. However, the solution of the Kepler
equation is only meaningful if the angles E and M are considered in radians.

Remark 2.4 For non-circular orbits, the numerical values of the three anomalies coin-
cides only in perigee and apogee (cf. fig. 2.10).
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2. The two-body problem

2.3. Newton equations and conservation laws

Kepler’s laws provide a geometric and kinematic picture of orbital motion. Although
the area law hints at angular momentum conservation already and the third law at
gravitation, the concept of forces was unknown to Kepler. A dynamic description of the
Kepler orbit had to wait for Newton. Moreover, Kepler derived his laws empirically.

In this section we will take Newton’s equations of motion — in the inertial frame — for
the two-body problem:

r̈ = ∇GM
r

= −GM
r3
r , or r̈ +

GM

r3
r = 0 , (2.15)

and apply three tricks to it:

i) scalar multiplication with velocity: ṙ · . . .,
ii) vectorial multiplication with position: r × . . .,
iii) vectorial multiplication with angular momentum: L× . . ..

After a subsequent time integration we will end up with fundamental conservation laws
and, eventually, with the Kepler orbit. Thus, at the end of this section we will have
achieved a dynamical description of the Kepler orbit, based on a physical principle.

2.3.1. Conservation of energy

Trick 1: “ṙ· Newton ”.

Remark 2.5 If ṙ = v and r and v are respectively the length of r and v, then ṙ 6= v!
Instead, the scalar radial velocity is only the projection of the velocity vector on the
radial direction: ṙ = ṙ · r/r = ṙer.

ṙ · r̈ + ṙ · GM
r3
r = 0

⇐⇒ v · v̇ +
GM

r3
ṙ · r = 0

⇐⇒ v · v̇ +
GM

r2
ṙ = 0 , (because ṙr = ṙ · r)

⇐⇒ 1

2

d

dt
(v · v)− d

dt

(
GM

r

)
= 0 (lucky guess)
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2.3. Newton equations and conservation laws

⇐⇒ d

dt

(
1

2
v2 − GM

r

)
= 0

=⇒ 1

2
v2 − GM

r
= c .

This demonstrates that the sum of kinetic and potential energy is constant: c = E.
Later we will evaluate the exact amount of energy using the vis-viva equation.

Figure 2.11.: Interpretation of ṙ as projection of ṙ in the direction r

Remark 2.6 Please be aware that in satellite geodesy the (gravitational) acceleration
is defined by r̈ = ∇V , while textbooks in physics prefer r̈ = −∇V with V = GM

r . We
also call the energy equation a sum of the kinetic energy and the potential energy, which
is somehow inconsistent.

2.3.2. Conservation of angular momentum

Trick 2: “r× Newton ”.

r × r̈ +
GM

r3
r × r︸ ︷︷ ︸

=0

= 0

⇐⇒ r × r̈ = 0

⇐⇒ d

dt
(r × ṙ) = ṙ × ṙ︸ ︷︷ ︸

=0

+r × r̈ = 0

=⇒ r × ṙ = c
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2. The two-body problem

This demonstrates that the angular momentum L = r× ṙ is constant: c = L. We have
more or less reproduced Kepler’s area law from Newton’s equation. Note, however, that
we have achieved here conservation of the 3d angular momentum vector. Not only are
the areas equal over equal times (one dimension), but also is the orbital plane constant
in inertial space (two dimensions). The latter will lead to Ω and I.

Remark 2.7 The angular momentum is conserved not only in the Kepler problem but
for all radial symmetric force fields of the form F = f(r)r (see appendix D).

2.3.3. Conservation of orbit vector

Trick 3: “ Newton ×L”.

r̈ ×L+
GM

r3
r ×L = 0

⇐⇒ r̈ ×L︸ ︷︷ ︸
LHS

=
GM

r3
L× r︸ ︷︷ ︸

RHS

lhs :
d

dt
(ṙ ×L) = r̈ ×L+ r × L̇︸︷︷︸

=0

rhs :
GM

r3
L× r =

GM

r3
(r × ṙ)× r

=
GM

r3
[(r · r)ṙ − (r · ṙ)r]

=
GM

r
ṙ − GM

r2
ṙr

GM
d

dt

r

r
=
GM

r
ṙ − GM

r2
ṙr , (lucky guess)

lhs = rhs :
d

dt
(ṙ ×L) = GM

d

dt

r

r

=⇒ ṙ ×L =
GM

r
r +B

The vector B is a constant of the integration. It is a quantity that is conserved in the
two-body problem. It is known as Runge-Lenz vector or Laplace vector. The aboveLaplace Vektor

derivation shows that B is a linear combination of ṙ × L and r. Therefore B must lie
in the orbital plane.
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2.3. Newton equations and conservation laws

At this point we have conserved 7 quantities or parameters, E(1D), L(3D) and B(3D).
Given the fact that only 5 Kepler elements are constant, the 7 conserved quantities
cannot be independent.

The last equation can be written in a different form if we perform scalar multiplication
with the position vector: r · . . ., which reduces 2 dimensions.

r · (ṙ ×L) =
GM

r
r · r + r ·B (2.16)

Under cyclic permutation6 the left-hand side is equal to L · (r× ṙ) = L ·L = L2, leading
to

L2 = GMr + r‖B‖ cosα

=⇒ r =
L2

GM

1 + ‖B‖
GM cosα

.

If we now identify the following quantities:

α := ν ,
L2

GM
:= p ,

‖B‖
GM

:= e , (2.17)

then we obtain the polar equation of the ellipse (2.5) again:

r(ν) =
p

1 + e cos ν
.

At the same time we have learnt that the Laplace vector B points towards perigee.

Remark 2.8 Effectively we have now solved the Kepler problem using Newton’s equa-
tion of motion. We have implicitly obtained Kepler’s laws.

2.3.4. Vis viva – living force

It was demonstrated that the total energy7 E is conserved:

1

2
v2 − GM

r
= E

T + V = E .

6In the scalar triple product a · (b×c) = c · (a×b) = b · (c×a) the vectors can be cyclically permuted.
7Please note, that the variable E can refer to the total energy or to eccentric anomaly. The meaning

shall be clear by the content.
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2. The two-body problem

We will settle now the question: How much is the constant energy?

Since the energy is constant along the orbit, we can evaluate it at a convenient location,
e.g. in the perigee:

L = ‖L‖ = rv sinα = rapovapo = rpervper

=⇒ E =
1

2

L2

r2 sin2 α
− GM

r

e.g.
=

L2

2r2
per

− GM

rper
.

Making use of

p = a(1− e2) =
L2

GM
⇒ L2 = GMa(1− e2)

we obtain

E =
GMa(1− e2)

2a2(1− e)2
− GM

a(1− e)

=
1

2
GM

1 + e

a(1− e)
− GM

a(1− e)

=
GM

a(1− e)

[
1

2
(1 + e)− 1

]
= −GM

2a
.

This energy level is historically known as the vis-viva equation:

E =
1

2
v2 − GM

r
= −GM

2a
(2.18)

Remark 2.9 The energy level only depends on the semi-major axis a but not on the
eccentricity e (cf. revolution time). This can be used for estimating the energy or
impulse of a transfer orbit (e.g. Hohmann transfer in Section 2.3.5)

The scalar velocity v = ‖v‖ can be derived, when the current radius r is known:

1

2
v2 − GM

r
= −GM

2a
(= E)

v2 = 2
GM

r
− GM

a

v =
√
GM

(
2
r −

1
a

)
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2.3. Newton equations and conservation laws

Remark 2.10 (Cosmic velocities) A satellite which falls on a circular orbit very close
to the surface of the central body —and without orbit perturbations—will show the first
cosmic velocity with r = a and vI =

√
GM/a. If a space probe should leave the gravity Erste kosmische

Geschwindigkeitfield of the central body, the semi-major axis must increase beyond limits (a→∞). This
leads to the second cosmic velocity with vII =

√
2GM/r = vI

√
2, when starting from zweite kosmische

Geschwindigkeitthe ground. In case of the Earth, the cosmic velocities are vI =
√
GM/RE ≈ 7.91 km s−1

and vII = vI
√

2 ≈ 11.18 km s−1.

2.3.5. Transfer orbit

Every satellite will remain in its Kepler orbit forever, when orbit disturbances and or-
bit maneuvers are ignored. However, there are several reasons for moving a satellite
intentionally into another orbit:

• lifting onto operational altitude after rocket launch

• elongating life time of the mission

• lifting onto graveyard orbit

• adapting ground track sampling

• collision avoidance

For changing the orbit, a satellite must generate an impulse via propulsion. The propul-
sion is limited in magnitude of impulse and onboard fuel. Hence, the epochs of the
impulses and the transfer orbit must be chosen carefully.

Hohmann transfer orbit

A Hohmann transfer brings a satellite from one circular orbit into another co-planar
circular orbit by two so-called ∆v-thrusts. The first thrust—a short engine burn at
perigee of the transfer passage—brings the satellite into an elliptical transfer orbit. A
second boost at apogee circularizes the orbit again. It is assumed herein, that the impulse
is acting instantaneously on the satellite’s orbit, and that a boost occurs in negligible
time.

The circular initial orbit in fig. 2.12 is a low-Earth-orbit (LEO) with radius R1 and the
satellite should be transferred to a geostationary orbit (GEO). The energy is found via
the semi-maior axis and the vis-viva equation:
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2. The two-body problem

LEO

GEOparking

Earth

R1 R2

Figure 2.12.: Hohmann transfer between two circular orbits.

Orbit 1 (circular LEO): a1 = R1 E1 = −GM
2R1

Orbit 2 (transfer ellipse): a2 =
R1 +R2

2
E2 = − GM

(R1 +R2)

Orbit 3 (circular GEO): a3 = R2 E3 = −GM
2R2

The quantity ∆v also known as “Delta-v” is used as scalar measure of impulse per unit
of spacecraft mass in flight dynamics. In a Hohmann transfer we have 4 phases:

1. v1 =

√
GM

(
2
R1
− 1

R1

)
=
√

GM
R1

on the circular low-Earth-orbit with r = a = R1

before the perigee boost.

2. v2 =

√
GM

(
2
R1
− 1

(R1+R2)/2

)
in the perigee of the transfer ellipse with a = R2+R1

2

after perigee boost.

3. v3 =

√
GM

(
2
R2
− 1

(R1+R2)/2

)
in the apogee of the transfer ellipse with a = R2+R1

2

before apogee boost.

4. v4 =
√

GM
R2

on the final circular orbit after apogee boost.

The necessary impulse per unit mass is now given by

∆v = (v2 − v1) + (v4 − v3) .
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2.3. Newton equations and conservation laws

Exercise 2.4 The Hohmann transfer of a satellite between circular LEO with r1 =
6800 km and a circular GEO with r2 = 42000 km requires the following changes in
velocity:

v1 =

√
GM

r1
= 7656.2 m/s

v2 =

√
GM

(
2

r1
− 1

(r1 + r2)/2

)
= 10044.8 m/s

v3 =

√
GM

(
2

r2
− 1

(r1 + r2)/2

)
= 1626.3 m/s

v4 =

√
GM

r2
= 3080.6 m/s

and in total ∆v = (v2 − v1) + (v4 − v3) = 3842.9 m/s.

Remark 2.11 The Hohmann transfer is optimal for co-planar and circular orbits if the
ratio r2 : r1 < 11.94 holds. If the ratio is larger a so-called bi-elliptic transfer might
perform better.

Remark 2.12 Thrusters can only deliver a limited amount of ∆v. The Hohmann trans-
fer can be applied in successive steps, leading to phase of apogee raising with small
perigee boosts at every perigee passage. In the second phase, when the right altitude
has been achieved, the orbit is circulated by a sequence of apogee boosts.

Remark 2.13 The concept is reversible, i.e. the calculation can be used for moving to
a lower orbit, but the propulsion must fire in opposite directions then.

Bi-elliptic transfer orbit

A bi-elliptic transfer brings a satellite from one circular orbit into another co-planar
circular orbit by three ∆v-thrusts and via two subsequent elliptic transfer orbits. In
opposite to intuition, the first ellipse has a semi-major axis which is larger than the final
circular orbit.

We can reformulate the calculation:

1. ∆vp1 =

√
GM

(
2
R1
− 1

a1

)
−
√

GM
R1

is the impulse for moving the satellite from the

initial circular orbit with radius r = R1 to an elliptic orbit with semi-major axis
a1 = R1+rb

2 by a boost in the perigee.

29



2. The two-body problem

Bi-elliptic transfer

Figure 2.13.: Bi-elliptic transfer (in gray) between two circular orbits (in black).

2. ∆va =

√
GM

(
2
rb
− 1

a2

)
−
√
GM

(
2
rb
− 1

a1

)
is the impulse for moving the satellite

from the first ellipse onto another with semi-major axis a2 = R2+rb
2 by a boost in

the apogee

3. ∆vp2 =

√
GM

(
2
R2
− 1

a2

)
−
√

GM
R2

is the impulse for moving a satellite from the

second ellipse onto a circular orbit with radius r = R2 with a boost in the perigee.

The “radius” rb is the maximum distance between the central mass and the satellite.
This value is a degree of freedom in the calculation.

Exercise 2.5 Verify that a bi-elliptic transfer with R1 = 6800 km, R2 = 93800 km and
rb = 40R1 requires a smaller total impulse than the corresponding Hohmann transfer.
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2.4. Further useful relations

2.4. Further useful relations

2.4.1. Understanding Kepler

Epifocal; r, ν

rf =

 r cos ν
r sin ν

0

 ṙf =

 ṙ cos ν − rν̇ sin ν
ṙ sin ν + rν̇ cos ν

0


Lf = rf × ṙf =

 0
0
r2ν̇

 rf · ṙf = rṙ

Eccentric; a,E

rx =

 a cosE
b sinE

0

 ṙx =

−aĖ sinE

bĖ cosE
0

 Ė =
n

1− e cosE

Epifocal; a,E

rf =

 a cosE − ae
a
√

1− e2 sinE
0

 ṙf =

 −aĖ sinE

a
√

1− e2Ė cosE
0


L = ‖r × ṙ‖ = ‖Lf=3‖

= a2 cos2E
√

1− e2Ė − a2e
√

1− e2Ė cosE + a2
√

1− e2Ė sin2E

= a2
√

1− e2Ė − a2e
√

1− e2Ė cosE

= a2
√

1− e2Ė(1− e cosE)

from (2.18) we have:
L2

GM
= p = a(1− e2)

L =
√
GMa(1− e2)

=⇒
√
GMa(1− e2) = a2

√
1− e2Ė(1− e cosE)

⇐⇒
√
GM

a3
= Ė(1− e cosE) = n
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2. The two-body problem

If we integrate the last line w.r.t. time, we obtain the Kepler equation M = E− e sinE.
Hence, the equation, which popped up in page 19, is a consequence of Kepler’s laws!

Now: r · ṙ = −a2 cosE sinEĖ + a2eĖ sinE + a2(1− e2)Ė sinE cosE

= a2eĖ sinE − a2e2Ė sinE cosE

= a2eĖ sinE(1− e cosE)

= a2en sinE

Together with r · ṙ = rṙ we obtain

rṙ = a2en sinE =
√
GMae sinE (2.19)

2.4.2. Partial derivatives ν ↔ E ↔M

Goal:
∂ν

∂M
=
∂ν

∂E

∂E

∂M

The first part at the right side is difficult. We need to get back to the expression of the
radial distance, both in terms of true anomaly ν and of eccentric anomaly E.

r(ν) =
a(1− e2)

1 + e cos ν
⇒ ∂r

∂ν
=

a(1− e2)

(1 + e cos ν)2
e sin ν =

r2e sin ν

a(1− e2)

r(E) = a(1− e cosE) ⇒ ∂r

∂E
= ae sinE

Thus, we get:
∂ν

∂E
=
∂ν

∂r

∂r

∂E
=
a(1− e2)

r2 sin ν
a sinE

Remember that the y-coordinate in the epifocal frame can either be expressed as yf =
r sin ν or as yf = b sinE. Therefore, we end up with

∂ν

∂E
=
a2(1− e2)

rb
=
b2

rb
=
b

r

The second part at the right side of the equation above is easily obtained from Kepler’s
equation:

M = E − e sinE ⇒ ∂M

∂E
= 1− e cosE =

r

a

Combining all information, we get:

∂ν

∂M
=
∂ν

∂E

∂E

∂M
=
ab

r2
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2.5. Transformations Kepler ←→ Cartesian

2.5. Transformations Kepler ←→ Cartesian

2.5.1. Kepler −→ Cartesian

Problem: Given 6 Kepler elements (a, e, I, ω,Ω,M), find the corresponding inertial
position ri and velocity ṙi.

Solution: First get the eccentric anomaly E from the mean anomaly M by iteratively
solving Kepler’s equation:

E − e sinE = M ⇒ Ei+1 = e sinEi +M , with starting value E0 = M (2.20)

Next, get the position and the velocity in the epifocal f -frame, which has its z-axis
perpendicular to the orbital plane and its x-axis pointing to the perigee:

rf =

 a(cosE − e)
a
√

1− e2 sinE
0

 , ṙf =
na

1− e cosE

 − sinE√
1− e2 cosE

0

 (2.21)

In case the true anomaly ν is given in the original problem instead of the mean anomaly
M , the vectors rf and ṙf are obtained by:

rf =

 r cos ν
r sin ν

0

 , ṙf =
na√

1− e2

 − sin ν
e+ cos ν

0

 (2.22)

with

r =
a(1− e2)

1 + e cos ν
(2.23)

The transformation from inertial i-frame to the epifocal f -frame is performed by the
rotation sequence R3(ω)R1(I)R3(Ω). So, vice versa, the inertial position and velocity
are obtained by the inverse transformations:

ri = R3(−Ω)R1(−I)R3(−ω)rf (2.24)

ṙi = R3(−Ω)R1(−I)R3(−ω)ṙf . (2.25)

In particular, we find by multiplication of the rotation matrices

R3(−Ω)R1(−I)R3(−ω) = (2.26) cosω cos Ω− sinω sin Ω cos I − sinω cos Ω− cosω sin Ω cos I sin I sin Ω
cosω sin Ω + sinω cos Ω cos I − sinω sin Ω + cosω cos Ω cos I − sin I cos Ω

sin I sinω sin I cosω cos I


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2. The two-body problem

and for the position

ri = R3(−Ω)R1(−I)R3(−ω)rf = r

 cosu cos Ω− sinu sin Ω cos I
cosu sin Ω + sinu cos Ω cos I

sin I sinu

 . (2.27)

Remark 2.14 Please not that the direction towards the satellite in equation (2.27) is
also the first column of the rotation matrix (2.26) for ν = 0◦. The second column of
the matrix can be found from the first one by differentiation w.r.t. ω, or by inserting
ν = 90◦. The third column of the rotation matrix is orthogonal to the orbital plane.
Hence, these three vectors form an orthogonal triad related to the Kepler orbit, which
is also labeled as Gaussian vectors (Montenbruck and Gill, 2001, p.27)Gaußvektoren

2.5.2. Cartesian −→ Kepler

Problem: Given a satellite’s inertial position ri and velocity ṙi, find the corresponding
Kepler elements (a, e, I, ω,Ω,M).

Solution: The angular momentum vector per unit mass is normal to the orbital plane.
It defines the inclination I and right ascension of the ascending node Ω:

Li = ri × ṙi (2.28)

tan Ω =
Li=1

−Li=2
(2.29)

tan I =

√
L2
i=1 + L2

i=2

Li=3
(2.30)

Rotate ri into the orbital plane now and derive the argument of latitude u:

rn = R1(I)R3(Ω)ri (2.31)

tanu = tan(ω + ν) =
rn=2

rn=1
(2.32)

The semi-major axis a comes from the vis-viva equation and requires the scalar velocity
v = ‖ṙ‖. The eccentricity e comes from the description of the Laplace-vector and needs
the scalar angular momentum L = ‖L‖:

T − V =
v2

2
− GM

r
= −GM

2a
(2.33)
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2.5. Transformations Kepler ←→ Cartesian

Figure 2.14.: n-frame


Lx

Ly

Lz

L

z

y

x

I



I

Figure 2.15.: The angular momentum vector L defines the orientation of the orbital
plane in terms of Ω and I.

(vis-viva equation) a =
GM r

2GM − rv2
(2.34)

(Laplace vector) e =

√
1− L2

GM a
(2.35)
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2. The two-body problem

In order to extract the eccentric anomaly E, we need to know the radial velocity first:

ṙ =
r · ṙ
r

(2.36)

cosE =
a− r
ae

(2.37)

sinE =
rṙ

e
√
GM a

(2.38)

The true anomaly is obtained from the eccentric one:

tan ν =

√
1− e2 sinE

cosE − e
(2.39)

tanE =

√
1− e2 sin ν

cos ν + e
(2.40)

Subtracting ν from the argument of latitude u yields the argument of perigee ω. Finally,
Kepler’s equation provides the mean anomaly:

E − e sinE = M (2.41)

Exercise 2.6 The initial values of a satellite orbit are given by

r0 =

(
−11 092 826.57

2 174 279.13

)
m ṙ0 =

(
−1 883.7915
−5 207.2702

)
m

s

in its orbital plane. Determine all possible Kepler elements.

1. complement the vectors to 3D form (for the latter cross product)

r0 =

−11 092 826.57
2 174 279.13

0.00

 m ṙ0 =

−1 883.7915
−5 207.2702

0.0000

 m

s

2. norm of vectors:

r = ‖r0‖ = 11 303 906.01 m v = ‖ṙ0‖ = 5 537.5385
m

s

3. specific energy: E = 1
2v

2 − GM
r = −19 930 025 J

kg
(negative energy implies an elliptic orbit)

4. angular momentum: L = r × ṙ =
(

0, 0, 61 859 233 775
)

m2

s
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2.5. Transformations Kepler ←→ Cartesian

5. semi-major axis: a = −GM
2E = 10 000 000 m

6. parameter of the ellipse: p = ‖L‖2
GM = 9 600 000 m

7. eccentricity: e =
√

1− p
a =

√
1− 96

100 = 0.2

8. radial velocity: ṙ = r·ṙ
r = 847.009 m

s

9. eccentric anomaly:

cosE =
a− r
ae

= −0.651953

sinE =
rṙ

e
√
GMa

= 0.758259

E = atan2(sinE, cosE) = 2.280953=̂130.◦68901

10. true anomaly: tan ν =
√

1−e2 sinE
cosE−e ⇒ ν = 2.424440=̂138.◦91018

11. If we assume, that the vectors are given in the n-frame, we can calculate also the
argument of latitude and the angle of perigee:

u = atan2(2 174 279.13,−11 092 826.57) = 2.94803=̂168.◦91018

ω = u− ν = 30.◦00000

The angle I and Ω cannot be determined as the vectors are in the orbital plane.
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3. Introduction to perturbation theory –
Lagrange Planetary Equations

-

3.1. Representation of orbit perturbations

In the Kepler problem, a satellite falls around a central body on a conic section. Both
objects are considered as point masses (or spheres with radial symmetric density) with
gravitational attraction between them. All other forces are ignored. The potential
V = GM

r leads to Newton’s equation of motion r̈ = ∇V = −GM
r3
r in the inertial frame

and the solution is called a Kepler orbit.

If any force influences the satellite motion, we will observe orbit perturbations. Orbit Bahnstörungen

perturbations can be investigated in two forms:

1. disturbing force Störkraft

r̈ = −GM
r3
r +

∑
i

f i (3.1)

Disturbing forces f i can depend on position and velocity of the satellite, but also
on time or other parameter like the density of the atmosphere. (Any effect can be
written in this form)

2. disturbing potential Störpotential

V =
GM

r
+R(r, t) (3.2)

⇒ r̈ = ∇V = −GM
r3
r +∇R(r, t) (3.3)

Disturbing potentials R(r, t) can depend on position or time, but not on velocity1.

1Unfortunately, the symbol R is used by convention for the disturbing potential and the radius of the
central body (and also for rotation matrices) in satellite geodesy.



3. Introduction to perturbation theory – Lagrange Planetary Equations

Version 1 is possible for all forces, while version 2 requires a conservative force field with
a corresponding potential. Hence, we distinguish between:

• conservative forces, acting on volume or center of massVolumenkräfte,
konservative Kräfte ⇒ (in-)homogeneous gravity field represented by Klm-coefficients (in Chapter 4, 6

and 7), gravity of other celestial bodies, and relativistic effects
(The magnetic field is also a conservative vector field with a potential, but its
impact on orbits is usually neglected.)

• non-conservative or dissipative forces, acting on surfaces (of the satellite)Oberflächenkräfte,
Reibungskräfte ⇒ atmospheric drag, solar radiation pressure, albedo (in Chapter 5)

Order of Magnitudes

The order of magnitude of all orbit perturbations in different orbital heights is presented
in fig. 3.1. Details will be discussed in the following sections and chapters.

Let us collect some first information from the figure:

• The axes are in a log-log style, which leads to straight lines for all functions of the
form y = axk. In a strict sense, only the central term is exactly radial dependent,
for the other accelerations averaged values are presented.

• The main acceleration of a satellite motion is the −GM
r3

-term of the central mass,
which is labeled by GM in the figure.

• The non-homogeneous gravity field of the Earth is modeled by a (generalized)
Fourier series (see Chapter 6). A few components are labeled here by their coeffi-
cients {J2,0, J2,2, J6,6, J18,18}. The dominant orbit perturbation is the flattening of
the Earth corresponding to the disturbing potential

R2,0(r, λ, θ) = −GM
R

J2

(
R

r

)3

J2P2,0(cos θ)

• The forces of other celestial bodies (Moon, Sun, Venus and Jupiter) depend on
their distance to the satellite. The acceleration of the Moon is larger than the
corresponding value of the Sun. For the planets, these forces differ significantly
during a year, which is not shown here.

• The drag describes the acceleration due to the atmosphere, up to a distance of
r = 780 km. As the atmosphere is very variable, maximal and minimal acceleration
are visualized.

• ...
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3.1. Representation of orbit perturbations

Figure 3.1.: Order of magnitude per orbit perturbation type in different orbital heights
(Montenbruck and Gill, 2001, p. 55).
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3. Introduction to perturbation theory – Lagrange Planetary Equations

3.2. Osculating Kepler elements

3.2.1. Effect on Kepler elements

All orbit perturbations are small compared to the acceleration of the central body.
Hence, the orbit differs only slightly from a Kepler orbit. At each epoch, we can calculate
6 Kepler elements based on current position and velocity. Any (subsequent) location will
produce another set of Kepler elements. All elements are now time-dependent:

{r(t), ṙ(t)} ⇔ {a(t), e(t), I(t),Ω(t), ω(t),M(t)}

For a given epoch, we can draw the orbit and the Kepler ellipse, and the curves coincide
in most cases only in one location and adapt to each other in the close surrounding,
which is rephrased as osculating ellipse or osculating Kepler elements2. A time series ofOskulierende

Keplerelemente resulting Kepler elements may consist of

• short-time periodic perturbations, often with frequencies like once per revolution
or twice per revolution,

• long-time periodic perturbation with periods ranging from sub-daily to months,

• secular effects, often in the form of a linear trend.

3.2.2. Investigation of orbit perturbations

Orbit perturbations can be investigated in two ways:

• Numerical integration of the force model 3.1 provides a time series of Cartesian
positions and velocities. The method can be applied for several orbit perturbations
in one “run” and can consider very complex models. For a better understanding,
the solution should be converted to Kepler elements.

• Analytical solutions, i.e. closed formulas for the variable Kepler elements depen-
dent on the disturbing forces, are only possible for certain orbit perturbations
and require the Lagrange planetary equations (cf. section 3.4) or their Gaussian
counter part. In particular, the long term effects caused by the inhomogeneous
gravity field of the Earth are described and analyzed in this way.

Exercise 3.1 Use the vis-viva equation to investigate how an extra impulse in flight
direction influences the semi-major axis a.

2os, oris (lat): mouth; osculum: small mouth, kiss

42



3.3. Canonical Equations

The vis-viva equation (2.18) provides a relation between scalar velocity and the semi-
major axis:

v2 = GM

(
2

r
− 1

a

)
An impulse in flight direction will not effect the current radius r. The total derivative
provides then

2v dv = GM

(
∂2r−1

∂r
dr − ∂a−1

∂a
da

)
= GM

(
−(−a−2 da)

)
=
GM

a2
da

⇒ da =
2a2

GM
v dv

• A positive impulse in the flight direction ( dv > 0) will increase the semi-major
axis, and the effect depends on the current size of the ellipse.

• The change da in the semi-major axis will be maximal, when the velocity is max-
imal, i.e. in the perigee.

3.3. Canonical Equations

Newton’s equations of motion r̈ = ∇V are a set of three coupled differential equations
of 2nd order. Using the components of position and velocity as variables, the equations
are rewritten as ODEs of 1st order. {

ṙ = v
v̇ = ∇V (3.4)

The sum of potential and kinetic energy

F := T − V =
1

2
v · v − V (r) (3.5)

is also known as force function F or Hamiltonian (often written as H), although it is Kraftfunktion,
Hamiltonfunktionnot a force in a physical sense.

We can combine the differential equation and the derivatives of the force function F to
obtain the system 

ṙ =
∂F

∂v
=
∂T

∂v

v̇ = −∂F
∂r

= −∂V
∂r

(3.6)
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3. Introduction to perturbation theory – Lagrange Planetary Equations

Written out in 6 dimensions one obtaines the matrix-vector form

ṙ1

ṙ2

ṙ3

v̇1

v̇2

v̇3

 =



0 0 0 1 0 0
0 0 0 0 1 0
0 0 0 0 0 1

−1 0 0 0 0 0
0 −1 0 0 0 0
0 0 −1 0 0 0





∂F/∂r1

∂F/∂r2

∂F/∂r3

∂F/∂v1

∂F/∂v2

∂F/∂v3

 (3.7)

=⇒
(
ṙ
v̇

)
=

(
0 I
−I 0

)(
∇rF
∇vF

)
=⇒ ṡ = J∇sF . (3.8)

Any equation of motion that can be brought into this form is called a canonical equa-
tion. The variables r and v are correspondingly called canonical variables. The skew-kanonische Gleichung

kanonische Variable symmetric structure, represented by the matrix J, is called symplectic. In its most
general form, in which the canonical variables are not the Cartesian position and veloc-
ity anymore, the canonical equation read:


q̇i =

∂H

∂pi
, generalized coordinates

ṗi = −∂H
∂qi

generalized moments

3.4. Crash course LPE

Starting from the Newton equations in the form of eqn. (3.6) we now want to address the
question: Can we find a set of 1st order differential equations for the Kepler elements,
which relates their variations to a force function F?

ṙ =
∂F

∂v

v̇ = −∂F
∂r

 =⇒ ṡ =?

s =
(
a e I Ω ω M

)T
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3.4. Crash course LPE

The differential equations are found by using the Hamiltonian F = T − V :
dr

dt
=
∂r

∂s

ds

dt
=⇒ ṙ = Aṡ =

∂F

∂v

dv

dt
=
∂v

∂s

ds

dt
=⇒ v̇ = Ȧṡ = −∂F

∂r

We want to solve for the vector ṡ, but the matrices A, Ȧ ∈ R3×6 cannot be inverted.
Therefore we apply the following trick:

ȦTṙ = ȦTAṡ = ȦT∂F

∂v

ATv̇ = ATȦṡ = AT∂F

∂r

Note that ATȦ and ȦTA are 6× 6 matrices of rank 3 each. We combine them into(
ATȦ− ȦTA

)
ṡ = AT∂V

∂r
− ȦT∂T

∂v

= −
(

ȦT∂F

∂v
+ AT∂F

∂r

)
The composite matrix at the left is abbreviated as L, yielding

Lṡ = −∂F
∂s

L = matrix of Lagrange brackets {sk, sl}

{sk, sl} =
3∑
i=1

∂ri
∂sl

∂vi
∂sk
− ∂ri
∂sk

∂vi
∂sl

with s =
(
a e I Ω ω M

)T
. After inversion of L we obtain the desired result

ṡ = −L−1∂F

∂s

which is called Lagrange Planetary Equation.

Properties L

• antisymmetric:

LT = −L =⇒ 15 independents elements
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3. Introduction to perturbation theory – Lagrange Planetary Equations

• time invariant:

L̇ = ATÄ− ÄTA = 0

Äik =
∂v̇i
∂sk

=
∂2V

∂ri∂sk(
ATÄ

)
lk

=
3∑
i=1

∂ri
∂sl

∂2V

∂ri∂sk
=

∂2V

∂sl∂sk
= symmetric

=⇒ evaluate e.g. in perigee

Exercise 3.2 Determine the Lagrange bracket {a, e}.

For the Lagrange brackets, the position and velocity are represented in the epifocal frame
with a subsequent rotation ri = R(ω, I,Ω)rf and ṙi = R(ω, I,Ω)ṙf into the inertial
frame. {

a, e
}

=
3∑̀
=1

∂ri=`
∂a

∂vi=`
∂e −

∂ri=`
∂a

∂vi=`
∂e =

=
(
∂r
∂a

)> (∂v
∂e

)
−
(
∂r
∂e

)> (∂v
∂a

)
=

=
(
R
∂rf
∂a

)> (
R
∂vf
∂e

)
−
(
R∂r

∂e

)> (
R
∂vf
∂a

)
=

=
(
∂r
∂a

)>
R>R

(
∂vf
∂e

)
−
(
∂r
∂e

)>
R>R

(
∂vf
∂a

)
=

=
(
∂r
∂a

)> (∂vf
∂e

)
−
(
∂r
∂e

)> (∂vf
∂a

)
An evaluation in the perigee simplifies the calculation, as the vectors (2.22)

rf = a(1−e2)
1+e cos ν

 cos ν
sin ν

0

∣∣∣∣∣∣
ν=0

= a(1−e2)
1+e

 1
0
0


ṙf = na√

1−e2

 − sin ν
e+ cos ν

0

∣∣∣∣∣∣
ν=0

= na√
1−e2 (1 + e)

 0
1
0


are orthogonal. A differentiation w.r.t. semi-major axis or eccentricity will not change
the orthogonality. Hence, we find the Lagrange-bracket {a, e} = 0.

LPE

ṡ = −L−1∂F

∂s
L−1 = matrix of Poisson brackets [sk, sl]
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3.4. Crash course LPE

• equations of motion in s e.g. in Kepler elements

• 6 ODE of 1st order

• non-linear

• coupled

The equations of motion with disturbing potential3 R in Cartesian coordinates are:

r̈ = ∇GM
r

+∇R (3.9)

After transforming position r and velocity ṙ into Kepler elements, the equations of
motion are called the Lagrange Planetary Equations (lpe): Lagrange’sche

Störungsgleichungen

ȧ =
2

na

∂R

∂M
(3.10a)

ė =
1− e2

na2e

∂R

∂M
−
√

1− e2

na2e

∂R

∂ω
(3.10b)

İ =
cos I

na2
√

1− e2 sin I

∂R

∂ω
− 1

na2
√

1− e2 sin I

∂R

∂Ω
(3.10c)

Ω̇ =
1

na2
√

1− e2 sin I

∂R

∂I
(3.10d)

ω̇ = − cos I

na2
√

1− e2 sin I

∂R

∂I
+

√
1− e2

na2e

∂R

∂e
(3.10e)

Ṁ = n− 1− e2

na2e

∂R

∂e
− 2

na

∂R

∂a
(3.10f)

The differential equation can be re-written into a matrix vector form:

d

dt



a
e
I
Ω
ω
M

 =


0

0 0 2
na

0 −
√

1−e2
na2e

1−e2
na2e

− 1
nab sin I

cot I
nab 0

anti-symm 0





∂F/∂a
∂F/∂e
∂F/∂I
∂F/∂Ω
∂F/∂ω
∂F/∂M

 (3.11a)

Please note, that we switch the representation from the disturbing potential R to the
complete Hamiltonian

F = T − V = T − GM

r
−R = −GM

2a
−R

3This implies that only gravitational forces can be treated in the following. For dissipative forces, the
Gauss form of the equations of motion should be used. To reduce confusion with the Earth radius,
we note down the later one by RE in the following.
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3. Introduction to perturbation theory – Lagrange Planetary Equations

with

2

na

∂F

∂a
=

2

na

∂
{
−GM

2a −R
}

∂a
=

2

na

∂
{
−GM

2a

}
∂a

− 2

na

∂R

∂a
= n− 2

na

∂R

∂a
(3.12)

Remark 3.1 Kepler elements are not canonical variables, but the matrix is still anti-
symmetric and relative sparse.

The lpe will be used in sections 4.2 and 7.2 for analyzing the orbit perturbation due to
the inhomogeneous gravity field of the Earth. For non-gravitational orbit perturbations,
the Gauss representation of lpe is introduced.

3.5. Gauss form of LPE

The lpe describe perturbed motion as long as the force can be written as the gradient of
a potential and with the Kepler elements as variables. For non-gravitational forces, e.g.
solar pressure or air drag, Gauss found an alternative form. To simplify the modelling,
we introduce two rotating coordinate systems with the origin in the center of the satellite:

• Hill-frame (xH, yH, zH) (H-frame):

– zH: radial component is parallel to r

– yH: cross-track component is parallel to L

– xH: complements the RHS and points quasi-along track

• tangential frame (xt, yt, zt) (t-frame)

– xt: along-track component is parallel to v

– yt: cross-track component si parallel to L

– zt: complements the RHS and is quasi-radial component

For non-circular orbits the two systems differ by a rotation around the common y-axis.

LPE in Gauss form in Hill frame

When the (specific) force f =
(
f1, f2, f3

)T
is expressed in the Hill-frame, the Gauss-

form of lpe are the following equations

ȧ =
2

n
√

1− e2

(
e sin νf3 +

p

r
f1

)
(3.13a)

ė =

√
1− e2

na
(sin νf3 + (cosE + cos ν) f1) (3.13b)
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3.5. Gauss form of LPE

ZH

XH

Zt

Xt

r

H = Hill-triad
t = tangential triad

κ
κ

Figure 3.2.: Hill-triad H, tangential triad t.

İ =
r

nab
cos(ω + ν)f2 (3.13c)

Ω̇ =
r

nab sin I
sin(ω + ν)f2 (3.13d)

ω̇ =

√
1− e2

nae

(
− cos ν f3 +

(
r

p
+ 1

)
sin ν f1

)
− cos I Ω̇ (3.13e)

Ṁ = n− 1

na

(
2r

a
− 1− e2

e
cos ν

)
f3 −

1− e2

nae

(
1 +

r

p

)
sin νf1 (3.13f)

In the formula we have considered:

r =
p

1 + e cos ν
=⇒ p

r
= 1 + e cos ν

p = a(1− e2) and p =
L2

GM

=⇒ L =
√
pGM =

√
a(1− e2)n2a3 = nab

a2 − a2e2 = b2 =⇒ a
√

1− e2 = b

Exercise 3.3 Assume a constant or a periodic (“once per revolution”) component in
the force f given in the Hill-frame. How will the Kepler elements a, I, or Ω change due
to this force?
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3. Introduction to perturbation theory – Lagrange Planetary Equations

For near-circular orbits (e ≈ 0) the Gauss lpe reduce to:

ȧ =
2

n
f1 (3.14a)

ė =
1

na
(sin νf3 + 2 cos νf1) (3.14b)

İ =
1

na
cosuf2 (3.14c)

Ω̇ =
1

na sin I
sinuf2 (3.14d)

ω̇ + Ṁ = n− e

na
f3 − cos IΩ̇ (3.14e)

Attention: The atmospheric drag is an orbit perturbation, which acts in flight direction,
i.e. in tangential direction. In the tangential frame the force vector has only a first non-
zero component:

fdrag
t =

 f1

0
0


t

To use the previous formulas, we must rotate the system from the tangential frame to
the Hill-frame via a rotation matrix:

fdrag
H = R2(−κ)fdrag

t .

The matrix itself is expressed in Kepler elements

f t = R2(κ)fH with tanκ =
e sin ν

1 + e cos ν

R2(κ(ν)) =


1+e cos ν√

1+e2+2e cos ν
0 −e sin ν√

1+e2+2e cos ν

0 1 0
e sin ν√

1+e2+2e cos ν
0 1+e cos ν√

1+e2+2e cos ν

⇔ R2(κ) =

 cosκ 0 − sinκ
0 1 0

sinκ 0 cosκ

 .

Exercise 3.4 Verify, that the matrix R2(κ(ν)) is a rotation matrix. Check its determi-
nant and the orthogonality.
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3.5. Gauss form of LPE

LPE in Gauss form in tangential frame

The previous rotation can be avoided by using the representation of the Gauss’ lpe
directly in the tangential frame:

ȧ =
2a2v

GM
f1 (3.15a)

ė =
1

v

(r
a

sin ν f3 + 2(e+ cos ν)f1

)
(3.15b)

İ =
r

L
cosu f2 (3.15c)

Ω̇ =
r

L sin I
sinu f2 (3.15d)

ω̇ =
1

ev

(
−
(

2e+
r

a

)
cos ν f3 + 2 sin ν f1

)
− r cos I

L sin I
sinu f2 (3.15e)

Ṁ = n+
b

a

1

ev

(
r

a
cos ν f3 − 2

(
1 + e2 r

p

)
sin ν f1

)
(3.15f)

In the formula we have considered:

L = na2
√

1− e2 = nab
p

r
= 1 + e cos ν

v =
L

p

√
1 + e2 + 2e cos ν

u = ω + ν

Exercise 3.5 Most geosynchronous satellite are injected by a rocket into the “stan-
dard geostationary transfer orbit” (GTO) and continue their journey with subsequent
Hohmann transfers. Due to malfunction of Arianne 5, the telecommunication satellite
Artemis was injected into an elliptic low-energy orbit (hper = 592 km,hapo = 17528 km4)
below GTO in July 2001. The onboard chemical propellant was not enough to reach
the geostationary orbit, but the satellite could be lifted into an orbit 5000 km below the
GEO via 5 perigee boosts and 3 apogee boost and a series of engine burns. Luckily,
the satellite also carried experimental ion thrusters, which were now used to alter the
semi-major axis by permanent thrusts (≈ 10 µm

s2
) (Oppenhäuser and Bird, 2003). Which

time is necessary to lift the satellite into its geosynchronous orbit? Which changing rate
could be observed for the semi-major axis?

4spaceflightnow.com/arianne/v142/01073followup.html
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3. Introduction to perturbation theory – Lagrange Planetary Equations

• geostationary – one revolution per (sidereal) day:

aGEO =
3

√
GM

(
T

2π

)2

=
3

√
3.986005 · 1014

m3

s

(86164 s)2

4π2
= 42 164 km

EGEO =
GM

2aGEO
= −4.726

km2

s2

• starting ion thrusters

aion = aGEO − 5000 km = 37164 km

Eion =
GM

2aGEO
= −5.362

km2

s2

• differences in velocities are relative small

vGEO =

√
GM

aGEO
= 3074

m

s

vion =

√
GM

aion
= 3274

m

s

and can be replace by the average v = 3174 m
s

• permanent firing of ion thrusters

∆E =

∫
s

f · ds =

∫
f1︸︷︷︸

along−track

ds =

∫
fv dt ≈ fv∆t

(The acceleration is considered to act only and always in flight direction.)

• transfer time

∆t ≈ |∆E|
fv

=
5.362 km2

s2
− 4.726 km2

s2

10 · 10−6 m
s2

3174 m
s

≈ 20030518 s ≈ 231 days (3.16)

• lpe in Gauss-form

ȧ =
2

n
f1 = 2

√
a3

ion

GM
= 0.22

m

s
≈ 19

km

day
(3.17)

According to Oppenhäuser and Bird (2003) the “lifting rate” might reach 20 km
day in best

scenarios with an average value of 15 km
day . The ion thruster started in 19 February 2002

and finished their firing in 31 January 2003. This is longer then our estimation, but
three out of four thruster units failed during the journey.

Changing the satellite’s maneuvers in space required “largest” software patch of onboard
systems so far with more than 15 000 words of code!
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4. Orbit perturbation due to Earth
flattening

-

The main deviation from a central gravitational field V = GM
r is caused by the dynamic

flattening of the Earth. In the grs80 normal field the flattening is represented by the
dimensionless constant J2 = 1.082 63 · 10−3, while the central term has the numerical
value C0,0 = 1. For actual gravity fields, the flattening is represented by the spherical
harmonic coefficient C2,0 = −J2.

4.1. Qualitative assessment

In a thought experiment, we want to understand the J2-effect on the ascending node
without calculations.

The gravity of a reference ellipsoid can be replaced by a mass in the center and an
additional ring in the equatorial plane representing the difference between sphere and
ellipsoid, i.e. the equatorial bulge. Äquatorwulst

A satellite is now attracted by the point mass and the ring. Considering the differences
in magnitudes and the directions, the satellite gets an extra force F pulling towards the
equatorial plane in almost all locations of the orbit.

A force acting with a distance r on a rotating object leads to a torque T = F ×r = dL
dt , Drehmoment

which changes then the angular momentum L, i.e. the orbital plane. Drehimpuls

Now we imagine the figure of the modulus of the torque ‖T ‖ for one revolution:

• The figure will show a maximum, when the argument of latitude is u = π/2 and
the satellite has the largest distance to the equatorial plane at its northernmost
point.

• In the opposite location u = 3π/2, both the force F and the radius r change their
sign and the term ‖T ‖ has another maximum.

• The minimum is obtained, when the satellite is in the equatorial plane with u = 0
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Figure 4.1.: Torque on a satellite orbit.

(ascending node) or u = π (descending node) as force and radius are parallel here.

• The average value Ta will be a positive.

If we assume a circular orbit, the sum

T = ‖T ‖ = Ta + Ta sin(2nt)

with two maxima and two minima per revolution (and with t = 0 in the ascending node)
fits to the previous facts.

Exercise 4.1 Which torque will occur, when the satellite orbit remains in the equatorial
plane with inclination I = 0?

4.2. Quantitative assessment

To analyze the effect, the gravitational potential must be complemented by the so-called
C2,0-term1:

F = T − V

=
1

2
v2 − GM

r
−R2,0(r, φ, λ)

1The modeling of the gravitational potential will be part of Chapter 6. For the moment, we have to
accept, that a complicated gravity field can be represented in a kind of Fourier series in 3 variables,
i.e. (r, λ, φ). In East-West direction the basis functions are trigonometric functions {cosmλ, sinmλ},
as the field must be continuous after one revolution. In radial direction the inhomogenous structure
must get damped for large distances, but the exact form {r−(n+1)} cannot be explained for now. In
North-South direction, the basis are the Legendre functions Pn,m(sinφ).
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4.2. Quantitative assessment

= −GM
2a
− GM

RE

(
RE

r

)3

C2,0P2,0(sinφ) .

The non-normalized Legendre function is of the form P2,0(sinφ) = 1
2(3 sin2 φ− 1). The

argument sinφ must be expressed here in Kepler elements for differentiation. In a
spherical triangle we find the relation sinφ = sin I sinu.

R2,0 =
1

2

GM

RE

(
RE

r

)3

C2,0(3 sin2 u sin2 I − 1)

z
r

I

u
 

sinsinusinI

sin= z
r

Figure 4.2.: Relation between latitude φ and the Kepler elements I and u in a spherical
triangle.

Inserting the potential R2,0 into the lpe leads to

Ω̇ =
1

nab sin I

∂R2,0

∂I

=
1

2

1

nab sin I

n2a3

RE

(
RE

r

)3

C2,02 · 3 sin2 u︸ ︷︷ ︸
1
2

(1−cos(2u))

cos I sin I

=
3

2

a2n

br

(
RE

r

)2

C20 cos I(1− cos(2u)) .

The rate of the ascending node varies with two osculations per revolution, but it also
shows a constant term, which coincides with previous qualitative analysis.

The time variable ascending node can be found by integration, i.e.

Ω(t) = Ω0 +

∫ τ

τ0

Ω̇ dt .
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4. Orbit perturbation due to Earth flattening

The oscillating component cos(2u) will cancel out, when we integrate the effect within
one or multiple (integer) revolutions.

The constant term in the disturbing potential R2,0 generates a secular trendsekulärer Trend

Ω̇ =
3

2
n

C2,0

(1− e2)2

(
RE

r

)2

cos I (4.1)

which corresponds to a long-term linear trend in the ascending node

Ω(t) = Ω0 + Ω̇(t− t0) .

In the following, we are only interested in the secular effect of the Earth’s flattening,
which is parameterized by the unnormalized coefficient C20 = −1.08263 · 10−3. The
equations of motion (3.10a) to (3.10f) reduce to:

ȧ = 0 (4.2a)

ė = 0 (4.2b)

İ = 0 (4.2c)

ω̇ =
3nC20a

2
E

4(1− e2)2a2

(
1− 5 cos2 I

)
= n

κ

a2

(
1− 5 cos2 I

)
(4.2d)

Ω̇ =
3nC20a

2
E

2(1− e2)2a2
cos I = 2n

κ

a2
cos I (4.2e)

Ṁ =n−
3nC20a

2
E

4(1− e2)3/2a2

(
3 cos2 I − 1

)
= n− n

√
1− e2

κ

a2

(
3 cos2 I − 1

)
(4.2f)

κ :=
3C2,0a

2
E

4(1− e2)2

Discussion The flattening of the Earth has no secular effect on the shape and size of
the orbit (a and e). The inclination of the orbital plane remains constant, too (I). There
will be a precession of the orbital plane, though (Ω̇). Within the orbit, the flattening
effect is twofold: the perigee starts to precess (ω̇) and the mean motion gets an additional
term.

Exercise 4.2 For a satellite at about 750 km height, following a near-circular orbit (e.g.
e = 0.01), the above equations become:

ω̇ ≈ 3.◦35
(
5 cos2 I − 1

)
per day

Ω̇ ≈ −6.◦7 cos I per day

Ṁ ≈ 14.◦4 +
3.◦35

360◦
(
3 cos2 I − 1

)
revolutions per day
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4.2. Quantitative assessment

Figure 4.3.: Sign-analysis of ω̇ ∝
(
5 cos2 I − 1

)
and Ω̇ ∝ − cos I.

The secular rates of the Kepler elements due to Earth flattening constitute the next level
of orbit design tools beyond Kepler’s 3rd law. Some applications of the above formulae:

Polar orbit For a polar orbit (I = 90◦), the equatorial bulge has no effect on the ascend-
ing node. Its precession remains zero and the orbital plane keeps it orientation in
inertial space.

Sun-synchronous orbit For remote sensing purposes (illumination angle) and engineer-
ing purposes (no moving solar paddles, no Earth shadow transitions) a sun-synchronous
orbit is very useful. Sun-synchronicity is attained if the orbital plane precession is
equal to the Earth’s rotation around the sun, i.e. Ω̇ = 2π/year, which is nearly 1◦

per day. For the above numerical example, this is achieved at the near-polar ret-
rograde inclination of 98.◦5. Examples of sun-synchronous orbits are ers, Envisat,
Landsat, goce, Sentinel-3 and many more.

Critical inclination Perigee precession does not occur if 5 cos2 I = 1, which leads to
I ≈ 63.◦43 and its complement I ≈ 116.◦57. This inclination is used in altimetry,
for instance. An interesting use of this property is made by the Russian system of
Molniya communication satellites, which have a very large eccentricity (e = 0.74)
and semi-major axis (a = 26 000 km). The perigee at 270◦ is fixed by a critical
inclination. Thus these satellites swing around the Southern hemisphere rapidly,
after which they will be visible over the Northern hemisphere (Russia) for a long
time.

Repeat orbit A repeat orbit performs β revolutions in α nodal days while the spatial
sampling is determined by the inclination I. The concept is presented in the next
section.
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4. Orbit perturbation due to Earth flattening

4.3. Repeat orbit

Many Earth observations benefit from repeated data in space and time. A repeat orbitWiederholungsbahn

performs β revolutions in α nodal days while the spatial sampling is determined by the
inclination I. The integers α and β are relative primes, i.e. they have no common divisor.

A number of geodetic satellites with repeat orbits are listed in table 4.1:

Table 4.1.: Satellites with repeat orbits

Satellite β α

geosynchronous 1 1
GPS 2 1
TOPEX 127 10
ERS 501 35
GOCE 979 61
Sentinel-3 385 27
CryoSat-2 5344 369
IceSat 1354 (119) 91 (8)

The flattening of the Earth is for most missions the dominant orbit perturbation, and
must be considered in the orbit design if the parameter shall persist. The inclination I isBahn-Design

fixed by the sampling requirements and also launch restrictions, while the eccentricity e
tends in many missions to zero for homogeneous observations. The semi-major axis a
is then determined by the repeat condition i.e. the ratio of α and β.

The semi-major axis of a repeat orbit is found in two steps:

1. A first approximation can be estimated by Kepler’s third law already:

βTrev = αTday (4.3)

=⇒ β

α
=
Tday

Trev
=
nrev

nday
=

n

ωE

=⇒ n =
β

α
ωE =

2πβ

α
per day

Inserted in Kepler’s third law, one obtains a semi-major axis a0:

=⇒ a0 =
3

√
GM

n2
= 3

√
GMα2

β2ω2
E
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4.3. Repeat orbit

2. For a more precise estimate, the effect of the Earth flattening on the orbit must be
considered. On the one hand, we express the mean motion n by the differentiated
argument of latitude2 u̇ = ω̇ + ν̇. On the other hand, the sidereal day Tday is
replace by the so called nodal day . A nodal day is the duration of the Earth’s Knotentag

rotation around its axis relative to the (precessing) node. The angular velocity is
ωE − Ω̇ and, hence,

Tnodal =
2π

ωE − Ω̇
. (4.4)

The repeat condition is then the ratio

β
α = Tnodal

Trev
≈ ω̇+Ṁ

ωE−Ω̇
(4.5)

=⇒ β

α
(ωE − Ω̇) ≈ ω̇ + Ṁ (4.6)

Inserting the solution of the lpe on page 56 leads to

β

α
ωE − 2

β

α
n
κ

a2
cos I ≈ n

κ

a2

(
1− 5 cos2 I

)
+ n− n

√
1− e2

κ

a2

(
3 cos2 I − 1

)
n ≈ β

α
ωE +

n

a2
κ

[
−2

β

α
cos I −

(
1− 5 cos2 I

)
+
√

1− e2
(
3 cos2 I − 1

)]
√
GM

a3/2
≈ β

α
ωE +

√
GM

a7/2
κ

[
−2

β

α
cos I −

(
1− 5 cos2 I

)
+
√

1− e2
(
3 cos2 I − 1

)]
The non-linear equation can be solved by an iteration, with the starting value a0:

ai+1 ≈

βα ωE√
GM︸ ︷︷ ︸

(a0)−3/2

+
κ

a
7/2
i

[
−2

β

α
cos I −

(
1− 5 cos2 I

)
+
√

1− e2
(
3 cos2 I − 1

)]

−2/3

(4.7)

Exercise 4.3 Which semi-major axis a must be chosen for a repeat orbit with β = 901,
α = 55, when the eccentricity e = 0.3 and the inclination I = 60 are given?

• initial guess: a0 = 3

√
GMα2

β2ω2
E

= 6548780 m

2We ignore here the difference between mean and true anomaly: ν̇ = dν
dt

= dν
dM

dM
dt

= ab
r2
Ṁ ≈ Ṁ
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4. Orbit perturbation due to Earth flattening

• iteration leads to

a1 =

(
(a0)−3/2 +

κ

a
7/2
0

[...]

)−2/3

= 6483139 m

a2 =

(
(a0)−3/2 +

κ

a
7/2
1

[...]

)−2/3

= 6480813 m

a3 =

(
(a0)−3/2 +

κ

a
7/2
2

[...]

)−2/3

= 6480729 m

a4 = 6480726 m

a5 = 6480726 m

Remark 4.1 The iteration will quickly converge as the numerical value∣∣∣∣κ 1

a7/2

∣∣∣∣ =

∣∣∣∣ 3C2,0a
2
E

4(1− e2)2

1

a2a3/2

∣∣∣∣ =

∣∣∣∣ 3C2,0

4(1− e2)2

(aE

a

)2 1

a3/2

∣∣∣∣ ≈ 0.00075

a3/2

(aE

a

)2

is significantly smaller than a
−3/2
0 .
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5. Non gravitational orbit perturbations

Non-gravitational orbit perturbations are difficult to model, and their integrated effect
is often observed by on-board accelerometers in the geodetic space missions. The per-
turbations on satellites are caused by

• atmospheric drag

• solar radiation pressure

• Earth albedo

We will recognize, that the effect depends in particular on relative orientation, i.e. the
effective area of the satellite—non-gravitational perturbations are also known as surface
forces—, but also time-dependent parameters like the density of the atmosphere. Oberflächenkräfte

5.1. Atmospheric drag

In case of low Earth orbiters, the atmosphere is the largest non-gravitational effect. It is
also the most difficult one to model, as the density is highly variable and poorly observed.

Figure 5.1.: Volume passed by the satellite in a time span ∆t

In fig. 5.1 a simplified empirical model, we investigate the mass ∆m of an atmospheric
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volume. This volume “hits” a surface A of our satellite, flying with velocity v. In the
finite time span ∆t the volume represent a mass and, hence, a finite linear impulse ∆p:

∆m = ρ∆V = ρAv∆t

An impulse will be exerted on the satellite

∆p = −v∆m = −ρAv2∆t

which is related to the force

F =
∆p

∆t
= −ρAv2 .

Dividing by the the satellite mass yields the specific force:

f = −ρA
m
v2 .

This concept must be improved by several steps:

• The density ρ(r, t) of the atmosphere is depending on position, time, but also tem-
perature, Sun activity, particles distribution. A very coarse model is an exponential

form ρatm ≈ ρ0e
− h
H0 with a reference height h0 and density ρ0.

Table 5.1.: Density of upper atmosphere (Seeber, 2003, p. 103)

height [km] density [g/km3]

100 497400
200 255 – 316
300 17 – 35
400 2.2 – 7.5
500 0.4 – 2.0
600 0.081 – 0.639
700 0.020 – 0.218
800 0.007 – 0.081
900 0.003 – 0.036

1000 0.001 – 0.018

• The shape of the body influences the atmospheric drag. This is considered in a
factor

(
1
2CD

)
, where the term 1

2 is extracted for consistency with theories in flight
dynamics.

• The direction and magnitude of the force must be considered: v2 becomes ‖v‖v
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5.2. Solar radiation pressure

• So far we assumed, that a satellite passed through an unmoved atmosphere in
the inertial frame. In a better approximation, the atmosphere co-rotates with the
Earth, on top of which also other atmospheric circulation may occur. Hence, the
relative velocity (v − vatm) must be known for modelling.

Integrating these steps leads to the specific atmospheric drag:

fdrag = −1

2
CDρ(r, t)

A

m
(v − vatm)‖v − vatm‖ . (5.1)

Remark 5.1 The product
(
CD

A
m

)
is also known as ballistic coefficient. ballistischer

Koeffizient

Remark 5.2 The area-to-mass ratio A
m is an important parameter for orbit design. Flächen-zu-Massen-

VerhältnisNon-gravitational orbit perturbations are reduced if the ratio gets smaller. On the one
hand, the size of the satellite is determined by the onboard instruments and payload,
while the mass can be changed by materials. On the other hand, possible size and mass
are also limited by the launch vehicles and costs.

5.2. Solar radiation pressure

The sun (�) emits permanently photons in all directions. These particles generate a
solar flux Photonenfluss

Φ =
∆E

A∆t

i.e. an amount of energy ∆E passing the area A in a time span ∆t, which acts on
satellites, but also on Moon or Earth.

In a simplified, mechanical interpretation each photon delivers an “impulse”:

pν =
Eν
c

(Eν = mνc
2 = mνc · c = pνc)

=⇒ ∆p =
∆E

c
=

Φ

c
A∆t linear momentum

and also a force:

F =
∆p

∆t
=

Φ

c
A

These impulses cause a pressure P = F
A on the satellite surface. To highlight the sun as

its “source”, we write the in pressure as

P� =
Φ

c
.
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5. Non gravitational orbit perturbations

Close to the Earth orbit, the solar flux is almost constant: Φ ≈ 1367 W
m2 , which leads to

the pressure P� ≈ 4.56 · 10−6 N
m2 . Thus the basic specific force reads

‖f‖ =
F

m
=

Φ

c

A

m
. (5.2)

Note that the area-to-mass ratio appears again.

Orientation of Surfaces – absorption or reflection

Each surface element has its particular normal vector n, which forms an inner angle θ
with the incoming light rays. Hence, the effective area is given by Aeff = A cos θ.effektive Fläche

Figure 5.2.: Reflection and absorption of photons (Montenbruck and Gill, 2001, p.78).

Photons are either absorbed into the material of the surface (or generate electricity),
which leads to the force

F abs = −P� cos θAe�

or they are reflected by the same angle with

F refl = −2P� cos θA cos θn .

The reflection coefficient (ε) describes the relative amount of reflected energy, while itsReflexionskoeffizient

counterpart (1− ε) describes the absorbed energy.

=⇒ F abs+refl = −P� cos θA [(1− ε)e� + 2ε cos θn] .

The coefficients depends on the material.
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5.2. Solar radiation pressure

Table 5.2.: Absorption and reflection coefficients in satellite geodesy

material – ε (reflection) 1− ε (absorption) CR = 1 + ε

solar panel – 0.21 0.79 1.21
antenna – 0.30 0.70 1.30
aluminum – 0.88 0.12 1.88

Distance to the Sun

The flux Φ of the Sun is attenuated quadratically with the distance, and the orbit of the
Earth has an eccentricity of e ≈ 0.017. Hence, the distance r� to the Sun varies around
3.3% between the perihelion a(1− e) = 147 Gm and the apohelion a(1 + e) = 152 Gm.

We consider the variation by the squared ratio of the actual radius and a mean distance
r̄� = 1 AU:

f =
F

m
= −P�

(
r̄�
r�

)2 A

m
cos θ

[
(1− ε)e� + 2ε cos θn

]
(5.3)

Remark 5.3 Solar panels are usually large and often flat. If the panels are also oriented
perpendicular to the incoming sun-light, the two vectors are aligned

n = e� =
r�
r�

with θ = 0 and the specific force is simplified:

f = −P�
(
r̄�
r�

)2 A

m
[(1− ε)e� + 2εe�] = −P�CR

A

m

(
r̄�
r�

)2

e� (5.4)

CR = 1 + ε

Shadow function χ

So far, we assumed, that the each surface is in direct sunlight. In fact, there are always
parts of the satellite which are not illuminated by the sun-light, either because of the
relative orientation of the surface, or if the light is blocked by another body, in particular
the Earth. This is taken into account by introducing the shadow function. The value of Schattenfunktion

the shadow function varies between 0 ≤ χ ≤ 1 depending on the circumstances. If the
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5. Non gravitational orbit perturbations

Figure 5.3.: The shadow function is derived via a geometrical model (Montenbruck and
Gill, 2001, p. 80).

surface is fully illuminated, we find χ = 1, while in the shadow χ = 0 holds. There is
also a transfer time, where the value is changing.

f = χP�

(
r̄�
r�

)2 A

m
cos θ [(1− ε)e� + 2ε cos θn]

Remark 5.4 Solar sails are a (theoretical) concept of moving a space probe withoutSonnensegel

onboard fuel only due to the reflection of sunlight on large mirrors, i.e by solar radiation
pressure. The space probe Ikaros demonstrated by its flyby of Venus in 2010, that
inner planets can be reached as well by solar sails. Another idea are “static satellites”
which hover in a location like the polar regions, where geo-stationary satellites are not
possible. Challenges are here the precise control of the solar sails, the stability of their
construction, the restrictions in payload weight and also the very small accelerations.

Exercise 5.1 A balloon satellite1 (CD ≈ 2) with the mass m = 46 kg is launched into
a circular orbit with h = 700 km. The spherical surface with radius R = 10 m is made

1Classic balloon satellites in 1960–1975 had a significant higher altitude, for example Echo 1 with
h = 1600 km
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5.3. Relativistic corrections

by mylar with ε ≈ 0.9 and it acts as solar sail. Which non-gravitational force on the
satellite is stronger?

• effective area in all directions: A = r2π due to spherical shape

• maximum solar radiation pressure:

‖fSRP,max ‖ = P�CR
A

m

r�
r3
�
r̄2
� = 4.56 · 10−6 N

m2
(1 + 0.9)

100πm2

46 kg
= 5.92 · 10−5 m

s2

• atmospheric drag with table 5.1 (atmosphere without relative movements)

‖fdrag‖ =
1

2
CDρ(r, t)

A

m
v2 =

1

2
CDρ(700 km)

A

m

GM

r
=

=
1

2
2

(
0.020

0.001kg

10003m3

)
100πm2

46 kg

3.986005 · 1014 m3

s

6378136.6 m + 700000 m
= 7.69 · 10−6 m

s

At the first glimpse, the effect of the solar radiation pressure is significantly larger than
the atmospheric drag. But we have used only the lower limit of the density; with the
upper limit the effect of the drag will increase by one order of magnitude. It also
should be pointed out, that the atmospheric drag acts permanently with same effect, i.e.
lowering the orbital height. The solar radiation pressure might be blocked by the shadow
of the Earth, and the effect on the orbit is variable and partly counterproductive.

5.3. Relativistic corrections

Special relativistic theory is beyond the scope of this course. Nevertheless, we find in
(Montenbruck and Gill, 2001, p. 111) a post-Newton correction of the acceleration

r̈rel = −GM
r2

[(
4
GM

c2r
− v2

c2

)
er + 4

v2

c2
(er · ev)ev

]
(5.5)

with the c = 299 792 458 m/s as speed of light and v as the scalar velocity of the satel-
lite. The unit vectors er and ev are pointing towards the position and velocity vectors,
respectively.

Exercise 5.2 Compare the relativistic effect and the acceleration due to gravity for a
satellite on a circular orbit with an altitude of h = 600 km.
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5. Non gravitational orbit perturbations

In case of a circular orbit the unit vectors er and ev are orthogonal, which eliminates
the term (er · ev)ev. The scalar velocity v2 = GM

r is also known:

r̈rel = −GM
r2

(
4
GM

c2r
− v2

c2

)
er =

= −GM
r2

(
4
GM

c2r
− GM

rc2

)
er =

= −GM
r2

3
GM

c2r

r

‖r‖

and

‖r̈rel‖ = 3
(GM)2

c2r3

∣∣∣∣
h=600 km

≈ 1.5608 · 10−8 m

s2
.

The acceleration caused by gravity is r̈ = −GM
r2

r
‖r‖ which leads to the ratio

r̈rel

r̈
=

3GM
c2r

1
≈ 0.013305 m · 1

r

=⇒ r̈rel

r̈

∣∣∣∣
h=600 km

≈ 1.9067 · 10−9

The relativistic acceleration is about 9 orders of magnitude smaller than the acceleration
of the central term, which is also reflected in fig. 3.1.
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6. The gravitational potential and its
representation

The Lagrange Planetary equations (lpe) require the partial derivatives of the force
function—or Hamiltonian—to all Kepler elements, i.e. ∇sF . Thus, the main objective
in this chapter is to transform V (r, θ, λ) into V (a, e, I,Ω, ω,M) = V (s).

The Gauss version of the lpe requires forces in a local satellite frame, either es or et.
These can be generated by taking suitable derivatives of V (s). Second derivatives in the
local satellite frame will be presented, too. They are needed for gravity gradiometry.

6.1. Representation on the sphere

The gravitational potential is usually represented in a spherical harmonic. Such a repre-
sentation turns out to be of advantage, since spherical harmonics possess the following
properties:

orthogonality,

global support,

harmonicity.

Because the geopotential fulfills the Laplace equation ∆V = 0 outside the masses, the
harmonicity of the spherical harmonics makes them natural base functions to V . Their
orthogonality allows the analysis of the coefficients of the base functions.

For reasons of compactness complex-valued quantities will be employed here:

V (r, θ, λ) =
GM

R

∞∑
l=0

(
RE

r

)l+1 l∑
m=−l

KlmYlm(θ, λ) , (6.1)

in which

r, θ, λ = radius, co-latitude, longitude

R = Earth’s equatorial radius

GM = gravitational constant times Earth’s mass



6. The gravitational potential and its representation

Ylm(θ, λ) = surface spherical harmonic of degree l and order m

Klm = spherical harmonic coefficient, corresponding to Ylm(θ, λ).

The coefficients Klm constitute the spherical harmonic spectrum of the function V . They
are the parameters of the gravitational field. The surface spherical harmonics Ylm(θ, λ)
are defined in the following way:

Ylm(θ, λ) = Pl,|m|(cos θ)eimλ . (6.2)

It follows from this definition that for the complex conjugated it holds: Y ∗lm = Yl,−m.
Without explicitly using overbars, we assume that all complex quantities are (fully)
normalized by the factor:

Nlm =

√
(2l + 1)

(l −m)!

(l +m)!
. (6.3)

Unnormalized spherical harmonic functions are multiplied by this factor to make them
normalized. Unnormalized spherical harmonic coefficients are divided by (6.3). The
orthogonality of the base functions is expressed by:

1

4π

∫∫
σ

Yl1m1(θ, λ)Y ∗l2m2
(θ, λ) dσ = δl1l2δm1m2 . (6.4)

Remark 6.1 (Normalization conventions) In literature, the factor 1
4π is sometimes

taken care of in the normalization factor by incorporating a term
√

4π. Another differ-
ence between normalization factors, found in literature, is a factor (−1)m. It is often
used implicitly in the definition of the Legendre functions.

In geodesy, one usually employs real-valued base functions and coefficients, cf. (Heiskanen
and Moritz, 1967). The series (6.1) would become:

V (r, θ, λ) =
GM

R

∞∑
l=0

(
RE

r

)l+1 l∑
m=0

(Clm cosmλ+ Slm sinmλ)Plm(cos θ) , (6.5)

with normalization factor:

Nlm =

√
(2− δm0)(2l + 1)

(l −m)!

(l +m)!
. (6.6)

The real- and complex-valued spherical harmonic coefficients, each with their own nor-
malization, are linked by:

Klm =


1
2(Clm − iSlm) , m > 0

Clm , m = 0
1
2(Clm + iSlm) , m < 0

, (6.7)
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6.2. Representation in Kepler elements

such that Klm = K∗l,−m. Now it is easy to demonstrate the equality between complex and
real-valued series expansions. If we ignore the dimensioning factor GM/R, the upward
continuation term and the arguments of the spherical harmonics, we can write:

V =
∑
l

l∑
m=−l

KlmYlm

=
∑
l

l∑
m=0

KlmYlm +Kl,−mYl,−m

=
∑
l

l∑
m=0

KlmYlm +K∗lmY
∗
lm

=
∑
l

l∑
m=0

KlmYlm + (KlmYlm)∗

=
∑
l

l∑
m=0

2<{KlmYlm}

=
∑
l

l∑
m=0

2
1

2
<{(Clm − iSlm)(cosmλ+ i sinmλ)}Plm(cos θ)

=
∑
l

l∑
m=0

(Clm cosmλ+ Slm sinmλ)Plm(cos θ)

We made a minor mistake in the second line for the case m = 0, that could have been
repaired explicitly by dividing by (1 + δm0). However, the definition (6.7) already takes
care of this. The opposite mistake is made in the second last line.

Remark 6.2 (Complex vs. real) From the derivations above the benefits of a series
expansion in complex quantities is obvious: compactness and transparency of formulas.
An added benefit in the next section will be the transformation properties of spherical
harmonics under rotation of the coordinate system. Such transformation properties
would be extremely laborious in real notation.

6.2. Representation in Kepler elements

In order to transform the potential into a function of Kepler elements, two steps are
required:
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6. The gravitational potential and its representation

i) Rotate the spherical harmonics from the earth-fixed system into a coordinate
system such that the orbit plane becomes the new equator and the new x-axis
points towards the satellite. The following Euler rotation sequence is required:

R313(Ω− gast, I, ω + ν) = R3(ω + ν)R1(I)R3(Ω− gast) , or

R313(Λ, I, u) = R3(u)R1(I)R3(Λ) ,

ii) Express (R/r)l+1eikν as a Fourier series in the mean anomaly M , multiplied
by (R/a)l+1.

Step 1: Rotation of spherical harmonics. If we rotate the coordinate system around
the 3rd axis over an angle α, R3(α), the coordinates themselves change as:

θ′ = θ , and λ′ = λ− α .

Under this rotation, surface spherical harmonics transform as:

Ylm(θ, λ) = Plm(cos θ)eimλ = Plm(cos θ′)eim(λ′ + α) = Ylm(θ′, λ′)eimα . (6.8)

Two of the three rotations can be dealt with now.

For rotations R2 and R1 things are not that simple. From representation theory we
know that the transformation of a spherical harmonic Ylm(θ, λ) of a specific degree l
and order m in one frame requires all spherical harmonics Ylk(θ

′, λ′) of that same degree
over all possible orders −l ≤ k ≤ l in the rotated frame in a certain linear way. The
linear mapping is expressed by representation coefficients dlmk that are a function of the
rotation angle. For a rotation R2(α) we have the following transformation:

Ylm(θ, λ) =
l∑

k=−l
dlmk(α)Ylk(θ

′, λ′) , (6.9)

with

dlmk(α) =

[
(l + k)!(l − k)!

(l +m)!(l −m)!

] 1
2

t2∑
t=t1

(
l +m
t

)(
l −m
l − k − t

)
(−1)t c2l−a sa ,

in which c = cos 1
2α, s = sin 1

2α, a = k − m + 2t, t1 = max(0,m − k) and t2 =
min(l − k, l +m).

Note that (6.8) can be cast into a similar form when we use Kronecker deltas:

Ylm(θ, λ) =

l∑
k=−l

δmke
imαYlk(θ

′, λ′) .
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6.2. Representation in Kepler elements

Instead of a full (2l + 1)× (2l + 1) linear system we have a diagonal matrix only.

Since we need to perform the rotation R1(I), (6.9) needs to be revised. A rotation
around the 1st axis is achieved by a rotation around the 2nd axis if we properly pre- and
postrotate by R3(±1

2π):

R1(α) = R3(1
2π)R2(α)R3(−1

2π) .

Note that the rotation sequence is read from right to left. A spherical harmonic trans-
forms under R1(α) therefore as follows:

Ylm(θ, λ) =

l∑
k=−l

e−im
1
2πdlmk(α)eik

1
2πYlk(θ

′, λ′) =

l∑
k=−l

ik−mdlmk(α)Ylk(θ
′, λ′) . (6.10)

In summary:

r′ = R3(u)R1(I)R3(Λ)r

= R3(u+ 1
2π)R2(I)R3(Λ− 1

2π)r (6.11a)

=⇒ Ylm(θ, λ) =
l∑

k=−l
Dlmk(Λ, I, u)Ylk(θ

′, λ′) , (6.11b)

with Dlmk(Λ, I, u) = ik−mdlmk(I)ei(ku+mΛ) . (6.11c)

New coordinates. Using the time-variable elements u(t) and Λ(t), the rotation se-
quence will keep the new x-axis pointing to the satellite. Its orbital plane will instan-
taneously coincide with a new equator. The satellite’s coordinates reduce to θ′ = 1

2π
and λ′ = 0, so that Ylk(θ

′, λ′) = Plk(0). In principle the third rotation could have been
omitted such that the representation coefficient Dlmk(Λ, I, 0) should have been used in
(6.11c). In that case the longitude in the new frame would have been λ′ = u, leading
to the same expression. In both cases the satellite is always on the rotated equator. In
the second interpretation the argument of latitude would become the new longitude. In
this view the name argument of latitude his highly misplaced.

Inserting the transformation (6.11b) and the representation coefficients (6.11c) into (6.1),
combined with θ′ = 1

2π, λ
′ = 0:

V (r, u,Λ, I) =
GM

R

∞∑
l=0

(
RE

r

)l+1 l∑
m=−l

l∑
k=−l

Klmi
k−mdlmk(I)Plk(0)ei(ku+mΛ) .

(6.12)
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6. The gravitational potential and its representation

Inclination functions. As a simplification a so-called inclination function is introduced:

Flmk(I) = ik−mdlmk(I)Plk(0) , (6.13)

so that the along-orbit potential (6.12) is finally reduced to the series:

V (r, u, I,Λ) =
GM

R

∞∑
l=0

(
RE

r

)l+1 l∑
m=−l

l∑
k=−l

KlmFlmk(I)ei(ku+mΛ) . (6.14)

The inclination functions (6.13) differ from Kaula’s functions Flmp(I) (Kaula, 1966) in
the following aspects:

they are complex,

they are normalized by the factor (6.3) (though written here without overbar),

they make use of the index k.

The 3rd index of Kaula’s inclination function, p, is due to the following. The inclination
function Flmk(I) contains the equatorial Legendre function Plk(0). Legendre functions
Plm(x) are either even or odd functions on the domain x ∈ [−1; 1] for (l −m) even or
odd, respectively. Thus, if (l −m) is odd, Plk(0) will be zero and the whole inclination
function becomes zero. Consequently the k-summation can be performed in steps of 2:∑l

k=−l,2. This fact allows the introduction of another index: p = 1
2(l− k) or k = l− 2p,

which yields the summation
∑l

p=0.

Remark 6.3 (p vs. k) The p-index has two advantages: it is positive and it runs in
unit steps. The third summation in (6.14) becomes

∑l
p=0. The major disadvantage is

that it does not have the meaning of spherical harmonic order (or azimuthal order) in the
rotated system anymore. The index p is not a wavenumber, such as k. Thus, symmetries
are lost, and formulae become more complicated. For instance exp(i(ku+mΛ)) must be
written as exp(i((l− 2p)u+mΛ)). The angular argument seems to depend on 3 indices
in that case.

Step 2: Eccentricity functions. So far, we have achieved an expression in terms of
r, u, I,Λ, which is not the full set of Kepler elements yet. This partial results has to be
complemented by the following transformation:

1

rl+1
eikν =

1

al+1

∞∑
q=−∞

Glkq(e)e
i(k + q)M , (6.15)

which can be regarded as a Fourier transformation of the function eikν/rl+1. The Fourier
coefficients Glkq(e) are called eccentricity functions. This transformation finalizes the
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6.2. Representation in Kepler elements

required form of the geopotential in terms of Kepler elements:

V (s) =
GM

R

∞∑
l=0

l∑
m=−l

l∑
k=−l,2

∞∑
q=−∞

(
RE

a

)l+1

KlmFlmk(I)Glkq(e)e
iψmkq (6.16a)

ψmkq = kω + (k + q)M +mΛ (6.16b)

The fourth summation over q runs in principle from −∞ to∞. However, the eccentricity
functions decay rapidly according to:

Glkq(e) ∼ O(e|q|) .

Therefore, the q-summation can be limited for most geodetic satellites to |q| ≤ 1 or 2 at
most. Note that the metric Kepler elements (a, e, I) appear in the upward continuation,
eccentricity and inclination functions, whereas the angular Kepler elements define the
angular variable ψmkq.

If the p-index is used for a Kaula-type of inclination function, the eccentricity function
becomes Glpq(e). Moreover, the composite angle ψmkq turns into:

ψlmpq = (l − 2p)ω + (l − 2p+ q)M +mΛ .

The apparent dependence of ψ on the degree l is artificial.

Real-valued expression. If we return to real-valued coefficients and functions, the in-
clination functions need to become real too. Only the term ik−m in (6.13) needs to be
adapted. Since l and k have the same parity, due to Plk(0) = 0 for l − k odd, we can
write:

ik−m = il−2p−m = (−1)p il−m = (−1)
l−k
2 il−m .

The power of (−1) can be absorbed into the definition of a real-valued inclination func-
tion. The power of i needs to be taken care of by a case distinction between l−m even
or odd and by a proper selection of either Clm or Slm. After some manipulations (6.16a)
is recast into:

V (s) =
GM

R

∞∑
l=0

l∑
m=0

l∑
k=−l,2

∞∑
q=−∞

(
RE

a

)l+1

Flmk(I)Glkq(e)Slmkq(ω,Ω,M)

Slmkq(ω,Ω,M) =

[(
Clm
−Slm

)
cosψmkq +

(
Slm
Clm

)
sinψmkq

]l−m even

l−m odd

(6.17)

with the same definition of ψmkq. Again, one may use the p-index in order to have
∑l

p=0

as the 3rd summation. Also, recall that real-valued quantities use a slightly different
normalization factor.
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6. The gravitational potential and its representation

6.3. Lumped coefficient representation

Let us return to (6.14), i.e. the expression of the geopotential in terms Kepler elements
before introducing the eccentricity functions. The part exp(i(ku + mΛ)) reminds of a
2D-Fourier series. The argument of latitude u and the longitude of the ascending node
Λ attain values in the range [0; 2π). Topologically, the product [0; 2π)× [0; 2π) yields a
torus, which is the proper domain of a 2D-Fourier series. Indeed the potential can be
recast into a 2D-Fourier expression, if the following Fourier coefficients are introduced:

A
V
mk =

∞∑
l=max(|m|,|k|)

HV
lmkKlm , (6.18a)

with HV
lmk =

GM

R

(
RE

r

)l+1

Flmk(I) . (6.18b)

With these quantities, the potential reduces to the series:

V (u,Λ) =
∞∑

m=−∞

∞∑
k=−∞

A
V
mke

iψmk , (6.18c)

ψmk = ku+mΛ . (6.18d)

Just like (6.14), the above equations are valid for any orbit. They are not necessarily
restricted to circular orbits. The 2D-Fourier expression (6.18) makes only sense, though,
on an orbit with constant I and r. This is the concept of a nominal orbit. Only then do
the HV

lmk and correspondingly the Fourier coefficients A
V
mk become time independent.

The Fourier coefficients A
V
mk are usually referred to in literature as lumped coefficients,

since they are a sum (over degree l). All potential coefficients Klm of a specific order

m are lumped in a linear way into A
V
mk. The coefficients HV

lmk are denoted transfer
coefficients here. They transfer the spherical harmonic spectrum into a Fourier spectrum.
They are also known as sensitivity and influence coefficients.

Both Amk and Hlmk are labelled by a super index V , referring to the geopotential V . In
the next section, we will see that the same formulation can be applied to any functional
of the geopotential. Only the transfer coefficients is specific to a particular functional.

Remark 6.4 (Lumped coefficients) The word lumped merely indicates an accumu-
lation of numbers, e.g. here a linear combination of potential coefficients over degree l,
in general. Nevertheless a host of definitions and notations of lumped coefficients exists.

An early reference where lumped coefficients are determined and discussed, is (Gooding ,
1971). See (Klokočńık et al., 1990) for a list of lumped coefficients from several reso-
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6.4. Pocket guide of dynamic satellite geodesy

nant orbit perturbations. Also in (Heiskanen and Moritz, 1967) lumped coefficients are
discussed; zonal lumped coefficients, to be precise, that include non-linearities.

6.4. Pocket guide of dynamic satellite geodesy

Not only the potential, but also its functionals can be represented by a 2D-Fourier
series, similar to (6.18). For f#, in which the label # represents a specific functional,
the spectral decomposition is:

f# =

∞∑
m=−∞

∞∑
k=−∞

A
#
mke

i(ku+mΛ) , with (6.19a)

A
#
mk =

∞∑
l=max(|m|,|k|)

H#
lmkKlm . (6.19b)

By means of the above equations, a linear observation model is established, that links
functionals of the geopotential to the fundamental parameters, the spherical harmonic
coefficients. The link is in the spectral domain. The elementary building blocks in this
approach are transfer coefficients, similar to (6.18b). The linear model provides a basic
tool for gravity field analyses. E.g. the recovery capability of future satellite missions
can be assessed, or the influence of gravity field uncertainties on other functionals.

Pocket guide vs. Meissl scheme A collection of transfer coefficients H#
lmk for all rel-

evant functionals—observable or not—will be denoted as a pocket guide (pg) to dy-
namic satellite geodesy. Such a pg reminds of the Meissl scheme, cf. (Rummel and
van Gelderen, 1995), which presents the spectral characteristics of the first and second
order derivatives of the geopotential. This scheme enables to link observable gravity-
related quantities to the geopotential field. A major difference between the pg and the
Meissl-scheme is, that the former links sh coefficients to Fourier coefficients, whereas the
latter stays in one spectral domain, either spherical harmonic or Fourier. Consequently,
the transfer coefficients do not solely depend on sh degree l. In general, the spherical
harmonic orders m and k are involved as well. The transfer coefficients can not be con-
sidered as eigenvalues of a linear operator, representing the observable, as in the case of
the Meissl-scheme.

77



6. The gravitational potential and its representation

6.5. Derivatives of the geopotential

In this section the transfer coefficients of the first and second spatial derivatives of the
potential are derived in the local satellite frame: x quasi along-track, y cross-track and
z radial.

Since the satellite is in free fall, the gradient of the potential, ∇V , is not an ob-
servable functional. Nevertheless, the gradient vector—and consequently its transfer
coefficients—are highly relevant. They supply the force function to the dynamic equa-
tions. In particular, with the derivatives in the satellite frame, the resulting gradient
vector can directly be used in Gauss-type equations of motion. In 6.5.1 the transfer
coefficients of all gradient components will be derived.

Gravity gradiometry is the measurement of the gradient of the gravity vector, which is
a gradient by itself. The gradient of a gradient of a potential is a matrix or tensor of
second derivatives. The gravity gradient tensor is also referred to as Hesse matrix in
mathematics or Marussi tensor in physical geodesy. In 6.5.2, the transfer coefficients of
all tensor components will be derived, also in the local satellite frame.

6.5.1. First derivatives: gravitational attraction

Before applying the gradient operator ∇ = [ ∂∂x
∂
∂y

∂
∂z ]

T
= [∂x ∂y ∂z ]T to the geopo-

tential expression (6.14) or to (6.18a)–(6.18d), it is recalled that in the rotated geocentric
system u plays the role of longitude, θ′ that of co-latitude (although its nominal value
is fixed at 1

2π) and r is the radial coordinate of course. Thus the gradient operator in
the satellite frame becomes:

∇ =


∂

∂x
∂

∂y

∂

∂z

 =


1

r

∂

∂u

−1

r

∂

∂θ′

∂

∂r

 .

Let the potential be written as V =
∑

lmk Vlmk. Then the mechanism for deriving
transfer coefficients is explained for the x and z components:

∂xVlmk =
1

r

∂Vlmk
∂u

=
1

r

∂Vlmk

∂eiψmk

∂eiψmk

∂u
=
ik

r
Vlmk ,

∂zVlmk =
∂Vlmk
∂r

=
∂Vlmk

∂(R/r)l+1

∂(R/r)l+1

∂r
= − l + 1

r
Vlmk .
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6.5. Derivatives of the geopotential

So the along-track component of the gradient, ∂xV , will be characterized by a term ik/r,
and the radial derivative by the usual −(l + 1)/r.

Cross-track derivative. The cross-track component requires special attention. The θ′-
coordinate is hidden in the inclination function Flmk(I), (6.13). It is therefore convenient
to introduce a cross-track derivative of the inclination function, denoted as F ∗lmk(I), cf.
(Sneeuw , 1992):

F ∗lmk(I) = −∂Flmk(I)

∂θ′
= ik−m+2dlmk(I)

dPlk(cos θ′)

dθ′

∣∣∣∣
θ′=π/2

.

With the parameter t = cos θ the derivatives are: dPlk(t)
dt = −dPlk(cos θ)

sin θdθ . At the equator
(θ = π/2, or t = 0) no confusion about the sinθ factor can arise. Let the derivative with
respect to t be simply called P̄ ′lk(0), then the cross-track inclination function is defined
as:

F ∗lmk(I) = ik−mdlmk(I)P ′lk(0) . (6.20)

When applying recursions of derivatives of Legendre functions, e.g. (Ilk, 1983), to the
equator, one obtains:

(1− t2)
dPlk(t)

dt
=
√

1− t2Pl,k+1(t)− ktPlk(t)
t=0
=⇒ P ′lk(0) = Pl,k+1(0) . (6.21)

So the derivative P ′lk will be an even function for l − k odd and an odd one for l − k
even. Thus the cross-track inclination functions will vanish for l − k even. This would
allow the introduction of a Kaula-like cross-track inclination function F ∗lmp(I).

Alternative cross-track derivatives. Other approaches, circumventing the introduction
of F ∗lmk(I), exist. Colombo (1986) suggested as cross-track derivative the expression

∂

∂y
=

1

r sinu

∂

∂I
,

which shows singularities in u. See also (Betti and Sansò, 1989, Rummel et al., 1993).
Depending on coordinate choice, better worked out in (Koop, 1993) or (Balmino et al.,
1996) other expressions can be derived, e.g. the following singular one:

∂

∂y
=

1

r cosu sin I

(
cos I

∂

∂u
− ∂

∂Λ

)
.

By multiplying the former by sin2 u, the latter by cos2 u and adding the result, Schrama
(1989) derived the regular expression:

∂

∂y
=

1

r

[
sinu

∂

∂I
+

cosu

sin I

(
cos I

∂

∂u
− ∂

∂Λ

)]
,
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6. The gravitational potential and its representation

which leads to a corresponding cross-track inclination function:

F ∗lmk(I) =
1

2

[
(k − 1) cos I −m

sin I

]
F̄lm,k−1(I)− 1

2
F̄
′
lm,k−1(I) +

1

2

[
(k + 1) cos I −m

sin I

]
F̄lm,k+1(I) +

1

2
F̄
′
lm,k+1(I) , (6.22)

where the primes denote differention with respect to inclination I. Although numerical
equivalence between the real version of (6.20) and (6.22) could be verified, it was proven
analytically in (Balmino et al., 1996) that this last expression consists in fact of a twofold
definition:

F ∗lmk(I) =

[
(k − 1) cos I −m

sin I

]
F̄lm,k−1(I)− F̄ ′lm,k−1(I) , (6.23a)

F ∗lmk(I) =

[
(k + 1) cos I −m

sin I

]
F̄lm,k+1(I) + F̄

′
lm,k+1(I) . (6.23b)

In summary, the spectral characteristics of the gradient operator in the local satellite
frame are given by the following transfer coefficients:

∂x : Hx
lmk =

GM

R2

(
RE

r

)l+2

[ik] Flmk(I) (6.24a)

∂y : Hy
lmk =

GM

R2

(
RE

r

)l+2

[1] F ∗lmk(I) (6.24b)

∂z : Hz
lmk =

GM

R2

(
RE

r

)l+2

[−(l + 1)] Flmk(I) (6.24c)

Remark 6.5 (Nomenclature) The different parts in these transfer coefficients will be
denoted in the sequel as dimensioning term containing (GM , R), upward continuation
term (a power of R/r), specific transfer and inclination function part. Especially the
specific transfer is characteristic for a given observable.

According to this nomenclature, the specific transfer of the potential is 1, cf. equation
(6.18b). Both Hx

lmk and Hz
lmk show a transfer of O(l, k) which is specific to first deriva-

tives in general. Higher frequencies are amplified. The same holds true for Hy
lmk, though

hidden in F ∗lmk(I). Equations (6.23a) indicate already that F ∗lmk(I) ∼ O(l, k)×Flmk(I).
This becomes clearer for the second cross-track derivative, cf. next section. Note also
that only the radial derivative is isotropic, i.e. only depends on degree l. Its specific
transfer is invariant under rotations of the coordinate system like (6.11b). This is not
the case for Vx and Vy, when considered as scalar fields.
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6.5. Derivatives of the geopotential

6.5.2. Second derivatives: the gravity gradient tensor

- In contrast to the first derivatives, the second derivatives of the geopotential field are
observable quantities. The observation of these is called gravity gradiometry, whose
technical realization is described e.g. in (Rummel, 1986a). For a historical overview of
measurement principles and proposed satellite gradiometer missions, refer to Forward
(1973), Rummel (1986).

The gravity gradient tensor of second derivatives reads:

V =

 Vxx Vxy Vxz
Vyx Vyy Vyz
Vzx Vzy Vzz

 . (6.25)

The sub-indices denote differentiation with respect to the specified coordinates. The
tensor V is symmetric. Due to Laplace’s equation ∆V = Vxx + Vyy + Vzz = 0, it is also
trace-free. In local spherical coordinates (r, u, θ′) the tensor can be expressed as, e.g.
(Koop, 1993, eqn. (3.10)):

V =


1
r2
Vuu + 1

rVr − 1
r2
Vθ′u

1
rVur −

1
r2
Vu

1
r2
Vθ′θ′ +

1
rVr −

1
rVθ′r + 1

r2
Vθ′

symm. Vrr

 . (6.26)

Again, use has been made of the fact that the satellite is always on the rotated equator
θ′ = 1

2π. With Laplace’s equation one can avoid a second differentiation with respect to
the θ′-coordinate by writing:

Vyy = −Vxx − Vzz = − 1

r2
Vuu −

1

r
Vr − Vrr .

As usual, the purely radial derivative is the simplest one. It is spectrally characterized
by: (l+1)(l+2)/r2. The operator ∂xx will return the term: −[k2+(l+1)]/r2. The second
cross-track derivative ∂yy thus gives with Laplace [k2 + (l+ 1)− (l+ 1)(l+ 2)]/r2 = [k2−
(l+ 1)2]/r2. The spectral transfer for ∂xz becomes: [−ik(l+ 1)− ik]/r2 = −ik(l+ 2)/r2.
The components Vxy and Vyz make use of ∂θ′ , which requires the use of F ∗lmk(I) again.
Starting from the expression for Vy, one further ik/r-term is required to obtain Vxy. For
Vyz one needs an extra [−(l+ 1)− 1]/r = −(l+ 2)/r. The full set of transfer coefficients,
describing the single components of the gravity gradient tensor is thus given by:

∂xx : Hxx
lmk =

GM

R3

(
RE

r

)l+3

[−(k2 + l + 1)] Flmk(I) (6.27a)

∂yy : Hyy
lmk =

GM

R3

(
RE

r

)l+3

[k2 − (l + 1)2] Flmk(I) (6.27b)
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6. The gravitational potential and its representation

∂zz : Hzz
lmk =

GM

R3

(
RE

r

)l+3

[(l + 1)(l + 2)] Flmk(I) (6.27c)

∂xy : Hxy
lmk =

GM

R3

(
RE

r

)l+3

[ik] F ∗lmk(I) (6.27d)

∂xz : Hxz
lmk =

GM

R3

(
RE

r

)l+3

[−ik(l + 2)] Flmk(I) (6.27e)

∂yz : Hyz
lmk =

GM

R3

(
RE

r

)l+3

[−(l + 2)] F ∗lmk(I) (6.27f)

The specific transfer is of order O(l2, lk, k2), as can be expected for second derivatives.
This is also true for Hxy

lmk and Hyz
lmk, that make use of F ∗lmk(I). Again, the purely radial

derivative is the only isotropic component. Adding the specific transfers of the diagonal
components yields the Laplace equation in the spectral domain:

−(k2 + l + 1) + k2 − (l + 1)2 + (l + 1)(l + 2) = 0 .

Alternative cross-track gravity gradient. An alternative derivation of Vyy could have
been obtained directly, i.e. without the Laplace equation, by a second cross-track dif-
ferentation. A new inclination function, say F ∗∗lmk(I) is required, defined as:

F ∗∗lmk(I) =
∂2Flmk(I)

∂θ′2
= ik−mdlmk(I)P̄ ′′lk(0) .

From known recursions (Ilk, 1983), we have for the second latitudinal derivative of the
unnormalized Legendre function at the equator:

P ′′lk(0) = [k2 − l(l + 1)]Plk(0) .

A normalized version of this expression must be inserted in the definition of F ∗∗lmk(I)
above, yielding the specific transfer [k2 − l(l + 1)] of the second cross-track derivative
Vθ′θ′ . Since Vyy = Vθ′θ′/r

2 +Vr/r one ends up with exactly the same transfer, as derived
above with the Laplace equation, namely [k2 − (l + 1)2]/r2. Moreover, it demonstrates
again that F ∗lmk(I) is of order O(l, k), since the second cross-track derivative has a
transfer of O(l2, lk, k2).

Space-stable gradiometry. The transfer coefficients (6.27) pertain to tensor compo-
nents in the local satellite frame. Especially for local-level orientations, such as Earth-
pointing, these expressions are useful. In principle any other orientation can be deduced
from them, since a tensor V is transformed into another coordinate system by:

V ′ = RVRT ,
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6.5. Derivatives of the geopotential

cf. (Koop, 1993), in which R is the rotation matrix between the two systems. For
instance the rotation sequence

R = R3(−Λ)R1(−I)R3(−u) ,

which is the inverse of the rotations from 6.2, may be used to transform the gravity
gradient tensor back into an Earth-fixed reference frame. Note, however, that the angles
u and Λ are time-dependent. The derivation of transfer functions becomes cumbersome.
An alternative approach, based on the work of Hotine (1969), is followed by Ilk (1983)
and (Bettadpur, 1991, 1995).
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7. Gravitational orbit perturbations

We are now able to write down the equations of motion of a satellite in a gravitational
field. To that end we need to take the partial derivatives of the gravitational potential
(6.16a) to all Kepler elements and combine them according to the lpe. The first step we
take in 7.1 is to solve the lpe for the main effect, that is the secular orbit change due to
the flattening of the Earth. In the subsequent section 7.2 we will derive the remaining
gravitational orbit perturbations from linear perturbation theory (lpt). In 7.3 we will
discuss the orbit perturbation spectrum and related aspects like resonance.

7.1. The J2 secular reference orbit

The main deviation from a central gravitational field GM/r is caused by the dynamic
flattening of the Earth. In the grs80 normal field the flattening is represented by the
dimensionless constant J2 = 1.082 63 · 10−3. For actual gravity fields, it is represented
by the spherical harmonic coefficient C2,0 = K2,0 ≈ −J2. To be precise, these are
non-normalized coefficients. A division by

√
5 would normalize them.

The gravitational field produced by K2,0 reads:

V2,0(s) =
GM

RE

(
RE

a

)3

K2,0

2∑
k=−2,2

∞∑
q=−∞

F2,0,k(I)G2,k,q(e)e
i[kω + (k + q)M ] .

It can be expected that periodic excitations give mainly rise to periodic perturbations.
Thus the main perturbation can be expected from the zero-frequency term with k = q =
0:

R = V2,0,0,0(a, e, I) =
GM

RE

(
RE

a

)3

K2,0F2,0,0(I)G2,0,0(e)

=
GM

RE

(
RE

a

)3

C2,0

(
3

4
sin2 I − 1

2

)
(1− e2)−

3
2

The lpe require the partial derivatives of this expression. The partial derivatives w.r.t.



7. Gravitational orbit perturbations

the angular variables are all zero. Only the following remain:

∂R

∂a
= −3GM

R2
E

a4
C2,0

(
3

4
sin2 I − 1

2

)
(1− e2)−

3
2 (7.1a)

∂R

∂I
= GM

R2
E

a3
C2,0

3

2
sin I cos I(1− e2)−

3
2 (7.1b)

∂R

∂e
= 3eGM

R2
E

a3
C2,0

(
3

4
sin2 I − 1

2

)
(1− e2)−

5
2 (7.1c)

These partial derivatives are to be inserted in equations ((3.10a) to (3.10f)). Substituting
GM = n2a3 and performing the necessary simplifications will yield the lpe for secular
orbital motion due to the flattening of the Earth:

ȧ = 0 (7.2a)

ė = 0 (7.2b)

İ = 0 (7.2c)

ω̇ =
3

4
nC2,0

1

(1− e2)2

(
RE

a

)2

(1− 5 cos2 I) (7.2d)

Ω̇ =
3

2
nC2,0

1

(1− e2)2

(
RE

a

)2

cos I (7.2e)

Ṁ = n− 3

4
nC2,0

1

(1− e2)
3
2

(
RE

a

)2

(3 cos2 I − 1) (7.2f)

The first three of these equations are trivially solved: a, e and I are constant. The
orbit does not change its size and shape under the influence of the Earth’s flattening.
Nor does the inclination change. With the metric Kepler elements constant, the right
hand sides of the remaining three lpe become constant too. The full set of differential
equations (7.2a) is easily integrable to:

a(t) = a0 (7.3a)

e(t) = e0 (7.3b)

I(t) = I0 (7.3c)

ω(t) = ω(t0) + ω̇(t− t0) , (7.3d)

Ω(t) = Ω(t0) + Ω̇(t− t0) , (7.3e)

M(t) = M(t0) + Ṁ(t− t0) , (7.3f)

with the above indicated rates. The nodal line will precess at a constant rate Ω̇. Also
the perigee will precess linearly in time. Moreover, the flattened Earth causes the mean
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7.1. The J2 secular reference orbit

anomaly to accelerate (or decelerate). An orbit with these constant angular rates is
called secular. In summary, the secular J2-orbit is characterized by:

secular J2 orbit:
a, e, I constant

ω̇, Ω̇, Ṁ constant
(7.4)

Perigee precession. The perigee precession rate depends on the inclination. It can be
made to zero if cos2 I = 1

5 , resulting in the critical inclinations I = 63.◦4 or I = 116.◦6.
For lower inclinations—orbital plane closer to the equator—the perigee precession rate
becomes positive: both (1 − 5 cos2 I) and C2,0 are negative. For higher inclinations—
orbital plane closer to the poles—ω̇ is negative.

The Russian communication satellite system Molniya makes a clever use of this property.
Molniya satellites are in a highly eccentric orbit (e ≈ 0.74). After sweeping through
perigee, they will move slowly and be visible for a long time. To ensure that this occurs
over Russia, or over the Northern hemisphere in general, the perigee must be fixed over
the Southern hemisphere at ω = 270◦. This is done by choosing an inclination of 63.◦4.

Perigee precession will also occur for equatorial orbits, or, in a heliocentric setting, for
ecliptical orbits. Thus the relativistic perigee advance of Mercury’s orbit around the
sun, may be obscured by an inadequately known gravitational flattening of the Sun.

Nodal precession. The nodal precession is proportional to cos I. Thus, the plane of
polar orbits will not change. This can be expected, since the rotationally symmetric
flattened Earth does not exert a gravitational torque on a polar orbit. For prograde
orbits, the nodes will move clockwise (Ω̇ < 0), whereas Ω̇ > 0 for retrograde orbits.

Mean motion change. Similarly, the mean motion change due to the Earth’s flattening
is proportional to (3 cos2 I − 1). On orbits with an inclination lower than 54.◦7 or higher
than 125.◦3 the satellite will actually move faster than the mean motion n. In between
these inclinations, the satellite is held back by the gravitational torque.

Remark 7.1 (Numerical example) For a satellite at about 750 km height, following
a near-circular orbit (e.g. e = 0.01), the angular rates (7.2a) typically become:

ω̇ ≈ 3.◦35
(
5 cos2 I − 1

)
per day

Ω̇ ≈ −6.◦7 cos I per day

Ṁ ≈ 14.4 +
3.◦35

360◦
(
3 cos2 I − 1

)
revolutions per day
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7. Gravitational orbit perturbations

7.2. Periodic gravity perturbations in linear approach

With the main orbit perturbation described by the J2 secular orbit, we will now de-
rive periodic orbit perturbations due to the remaining spherical harmonic contributions
Vlmkq, including the periodic J2 effects V2,0,k,q. Since the lpe will be non-linear we will
apply linear perturbation theory (lpt). The algorithm is as follows:

Take the partial derivatives of (6.16a) to the Kepler elements,

Insert the partial derivatives into the lpe ((3.10a) to (3.10f)),

Evaluate the right hand side of the resulting non-linear equations on the J2 reference
orbit, thus leading to a linear system,

Replace the integration to time by integration to the angular variable ψmkq.

The resulting lpt solution is an approximation to the real orbit perturbations, because of
the linearization on the reference orbit. In principle, the lpt solution might be inserted
again into the right side of the lpe. The method of successive approximation would lead
to higher approximations. This process is extremely laborious, though.

Partial derivatives. In the following we will abbreviate Flmk(I) into F and Glkq(e) into
G. Primes will denote derivatives of the functions towards their argument. We will also
recast the power of the upward continuation in (6.16a) by adjusting the dimensioning
factor.

∂V

∂a
=
GM

a2

∑
lmkq

[−(l + 1)]

(
RE

a

)l
FGKlmeiψmkq

∂V

∂e
=
GM

a

∑
lmkq

(
RE

a

)l
FG′Klmeiψmkq

∂V

∂I
=
GM

a

∑
lmkq

(
RE

a

)l
F ′GKlmeiψmkq

∂V

∂ω
=
GM

a

∑
lmkq

(
RE

a

)l
FG[ik]Klmeiψmkq

∂V

∂Ω
=
GM

a

∑
lmkq

(
RE

a

)l
FG[im]Klmeiψmkq

∂V

∂M
=
GM

a

∑
lmkq

(
RE

a

)l
FG[i(k + q)]Klmeiψmkq
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Insertion into LPE. Collecting all derivatives, combining them into the equations ((3.10a)
to (3.10f)) and simplifying some factors using GM = n2a3 leads to the following set of
Lagrange Planetary Equations:

ȧ = 2na
∑
lmkq

(
RE

a

)l
FGKlm [k + q] i eiψmkq (7.5a)

ė =
n

e

∑
lmkq

(
RE

a

)l
FGKlm

[
(1− e2)(k + q)−

√
1− e2k

]
i eiψmkq (7.5b)

İ =
n

sin I
√

1− e2

∑
lmkq

(
RE

a

)l
FGKlm [k cos I −m] i eiψmkq (7.5c)

ω̇ = n
∑
lmkq

(
RE

a

)l [
F

√
1− e2

e
G′ − F ′ cot I√

1− e2
G

]
Klmeiψmkq (7.5d)

Ω̇ =
n

sin I
√

1− e2

∑
lmkq

(
RE

a

)l
F ′GKlmeiψmkq (7.5e)

Ṁ = n− n
∑
lmkq

(
RE

a

)l
F

[
1− e2

e
G′ − 2(l + 1)G

]
Klmeiψmkq (7.5f)

Linear Perturbation Theory. The above lpe (7.5a) are nonlinear ordinary differential
equations. They can be solved in linear approximation. The J2 reference orbit (7.3a)
is considered as the zero-order approximation, i.e. a trajectory of Taylor points. The
remaining orbit perturbations are expected to be relatively small, that is, the real orbit
is expected to oscillate around the reference orbit.

Remark 7.2 Naturally, all zonal coefficients will contribute a zero-frequency (dc) term
with m = k = q = 0. Although they will be several orders of magnitude smaller than
the J2-effect, they will cause secular perturbations nevertheless. Thus it may be wise to
incorporate the dc contributions from other zonal coefficients into the definition of the
reference orbit, too.

Now, the right hand side of (7.5a) is evaluated with with constant a, e and I. At the same
time, since the time t appears linearly in the complex exponentials, the time integration
is replaced by an integration towards the angular variable ψmkq:∫

dt =

∫
dt

dψ
dψ =

∫
1

ψ̇
dψ =

1

ψ̇

∫
dψ ,
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7. Gravitational orbit perturbations

with ψ̇ = ψ̇mkq = kω̇ + (k + q)Ṁ +m(Λ̇) .

The whole set of differential equations immediately becomes linear. A straightforward
integration yields for each {lmkq}-combination:

∆almkq =
n

ψ̇mkq
2a

(
RE

a

)l
FGKlm [k + q] eiψmkq (7.6a)

∆elmkq =
n

ψ̇mkq

1

e

(
RE

a

)l
FGKlm

[
(1− e2)(k + q)−

√
1− e2k

]
eiψmkq (7.6b)

∆Ilmkq =
n

ψ̇mkq

1

sin I
√

1− e2

(
RE

a

)l
FGKlm [k cos I −m] eiψmkq (7.6c)

∆ωlmkq =
n

ψ̇mkq

(
RE

a

)l [
F

√
1− e2

e
G′ − F ′ cot I√

1− e2
G

]
Klm [−i] eiψmkq (7.6d)

∆Ωlmkq =
n

ψ̇mkq

1

sin I
√

1− e2

(
RE

a

)l
F ′GKlm [−i] eiψmkq (7.6e)

∆Mlmkq =
n

ψ̇mkq

(
RE

a

)l
F

[
2(l + 1)G− 1− e2

e
G′
]
Klm [−i] eiψmkq (7.6f)

The ∆’s have to be understood as perturbations to the J2 reference orbit. In order
to achieve the full orbit in linear perturbation theory we have to add the combined
summations to the reference orbit :

s(t) = s0 + ṡ(t− t0) +
∞∑
l=2

l∑
m=−l

l∑
k=−l

∞∑
q=−∞

∆slmkq . (7.7)

Remark 7.3 (Linear orbit perturbations accuracy) The above orbit perturbation
solution was achieved through linearization. The orbit perturbations (7.6a) are said to
be linear. The main deviation from the zero-order solution, i.e. the J2 reference orbit,
are the periodic effects due to C2,0, which are of the order O(J2) = 10−3. Thus, the
zero-order solution achieves roughly a relative accuracy of 10−3. The linear solution has
a relative precision of 10−6. The main approximation error is O(J2

2 ).

Real-valued solutions. To express the linear perturbations (7.6a) in terms of real-
valued quantities, similar to (6.17), the following adaptations have to be made:

The summation over m in (7.7) starts at m = 0.
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7.3. The orbit perturbation spectrum

Combine terms with Klmei(ku+mΛ) into Slmkq, as defined in (6.17).

Combine terms with Klm [−i] eiψmkq into S̄lmkq =
∫
Slmkq dψmkq.

Usually the k-summation is changed into a p-summation, including Flmp(I) and
Glpq(e).

Again it is seen that complex-valued expressions are far more compact. They are also
more transparent. For instance, the terms [−i] that stem from the integration of eiψmkq

are a simple phase-shift: −i = e−i
π
2 . In the real-valued case, the integration from Slmkq

into S̄lmkq requires a more complicated interchange of Clm, Slm, and cosines and sines.

7.3. The orbit perturbation spectrum

Linear system. In linear perturbation theory, the originally non-linear equations of
motion (7.5a) were linearized at the J2 reference orbit. As a consequence (7.5a) became
a set of linear ode. One characteristic of linear systems is that an input forcing at a
certain frequency causes an output disturbance at the same frequency. Indeed, if the
Kepler elements are perturbed at a specific frequency ψ̇mkq, cf. the rhs of (7.5a), the
resulting orbit perturbation (7.6a) will be at the same frequency.

In order to emphasize the spectral character of the orbit perturbations in a Fourier sense,
we can go back to a lumped coefficient expression again as in (6.18). The main step is
to turn the outer l-summation in (7.7) into an inner summation:

∞∑
l=2

l∑
m=−l

l∑
k=−l

∞∑
q=−∞

→
∞∑

m=−∞

∞∑
k=−∞

∞∑
q=−∞

∞∑
l=max(|m|,|k|)

,

perform the summation (i.e. lump) over the degree l, and collect the appropriate terms
into a corresponding transfer coefficient. As an example, we can write for the perturbed
semi-major axis:

Fourier series: a(t) =
∞∑

m=−∞

∞∑
k=−∞

∞∑
q=−∞

Aamkqe
iψ̇mkq(t− t0)

lumped coefficients: Aamkq =

∞∑
l=max(|m|,|k|)

Ha
lmkqKlm

transfer coefficients: Ha
lmkq =

n

ψ̇mkq
2a

(
RE

a

)l
Flmk(I)Glkq(e) [k + q]

Which spherical harmonic coefficients contribute to a (lumped) Fourier coefficient A#
mkq

at the frequency ψ̇mkq? The frequency does not involve the degree l. Thus, if the {mkq}-
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combination is fixed, all spherical harmonic coefficients Klm of that specific order m will
contribute, i.e. all degrees larger than m. Because of the vanishing inclination functions
Flmk(I) when (l − k) is odd, it will be either only the even or the odd degrees that
contribute.

Perturbation spectrum. The perturbation frequencies ψ̇mkq are composite frequencies:

ψ̇mkq = kω̇ + (k + q)Ṁ +m(Ω̇− ˙gast) , or (7.8a)

= (k + q)(ω̇ + Ṁ) +mΛ̇− qω̇ . (7.8b)

The perigee drift ω̇ and the nodal drift Ω̇ are small: typically a few degrees per day.
The freqency ˙gast is the daily rotation rate, i.e. 360◦ per siderial day. Since this is far
larger than the nodal rate (in absolute value), the nodal daily rate Λ̇ ≈ − ˙gast. The
frequency Ṁ is the largest. For leo satellites it is approximately 16 times faster than
the daily rate.

The rewritten version (7.8b) is illustrative. The main frequency lines will be at an
integer amount of (ω̇ + Ṁ), i.e. the orbital revolution frequency. These main peaks are
interspersed with frequency lines mΛ̇. On top of that, the orbit perturbations will be
modulated by the apsidal frequency qω̇.

For near-circular orbits the terms with q 6= 0 will become small. The simplified pertur-
bation spectrum reads:

ψ̇mk = ku̇+mΛ̇ . (7.8c)

Resonance. The linear orbit perturbations (7.6a) all contain a denominator ψ̇mkq. That
means that the input forcing is greatly amplified for the low frequency spectrum. For
an actual forcing at dc, i.e. the zero-frequency, the amplification would be infinite. This
behaviour is called resonance, which is a common phenomenon in dynamical systems. If
the dynamical system is excited close to the zero-frequency we have near-resonance or
shallow resonance.

In case of exact resonance, the linear perturbation solution is invalid. A forcing at dc
can simply not be represented by the type of oscillatory solutions as in (7.6a). Instead,
a zero-frequency forcing will likely result in secular orbit perturbations similar to the
C2,0 effect in 7.1. In case of near-resonance the linear perturbation theory does not
necessarily break down, though care should be taken.

When does (near-)resonance occur? If we analyse the simplified frequency (7.8c), we
can distinguish the following cases:
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7.3. The orbit perturbation spectrum

zonals With m = 0 we have ψ̇0,k = ku̇. Trivially, a zero frequency arises for k = 0, cf.
7.1. Thus, all even degree zonal coefficients will contribute.

m-dailies As mentioned before, the nodal-daily frequency Λ̇ are nearly 16 times smaller
than the orbital revolution rate. Thus, if k = 0 the frequencies ψ̇m,0 = mΛ̇ are
close to zero, in particular for very low order m. Thus, low order coefficients give
rise to near-resonance at a frequency of m cycles per day (cpd), hence the name
m-dailies.

repeat orbits In general, resonance occurs if

ψ̇mk = 0⇒ ku̇ = −mΛ⇒ k

m
=
−Λ̇

u̇
=
Tu
TΛ

,

in which Tu denotes the orbital revolution period and TΛ is one nodal day.

Now the ratio k
m is an integer ratio. Thus the resonance condition can be met—i.e.

we can find a suitable {mk}-combination—if the above periods Tu and TΛ are in
an integer ratio is well:

u̇

−Λ̇
=
TΛ

Tu
=
β

α
. (7.9)

This mathematical commensurability means geometrically a repeat orbit. After β
revolutions exactly α nodal days have passed. The integers α and β have to be
relative primes, i.e. they can not have a common divisor.

Repeat orbits. The repeat ratio β/α will be close to 16 for leo orbits, e.g. 49/3 or
31/2. For repeat orbits the simplified spectrum ψ̇mk can be simplified even further:

ψ̇mk = ku̇+mΛ̇ = u̇

(
k +m

Λ̇

u̇

)
= u̇

(
k −mα

β

)
=
u̇

β
(kβ −mα) . (7.10)

Since (kβ −mα) is solely composed of integers, we can map them onto a single integer
n. The base frequency u̇/β pertains to one full repeat period (of α nodal days = β
revolutions). With:

(kβ −mα) 7→ n ⇒ ψ̇mk 7→ ψ̇n = n
u̇

β
.

Even if the repeat orbit condition (7.9) is not met, there will always be specific {mk}-
combinations that, for the given u̇ and Λ̇, give rise to the near-resonance situation
ψ̇mk ≈ 0. That will particularly occur when

m = γ int

(
β

α

)
, γ = 1, 2, . . .
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7. Gravitational orbit perturbations

As an example, suppose we have a 49/3 repeat ratio. Now take the situation k = 1 and
m = int(49

3 ) = 16. Then we get a near resonant frequency of

(kβ −mα) = (1 · 49− 16 · 3) = 1 =⇒ ψ̇16,1 =
u̇

49
,

which is even smaller than the 1-daily near-resonance.
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8. A viable alternative: Hill Equations

The standard procedure in dynamic satellite geodesy is to develop a linear perturbation
theory in terms of Kepler1 elements. To this end, the Newton2 equations of motion
r̈ = a are transformed into equations of motion of the form:

ṡ = f(s), s = (a, e, I,Ω, ω,M) .

These are the so-called Lagrange3 planetary equations, a set of 6 first-order coupled non-
linear ordinary differential equations (ode). They are solved by noticing that the major
gravitational perturbation is due to the dynamic flattening of the Earth (expressed by
J2), causing the Kepler orbit to precess with Ω̇, ω̇ and Ṁ all proportional to J2. The
non-linear ode are linearized on this precessing or secular reference orbit. This is the
procedure followed in Kaula (1966) and most other textbooks.

Here we will follow a different approach. Most satellites of geodetic interest are following
a near-circular orbit. Therefore, we will use a set of equations that describes motion in a
reference frame, that co-rotates with the satellite on a circular path. These are the Hill4

equations, that were revived for geodetic purposes by O.L. Colombo, E.J.O. Schrama
and others.

8.1. Acceleration in a rotating reference frame

Let us consider the situation of motion in a rotating reference frame and let us associate
this rotating frame with a triad that is rotating uniformly on a nominal circular orbit, for
the time being. Inertial coordinates, velocities and accelerations will be denoted with the
index i. Satellite-frame quantities get the index s. Now suppose that a time-dependent

1Johannes Kepler (1571–1630). Gave the first mathematical description of (planetary) orbits: i) Planets
move on an elliptical orbit around the sun in one of the focal points, ii) The line between sun and
planet sweeps equal areas in equal times, and iii) The ratio between the cube of the semi-major axis
and the square of the revolution period is constant.

2Sir Isaac Newton (1642–1727).
3Comte Louis de Lagrange (1736–1813). French-Italian mathematician and astronomer.
4George William Hill (1838–1914), American mathematician. He developed his eponymous equations

to describe lunar motion in his Researches in the Lunar Theory (1878), American Journal of Math-
ematics, vol. 1, pp. 5–26, 129–147, 245–260
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8. A viable alternative: Hill Equations

rotation matrix R = R(α(t)), applied to the inertial vector ri, results in the Earth-fixed
vector rs. We would be interested in velocities and accelerations in the rotating frame.
The time derivations must be performed in the inertial frame, though.

From Rri = rs we get:

ri = RTrs (8.1a)

⇓ time derivative

ṙi = RTṙs + ṘTrs (8.1b)

⇓ multiply by R

Rṙi = ṙs + RṘTrs

= ṙs + Ωrs (8.1c)

The matrix Ω = RṘT is called Cartan5 matrix. It describes the rotation rate, as can
be seen from the following simple 2D example with α(t) = ωt:

R =

(
cosωt sinωt
− sinωt cosωt

)
⇒ Ω =

(
cosωt sinωt
− sinωt cosωt

)
ω

(
− sinωt − cosωt

cosωt − sinωt

)
=

(
0 −ω
ω 0

)
It is useful to introduce Ω. In the next time differentiation step we can now distinguish
between time dependent rotation matrices and time variable rotation rate. Let’s pick
up the previous derivation again:

⇓ multiply by RT

ṙi = RTṙs + RTΩrs (8.1d)

⇓ time derivative

r̈i = RTr̈s + ṘTṙs + ṘTΩrs + RTΩ̇rs + RTΩṙs

= RTr̈s + 2ṘTṙs + ṘTΩrs + RTΩ̇rs (8.1e)

⇓ multiply by R

Rr̈i = r̈s + 2Ωṙs + ΩΩrs + Ω̇rs (8.1f)

This equation tells us that acceleration in the rotating e-frame equals acceleration in the
inertial i-frame—in the proper orientation, though—when 3 more terms are added. The
additional terms are called inertial accelerations Analyzing (8.1f) we can distinguish the
four terms at the right hand side:

5Élie Joseph Cartan (1869–1951), French mathematician.
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8.1. Acceleration in a rotating reference frame

Rr̈i is the inertial acceleration vector, expressed in the orientation of the rotating
frame.

2Ωṙs is the so-called Coriolis acceleration, which is due to motion in the rotating
frame.

ΩΩrs is the centrifugal acceleration, determined by the position in the rotating
frame.

Ω̇rs is sometimes referred to as Euler acceleration or inertial acceleration of rota-
tion. It is due to a non-constant rotation rate.

Remark 8.1 Equation (8.1f) can be generalized to moving frames with time-variable
origin. If the linear acceleration of the e-frame’s origin is expressed in the i-frame with
b̈i, the only change to be made to (8.1f) is Rr̈i → R(r̈i − b̈i).

Properties of the Cartan matrix Ω. Cartan matrices are skew-symmetric, i.e. ΩT =
−Ω. This can be seen in the simple 2D example above already. But it also follows from
the orthogonality of rotation matrices:

RRT = I =⇒ d

dt
(RRT) = ṘRT︸ ︷︷ ︸

ΩT

+ RṘT︸ ︷︷ ︸
Ω

= 0 =⇒ ΩT = −Ω . (8.2)

A second interesting property is the fact that multiplication of a vector with the Cartan
matrix equals the cross product of the vector with a corresponding rotation vector:

Ωr = ω × r (8.3)

This property becomes clear from writing out the 3 Cartan matrices, corresponding to
the three independent rotation matrices:

R1(ω1t) ⇒ Ω1 =

 0 0 0
0 0 −ω1

0 ω1 0


R2(ω2t) ⇒ Ω2 =

 0 0 ω2

0 0 0
−ω2 0 0


R3(ω3t) ⇒ Ω3 =

 0 −ω3 0
ω3 0 0
0 0 0





general
=⇒ Ω =

 0 −ω3 ω2

ω3 0 −ω1

−ω2 ω1 0

 . (8.4)
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8. A viable alternative: Hill Equations

Indeed, when a general rotation vector ω = (ω1, ω2, ω3)T is defined, we see that: 0 −ω3 ω2

ω3 0 −ω1

−ω2 ω1 0

 x
y
z

 =

ω1

ω2

ω3

×
 x
y
z

 .

The skew-symmetry (8.2) of Ω is related to the fact ω × r = −r × ω.

Exercise 8.1 Convince yourself that the above Cartan matrices Ωi are correct, by doing
the derivation yourself.

Using property (8.3), the velocity (8.1c) and acceleration (8.1f) may be recast into the
perhaps more familiar form:

Rṙi = ṙs + ω × rs (8.5a)

Rr̈i = r̈s + 2ω × ṙs + ω × (ω × rs) + ω̇ × rs (8.5b)

8.2. Hill equations

Rotation. As inertial system we will use the so-called perifocal system, which has its
xiyi-plane in the orbital plane with the xi-axis pointing towards the perigee. Thus the
zi axis is aligned with the angular momentum vector. This may not be the conventional
inertial system, but it is a convenient one for the following discussion. If you don’t like
the perifocal frame you have to perform the following rotations first:

ri = R3(ω)R1(I)R3(Ω)ri0 ,

with Ω the right ascension of the ascending node, I the inclination, ω the argument
of perigee (not to be mistaken for the rotation rate), and the index i0 referring to the
conventional inertial system.

The s-frame will be rotating around the zi = zs-axis at a constant rotation rate n that
we will later identify with a satellite’s mean motion. Thus, the rotation angle is nt:

rs = R3(nt)ri . (8.6)

Ω =

 0 −n 0
n 0 0
0 0 0

 and Ω̇ = 0 .
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8.2. Hill equations

The three inertial accelerations, due to the rotation of the Earth, become:

Coriolis: −2Ωṙs = 2n

 ẏs
−ẋs

0

 (8.7a)

centrifugal: −ΩΩrs = n2

 xs
ys
0

 (8.7b)

Euler: −Ω̇rs = 0 (8.7c)

Translation. Now let’s introduce a nominal orbit of constant radius R, which should
not be mistaken for the rotation matrix R. A satellite on this orbit would move with
uniform angular velocity n, according to Kepler’s third law: n2R3 = GM .

The origin of the s-frame is now translated to the nominal orbit over the xs-axis. While
the frame is revolving on the nominal orbit, the xs axis continuously points in the
radial direction, the ys-axis is in along-track, whereas the zs axis points cross-track. As
mentioned before, the translation induces an additional origin acceleration. Since we are
dealing with circular motion this is a centripetal acceleration. In the orientation of the

s-frame it is purely radial (in negative direction:) Rb̈i = (−n2R, 0, 0)
T

.

Permutation. In local frames, we usually want the z-coordinate in the vertical direc-
tion. Thus we now permute the coordinates according to fig. 8.1. At the same time we
will drop the index s.

ys → x = along-track
zs → y = cross-track
xs → z = radial

Hill equations: kinematics. Notice that sofar we have only dealt with kinematics, i.e.
a description of position, velocity and acceleration under the transformation from the
inertial to the satellite frame. We do not have equations of motion yet, that will only
come up as soon as we introduce dynamics (a force) as well.

Combining all the kinematic information we have, we arrive at the following:

ẍ+ 2nż − n2x =
ÿ =
z̈ − 2nẋ− n2z − n2R =

Rr̈i (8.8)
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X

Y

Z

x

y
z

Figure 8.1.: The local orbital triad: x along-track, y cross-track and z radial.

Hill equations: dynamics. Now let’s turn to the right hand side. In inertial space,
the equations of motion are simply Newton’s equations. We assume that the force is
composed of a central field term U(r) = GM/r, with r = |r| and a term that contains
all other forces, both gravitational and non-gravitational:

r̈i = ∇iU(ri) + f i = −GM
r3
ri + f i . (8.9)

According to (8.8) we need to rotate this with the matrix R. At the same time we will
linearize this on the circular nominal orbit:

R r̈i = ∇sU(r)|r=R +∇2
sU(r)|r=R · rs + f s +O(r2

s)

= −GM
R2

 0
0
1

+
GM

R3

−1 0 0
0 −1 0
0 0 2

 x
y
z

+

 fx
fy
fz


= −n2

 0
0
R

+ n2

−x−y
2z

+

 fx
fy
fz

 .
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In the last step we used Kepler’s third again, i.e. n2R3 = GM . Now inserting the
linearized dynamics into (8.8) results in:

ẍ + 2nż = fx
ÿ + n2y = fy
z̈ − 2nẋ − 3n2z = fz

(8.10)

These are known as Hill equations. They describe satellite motion in a satellite frame
that is co-rotating on a circular path at uniform speed n. Note that they are approxi-
mated equations of motion due to

the linearization of ∇U on the circular orbit,

constant radius approximation of the gravity gradient tensor ∇2U .

From (8.10) it is obvious that the motion in the orbital plane (x, z) is coupled. The
cross-track motion equation is that of a harmonic oscillator.

8.3. Solutions of the Hill equations

The key advantage of Hill equations (he) is that they are linear ordinary differential
equations with constant coefficients. That means that we will be able to find an analytical
solution. Thus we can find an exact solution to approximated equations of motion. This
is in contrast to the Lagrange Planetary Equations. They are exact equations of motions
that need to be solved by linear approximation.

The he are second order odes. For this type of equations the following strategy solution
usually works:

i) Write the 3 second order equations as 6 first order equations. Actually, since the
y-equation is decoupled one can setup two separate sets of first order equations.

ii) Write the set of equations as u̇ = Au.

iii) Perform eigenvalue decomposition on A = QΛQ−1.

iv) Transform u̇ = Au into Q−1u̇ = ΛQ−1u or simply v̇ = Λv.

v) Solve the decoupled equations by: vn = cneλnt or in vector-matrix form: v =
eΛtc.

vi) Transform back using the eigenvector matrix Q: u = Qv = QeΛtc or in index
form u =

∑
n cneλntqn.

The problem is: that doesn’t work for the coupled in-plane equations. One can set up
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the 4× 4 matrix A:

A =


0 0 1 0
0 0 0 1
0 0 0 −2n
0 3n2 2n 0


The characteristic polynomial of this matrix is:

det(A− λI) = λ2(λ2 + n2) = 0 .

This gives the 4 eigenvalues λ1 = in, λ2 = −in and λ3,4 = 0. This is were the trouble
starts. For the first two eigenvalues one can find eigenvectors. To the double zero-
eigenvalue, however, one can only find a single eigenvector. In mathematical terms:
the algebraic multiplicity (2 eigenvalues) is larger than the geometric multiplicity (1
eigenvalue).

For this type of pathological matrices there is a way out: the Jordan6 decomposition.
Where the eigenvalue decomposition achieves a full decoupling or diagonalization, the
Jordan decomposition tries to decouple as much as possible. That usually involves
putting the number 1 in the first (few) off-diagonals. In terms of solutions one can
expect to see terms with teλnt, t2eλnt, etc. next to the usual eλnt. In our case, with
λ3,4 = 0, we can therefore expect to see terms that are linear in time.

8.3.1. The homogeneous solution

We start with the homogeneous Hill equations, i.e. the non-perturbed equations:

ẍ + 2nż = 0
ÿ + n2y = 0
z̈ − 2nẋ − 3n2z = 0

(8.11)

Their solution reads:

x(t) =
2

n
ż0 cosnt+

(
4

n
ẋ0 + 6z0

)
sinnt− (3ẋ0 + 6nz0)t+ x0 −

2

n
ż0 (8.12a)

y(t) = y0 cosnt+
ẏ0

n
sinnt (8.12b)

z(t) =

(
− 2

n
ẋ0 − 3z0

)
cosnt+

ż0

n
sinnt+

2

n
ẋ0 + 4z0 (8.12c)

The solution mainly consists of periodic motion at the orbit frequency n. But indeed
the x-component contains a term linear in t. Again, it is seen that x- and z-motion is
coupled, whereas y behaves as a pure oscillator independent from the other terms.

6Marie Ennemond Camille Jordan (1838–1922), French mathematician.
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8.3. Solutions of the Hill equations

The amplitudes of the sines and cosines as well as the constant terms and the drift are
purely dependent on the initial state elements. Note that these initial state elements are
given in the co-rotating satellite frame. Thus, the homogeneous solution (8.12a) can be
used for initial state problems, e.g.:

docking manoeuvres,

∆v thrusts,

configuration flight design.

The homogeneous response is visualized in fig. 8.2.
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Figure 8.2.: Homogeneous solution.

8.3.2. The particular solution

Suppose the orbit is perturbed by a force that can be decomposed into a Fourier series.
This is for instance the case with gravitational forces, cf. next chapter. Since the he is
a system of linear ode’s an forcing (the input) at a certain frequency will result in an
orbit perturbation (the output) at the same frequency. Thus we only need to investigate
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the behaviour of the equations of motion at one specific disturbing frequency ω (not
to be mistaken for rotation rate nor for argument of perigee). Then we can apply the
superposition principle, or spectral synthesis, to achieve a full solution.

ẍ + 2nż = Ax cosωt+Bx sinωt
ÿ + n2y = Ay cosωt+By sinωt
z̈ − 2nẋ − 3n2z = Az cosωt+Bz sinωt

(8.13)
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Figure 8.3.: Particular solution with disturbance at ω = 2n.

The solution to (8.13) reads:

x(t) =
(3n2 + ω2)Ax + 2ωnBz

ω2(n2 − ω2)
cosωt+

(3n2 + ω2)Bx − 2ωnAz
ω2(n2 − ω2)

sinωt (8.14a)

y(t) =
Ay

n2 − ω2
cosωt+

By
n2 − ω2

sinωt (8.14b)

z(t) =
ωAz − 2nBx
ω(n2 − ω2)

cosωt+
ωBz + 2nAx
ω(n2 − ω2)

sinωt (8.14c)
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Again one can see that the two components in the orbital plane, x and z are coupled.
Inspecting the denominators in the perturbation amplitudes, we notice a huge amplifica-
tion close to the frequencies ω = 0 and ω = ±n. This amplification is called resonance.
The several resonances are visualized in fig. 8.4. It occurs if the satellite is excited at
the zero frequency (dc) or a the orbital frequency itself. These are the eigenfrequencies
of the system, that were already identified by the eigenvectors −in, 0, and in. For these
frequencies the solution becomes invalid and we will seek another solution for resonant
forcing later on.
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Figure 8.4.: Resonances of the Hill equations.

8.3.3. The complete solution

A complete solution will consist of a combination of particular and homogeneous solution.
The homogeneous solution lies in the null space of the set of ode. Thus one can always
add the homogeneous solution (8.12a) without changing the right hand side of equations
(8.13). The complete solutions reads:

x(t) =

(
2
ż0

n
− 4Ax
n2 − ω2

− 2ωBx
n(n2 − ω2)

)
cosnt

+

(
6z0 + 4

ẋ0

n
+

2Az
n2 − ω2

− 4ωBx
n(n2 − ω2)

)
sinnt

+
1

ω2(n2 − ω2)

(
(3n2 + ω2)Ax + 2ωnBz

)
cosωt
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+
1

ω2(n2 − ω2)

(
(3n2 + ω2)Bx + 2ωnAz

)
sinωt

+

(
−6nz0 − 3

Bx
ω
− 3ẋ0

)
t+ x0 − 3

Ax
ω2
− 2

Bz
ωn
− 2

ż0

n
(8.15a)

y(t) =

(
y0 −

Ay
n2 − ω2

)
cosnt+

(
ẏ0

n
− ωBy
n(n2 − ω2)

)
sinnt

+
1

n2 − ω2
(Ay cosωt+By sinωt) (8.15b)

z(t) =

(
−3z0 − 2

ẋ0

n
− Az
n2 − ω2

+
2ωBx

n(n2 − ω2)

)
cosnt

+

(
ż0

n
− 2Ax
n2 − ω2

− ωBz
n(n2 − ω2)

)
sinnt

+
1

ω(n2 − ω2)
(ωAz − 2nBx) cosωt

+
1

ω(n2 − ω2)
(ωBz + 2nAx) sinωt+ 4z0 + 2

Bx
nω

+ 2
ẋ0

n
(8.15c)

As can be seen in the solution (8.15a) and in fig. 8.5 the complete solution is a super-
position of two components: one at the orbital frequency n and one at the disturbing
frequency ω.

8.3.4. The resonant solution

As mentioned before, the amplification for disturbances at ω → −n, 0,+n becomes
infinite. This is only a mathematical shortcoming of our solution so far. In order to
investigate resonance, we have to assume a forcing at the resonant frequencies. The
corresponding Hill equations read:

ẍ + 2nż = Ax cosnt+Bx sinnt+ Cx
ÿ + n2y = Ay cosnt+By sinnt+ Cy
z̈ − 2nẋ − 3n2z = Az cosnt+Bz sinnt+ Cz

(8.16)

These ode are solved by:

x(t) =

(
1

n2
(2nż0 − 4Cx + 3Ax + 2Bz) +

1

n
(−2Bx +Az)t

)
cosnt

+

(
1

n2
(6n2z0 + 4nẋ0 + 5Bx + 2Cz −Az) +

1

n
(2Ax +Bz)t

)
sinnt
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Figure 8.5.: Complete solution with arbitrary ω.

+
1

n2
(n2x0 − 2nż0 + 4Cx − 3Ax − 2Bz)

+
1

n
(−6n2z0 − 3nẋ0 −Bx − 2Cz)t−

3

2
Cxt

2 (8.17a)

y(t) =

(
y0 −

Cy
n2
− 1

2n
Byt

)
cosnt+

(
ẏ0

n
+
By
2n2

+
1

2n
Ayt

)
sinnt+

1

n2
Cy(8.17b)

z(t) =

(
1

n2
(−3n2z0 − 2nẋ0 − 2Bx − Cz)−

1

2n
(2Ax +Bz)t

)
cosnt

+

(
1

2n2
(2nż0 − 4Cx + 2Ax +Bz) +

1

2n
(−2Bx +Az)t

)
sinnt

+
1

n2
(4n2z0 + 2nẋ0 + 2Bx + Cz) +

2

n
Cxt (8.17c)
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8. A viable alternative: Hill Equations

This solution contains amplitudes that grow linearly in time, see also fig. 8.6. This
is characteristic for resonance. In terms of Kepler elements, these growing amplitudes
express secular orbit elements ω̇, Ω̇, Ṁ .

The resonant equations are useful to investigate the behaviour of satellites under non-
gravitational forces like air drag or solar radiation pressure.
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Figure 8.6.: Resonant solution.
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A. Modeling CHAMP, GRACE and GOCE
observables

A.1. The Jacobi integral

The vis-viva equation described the total energy of a Kepler orbit. For real satellite
orbits in a real and rotating Earth gravity field, the total energy will not be constant.
Nevertheless, a constant of the motion can be found: the so-called Jacobi integral. It can
be used to determine the gravity potential, more specifically the disturbing potential, as
soon as the orbit is given in terms of position and velocity (and disturbing forces).

The Jacobi integral is a constant of the motion in a rotating frame. Here we will use an
extended version that includes dissipative forces. The derivation of the Jacobi integral
starts from the equation of motion in a rotating frame, whose rotation is prescribed by
the vector ω. The kinematics in a rotating frame were derived in 8.1 in order to obtain
the Hill equations of motion. In the following discussion, however, ω denotes the Earth’s
rotation vector, which is assumed to be constant in direction and rate: ω = (0 0 ωE)T.

r̈ = f + g − ω × (ω × r)− 2ω × ṙ − ω̇ × r , (A.1a)

in which we have, at the right hand side, the dissipative force (per unit mass) f , grav-
itational attraction g, centrifugal, Coriolis and Euler acceleration, respectively. The
gravitational attraction and the centrifugal acceleration are both conservative vector
fields and can therefore be written as the gradient of the gravitational potential V and
the centrifugal potential Z = 1

2ω
2(x2 + y2), respectively. The vectors r, ṙ and r̈ are

positions, velocities and accelerations in the rotating frame. The Earth rotation ω is
assumed to be constant, such that the Euler term cancels. Thus (A.1a) reduces to:

r̈ = f +∇V +∇Z − 2ω × ṙ (A.1b)

In 2.3 Newton’s equation of motion was premultiplied by ṙ · . . . in order to establish
energy conservation in the Kepler problem. We will now apply the same trick to (A.1a)
in order to derive the Jacobi integral. Multiplying by the velocity ṙ the part with the
Coriolis acceleration will drop out:

ṙ · r̈ = ṙ · f + ṙ · (∇V +∇Z)− 2ṙ · (ω × ṙ) (A.2)



A. Modeling CHAMP, GRACE and GOCE observables

= ṙ · f +
d(V + Z)

dt
− ∂(V + Z)

∂t

The latter step is due to the fact that the total time derivative of a potential is written
as:

dΦ

dt
=
∂Φ

∂r
· dr

dt
+
∂Φ

∂t
= ṙ · ∇Φ +

∂Φ

∂t
.

Because of the constant ω the centrifugal potential has no explicit time derivative ∂Z/∂t.
Thus, upon integration, we are left with:∫

ṙ · r̈ dt =

∫ (
ṙ · f − ∂V

∂t

)
dt+ V + Z + c .

The integration constant c is called Jacobi constant. The left hand side is the kinetic
energy (per unit mass) 1

2 ṙ · ṙ. The gravitational potential is split up in a normal (grav-
itational) part and a disturbance: V = U + T . Rearrangement gives:

T + c = Ekin − U − Z −
∫
f · dr −

∫
∂V

∂t
dt (A.3)

Equation (A.3) is the basis for gravity field determination using the energy balance
approach. At the left we have the unknown disturbing potential, up till an unknown
constant. All terms at the right are determined from champ data or existing mod-
els:

Ekin requires orbit velocities ṙ,

U , the normal gravitational potential, requires satellite positions r,

Z, the centrifugal potential at the satellite’s location is also calculated from r,∫
f · dr is the dissipated energy, which is an integral of champ’s accelerometer data

f along the orbit,∫
∂tV dt is the integral along the orbit of the gradient of time-variable potentials.

It contains known sources (tides, 3rd bodies), that can be corrected in (A.3), and
unknown gravity field changes.

A.2. Range, range rate and range acceleration

Whereas 8.1 described kinematics in a moving frame, we will now be concerned with the
relative kinematics of a baseline between two satellites. We will discuss the intersatellite
range and its first and second time derivative range rate and range acceleration. At the
same time we will see how the baseline direction changes.

The baseline vector between two satellites is ρ12 = r2 − r1. The normalized baseline
vector then becomes:

e12 =
ρ12

‖ρ12‖
=
ρ12

ρ12
.
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A.2. Range, range rate and range acceleration

Remark A.1 (notation) The quantities with indices 1 and 2 indicate differences be-
tween satellite 1 and 2. If it is clear from the context, the indices are dropped.

range

The vectorial baseline is the scalar range times the unit vector in the direction of the
baseline.

ρ = ρê =⇒ ρ = ρ · ê (A.4)

baseline

The baseline direction ê = ρ/ρ is a unit vector:

ê · ê = 1 =⇒ ê · ˙̂e = 0 .

Hence, the time derivative ˙̂e of the baseline vector is perpendicular to the baseline itself.
The vector ˙̂e itself is not a unit vector.

range rate

The scalar range rate ρ̇ is not the length of the relative velocity vector ρ̇. Instead it is
the projection of the relative velocity onto the baseline.

ρ̇ = ρ̇ê+ ρ ˙̂e =⇒ ρ̇ · ê = ρ̇ ê · ê︸︷︷︸
1

+ρ ˙̂e · ê︸︷︷︸
0

=⇒ ρ̇ = ρ̇ · ê . (A.5)

An elementary way of writing this is: ρ · ρ̇ = ρρ̇.

baseline (again)

The above shows that the vector ˙̂e = 1
ρ(ρ̇− ρ̇ê) is obtained by subtracting the projection

of ρ̇ onto ê from the relative velocity vector ρ̇ itself. The result will indeed be perpen-
dicular to ê. This is nicely visualized in fig. A.1. The perpendicular component of the
relative velocity is called c, for cross-track, defined as:

c = ρ̇− ρ̇ê = ρ ˙̂e .

range acceleration

A further time differentiation yields

ρ̈ = ρ̈ · ê+ ρ̇ · ˙̂e = ρ̈ · ê+ ρ̇ · 1

ρ
(ρ̇− ρ̇ê)

=⇒ ρ̈ = ρ̈ · ê+
1

ρ

(
ρ̇ · ρ̇− ρ̇2

)
. (A.6)
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A. Modeling CHAMP, GRACE and GOCE observables
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Figure A.1.: Position difference ρ, range ρ, differential velocity ρ̇ and range rate ρ̇.

Using the perpendicular vector c again, this is summarized into

ρ̈ = ρ̈ · ê+
1

ρ
c · c .

A.3. Spaceborne gravimetry

Inserting Newton’s equations of motion—in differential mode—into the above range
acceleration yields the basic sst equation for differential gravimetry

r̈2 − r̈1 = ∇V2 −∇V1

=⇒ ρ̈12 = ∇V12

=⇒ ρ̈ = ∇V12 · ê+
1

ρ

(
ρ̇ · ρ̇− ρ̇2

)
.

The observable range acceleration ρ̈, corrected for perpendicular velocity terms, equals
the projection of the gradient difference onto the baseline. For low-low sst like grace
the main problem is the size of the perpendicular velocity correction. It is larger than
the range acceleration by orders of magnitude. It represents the (differential) centrifugal
acceleration, projected onto the baseline.

But apart from numerical complications, the above formula demonstrates that in prin-
ciple a grace-type observable can be considered as spaceborne gravimetry. Terrestrial
gravimetry determines the length of the gravity vector, which is the projection of the
gravity vector along the plumb line: g = g · er = ∇V · er. In spaceborne gravimetryLotlinie

we have something similar, although in differential mode: the projection of the gravity
difference onto the baseline.
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A.4. GRACE-type gradiometry

A.4. GRACE-type gradiometry

The right hand side of the above equation was the difference of a gradient. When we
divide this by the baseline length we obtain a gradient of a gradient, at least in linear
approximation. Thus the range accelerometry can be interpreted as gravity gradiometry.
Denoting the gravitational gradient tensor as V , one obtains:

1

ρ
ρ̈ = eTV e+

1

ρ2

(
ρ̇ · ρ̇− ρ̇2

)
+ lin.error .

By using a priori gravity field information the linearization error can be controlled,
depending on maximum degree, baseline length and accuracy requirement.

In the gravity gradiometry literature, the observable tensor is usually expressed as:

Γ = V + Ω2 + Ω̇ ,

with the latter two terms representing centrifugal and Euler acceleration differences.
If we adopt a Hill frame (x quasi along-track, y cross-track and z radial) the range
acceleration observable becomes along-track gradiometry:

1

ρ
ρ̈ = Vxx − (ω2

y + ω2
z) + lin.error .

This shows again that the velocity correction terms represent the differential centrifugal
acceleration:

1

ρ2
(c · c) = −(ω2

y + ω2
z) .

For a leo leader-follower configuration the nominal values of these terms are:

ωy = 1cpr = 0.18 mHz

ωz = 0

Note that the centrifugal terms are independent of baseline length.

A.5. GOCE gradiometry

Today, the information about the global gravity field is mainly derived from positions
and velocities of satellites or the inter-satellite measurements like ranges or range-rates.
Satellite gravity gradiometry enables the direct observation of field quantities in space.

goce (Gravity field and steady-state Ocean Circulation Explorer) was the first space
mission with an onboard satellite gravity gradiometer (SGG). This instrument consist
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A. Modeling CHAMP, GRACE and GOCE observables

of six accelerometers, which are located equidistantly to the satellite’s center of mass on
three orthogonal axis. The different locations leads to slightly different accelerations due
to gravity. By measuring the differential accelerations, a tensor of the second derivatives
of the gravitational potential is approximated.
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B. Coordinate Systems in Satellite Geodesy

B.1. Coordinate systems

xl yl

zl

zi
yi
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yH
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zH

Figure B.1.: Coordinate systems in satellite geodesy.

Several coordinate systems are used in satellite geodesy:

{êi} inertial system Inertialsystem

Newton’s laws of physics hold only in inertial systems. In these systems, the
directions towards stars and the angles of the Kepler orbit are defined. Also the
numerical orbit integration is usually performed in an inertial system.



B. Coordinate Systems in Satellite Geodesy

Several inertial systems are in use, which might be classified w.r.t to the center
(geocentric vs. barycenter of the solar system) or their plane z = 0 (equatorial
plane vs. plane of ecliptic).

For satellites around the Earth, we prefer a geocentric system with the equatorial
plane:

• êi=1 and êi=2 span the equatorial plane,

• êi=1 points towards the vernal equinox à,

• êi=3 points to the celestial pol,

• 0 in the geocenter.

More precisely, we might further distinguish between mean inertial reference sys-
tem at epoch T0 (effect of precession), a mean instantaneous reference system at
epoch T0 (effect of nutation) and a true instantaneous reference system.

{êe} Earth-fixed systemErdfestes System

The gravity field of the Earth is an important source of orbit perturbations and
also a research goal of satellite geodesy. The field is related to the mass distribu-
tions within the Earth and shall be described in Earth-related coordinates. The
difference between the geocentric inertial system and an Earth-fixed system is the
rotation of the Earth, in particular around the angle gast

• êe=1 and êe=2 span the equatorial plane,

• êe=1 points towards intersection of equatorial plane and a chosen meridian
(e.g. Greenwich meridian),

• êe=3 points towards North pole ,

• 0 in the geocenter.

In a more precise model, also the polar motion must be considered.

{êl} Local North Oriented System
The local North oriented system is an Earth fixed system in a chosen location,
e.g. a ground station. The axis are defined in a tangential plane (w.r.t. sphere or
ellipsoid):

• êl=1: North direction, defined by North-South tangent to meridian,

• êl=2: East direction defined by East-West tangent to parallel circle,

• êl=3: up direction (normal to sphere or ellipsoid),

Please note, that the North-East-Up (NEU) system is a left-handed system.
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B.2. Transformation between systems

{êH} Hill-system
The Hill-system is introduced as a satellite based system, in which a linearized
equation of motion can be solved in closed formulas. The system rotates with a
constant angular rate and it is pointing to a nominal orbit close to the current
satellite position.

• êH=1 complementary quasi-along track,

• êH=2: direction of L,

• êH=3: radial direction.

{êt} tangential (satellite) system
Orbit perturbations which are acting in flight direction are modeled in a tangential
frame for simplicity.

• êt=1: along track, direction of v

• êt=2: direction of L,

• êt=3: quasi radial direction.

In the following, we ignore the different centers of the systems and also the correction for
precession, nutation and polar motion. Hence, the transformation between two systems
are only rotations and reflections.

B.2. Transformation between systems

A vector in the inertial system is transformed into its Earth-fixed counter part by the
rotation around the angle gast

re = R3(gast)ri, (B.1)

if we ignore nutation, precession and polar motion. A transformation into the local
North oriented system requires a rotation towards the location (λ, φ) and a reflection of
the x-axis by a permutation matrix S1 to consider the left handed system:

rl = S1R2

(π
2
− φ

)
R3(λ)re = S1R2

(π
2
− φ

)
R3(λ+ gast)ri. (B.2)

The rotations between the inertial system and the Hill system were already discussed in
Section 8.2:

rH = R3(nt)R3(ω)R1(I)R3(Ω)ri = R3(u)R1(I)R3(Ω)ri (B.3)
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Figure B.2.: Relation between CIS, NEU and Hill-system.
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Figure B.3.: Transformation of the global Earth-fixed system into the local North ori-
ented system.

where n is the mean motion of the nominal orbit. If the satellite is identified with the
coordinate system, we can set u = nt+ ω here.

The êH=3-axis of the Hill-system and the êl=3-axis of the local North oriented system are
parallel. The first system is right-handed, while the second one is left-handed. Hence,
the transformation is a rotation around the common z-axis with an angle α and another
permutation to reflect the second axis:

rl = S2R3(α)rH . (B.4)

The angle α will be discussed in the following section.

The tangential satellite system is almost identical will the Hill-system, with a rotation
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B.3. Gradient

around the y-axis

rt = R2(κ)rH (B.5)

with tanκ = e sin ν
1+e cos ν .

In many cases, there is one coordinate system, where the disturbing force or the equation
of motion are relative simple to represent. However, a transformation into a common
system might be necessary for the analysis or the orbit integration. With this chain
of rotations (and reflections), we can now transform any disturbing force of satellite
geodesy in all standard coordinate systems.

Interpretation of the angle α

We find the angle α in the fundamental triangle in the inertial system, which is formed
by the meridian through the location (λ, φ), the equator, and the circular orbit passing
the same location.

In this spherical triangle with a right angle, we know the angles u, φ and the angle I.
Hence, we can calculate

sinu

sin 90◦
=

sinφ

sin I

=⇒ sinφ = sin I sinu .

Remark B.1 Please note, that the angle α is defined in a spherical triangle and in the
inertial system! The corresponding intersection angle between the ground track and the
meridian in a map projection changes its value due to the rotation of the Earth during
the satellite’s revolution.

Exercise B.1 Define a circular orbit and investigate the chain of rotations

S1R2

(π
2
− φ

)
R3(λ+ gast)

!
= S2R3R3(u)R1(I)R3(Ω)

numerically.

B.3. Gradient

If a conservative vector field is described by its potential, then the acceleration is calcu-
lated by the gradient operator acting on the field. A gradient operator can be derived
for any coordinate system.
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In Cartesian coordinates the gradient of a field quantity f(xi, yi, zi) is simply the vector
of the partial derivatives: ∇if(xi, yi, zi) = ( ∂f∂xi ,

∂f
∂yi
, ∂f∂zi ), when we assume a inertial

system.

In satellite geodesy we might want express the gradient in terms of Earth-fixed spherical
coordinate or terms of Kepler elements:

∇i =


∂

∂xi
∂

∂yi
∂

∂zi

 , ∇l =


∂

r∂φ
∂

r cosφ∂λ
∂

∂r

 , ∇H ≈


∂

r∂u
∂

r cosφ∂I
∂

∂r

 (B.6)
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C. Numerical integration

Newton’s equation of motion r̈ = f(r, ṙ, ...) is an ordinary differential equation (ODE)
of second order. In many cases, these equations cannot be solved by closed formulas,
as the equations are non-linear or coupled. Hence, numerical methods are applied to
approximate the solution of the ODEs.

Every linear or explicit ODE y′′ = f(y,y′, ...) — with initial values — can be traced
back to a system of first order:

y′ = F (x,y) (C.1)

y(x0) = y0. (C.2)

The initial value problem can be solved by numerical methods. The result will be a set
of discrete points (x̃`, ũ`) with ` = 0, 1, 2, ..., L instead of the continuous function y(x).
For “well-behaved problems” the set can approximate the real solution ũ` ≈ y(x̃`).

Exercise C.1 Re-write the Euler-Cauchy differential equation 16t2ÿ+ 8tẏ+ y = 0 into
a system of first order.

We isolate the highest derivative:

16t2ÿ + 8tẏ + y = 0⇒ ÿ = − 1

2t
ẏ − 1

16t2
y

and introduce new variables v = y and w = v̇. This provides

dv

dt
= w

dw

dt
= − 1

2t
w − 1

16t2
v

or in matrix vector form: (
v̇
ẇ

)
︸ ︷︷ ︸
ẏ(t)

=

(
0 1
−1

16t2
−1
2t

)(
v
w

)
︸ ︷︷ ︸
y(t)

. (C.3)
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C. Numerical integration

Remark C.1 A strict matrix vector form is only possible for linear ODEs.

An initial value problem is equivalent to the integral equation

y = y0 +

x∫
x0

F (x,y(ξ)) dξ . (C.4)

Many numerical methods have been derived for different types of problems. They can
be ordered by the following aspects:

• fixed/adaptive stepwidth h,

• one-step or multistep methods,

• implicit/explicit methods.

In the following, we sketch only one-step methods, where the value u` is calculated from
u`−1 and with a fixed stepwidth h.

Remark C.2 Please note, that all internal methods of Matlab like ode45 and ode113

use adaptive stepwidth. If a fixed stepwidth is entered in the function call, this is only
considered by interpolation, not in the algorithm.

C.1. Methods of Euler

C.1.1. Explicit Euler method (Euler polygon)

1. First we re-write the differential equations into a system of first order F (t,y) by
introducing new variables.

2. We replace the y by its discrete counterpart u` to distinguish the solutions.

3. A stepwidth h is selected or defined by the question.

4. a) Replacing the derivatives by “forward differences” leads to

u′`−1 = F (x`−1,u`−1) ≈ u` − u`−1

h
+O(h) (C.5)

⇒ u` = u`−1 + hF (x`−1,u`−1) ` = 1, 2, ..., L . (C.6)

Together with y(x0) = u0, this provides a simple approximation of the solution
by an explicit Euler polygon. The method is “explicit”, because the formula is
already solved for the new value u` on the left.
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C.2. Accuracy, convergence and stability

Exercise C.2 Approximate a solution of the ODE

ẏ(t) = y − y2 & y(0) = 0.5

by the explicit Euler method and with a stepwidth h = 0.4.

The differential equation is of first order and in one variable, so the re-writing is not
necessary. For consistency we not down F (t`−1,u`−1) = u`−1 − u2

`−1 with u0 = 0.5.

The first steps of the forward Euler method (polygon) provide

u1 = u0 + hF (t0,u0) = 0.5 + 0.4(0.5− 0.52) = 0.60

u2 = u1 + hF (t1,u1) = 0.6 + 0.4(0.6− 0.62) = 0.69

u3 = u2 + hF (t2,u2) = 0.69 + 0.4(0.69− 0.692) ≈ 0.7807

C.1.2. Backward Euler method

1. – 3. Analogously to the forward Euler method

4. b) Replacing the derivatives by “backward differences” leads to

u′` = F (x`−1,u`−1) ≈ u` − u`−1

h
+O(h) (C.7)

⇒ u` = u`−1 + hF (x`,u`) ` = 1, 2, ..., L . (C.8)

As the desired values u` occur on both sides—once within the non-linear function
F (..)—, it is an implicit method and we have to solve now a non-linear equation
in every step.

C.2. Accuracy, convergence and stability

At first glance, it might be promising to reduce the stepwidth for getting a better solu-
tion. But this will not always help, because there is a difference between convergence
and stability. In practical applications like solving the equation of motion of an IMU,
the stepwidth is also fixed by the sampling.

For demonstration, we apply the two Euler methods on the problem

y′ = µy & y(0) = 1 (C.9)

with the exact solution y = eµx.

123



C. Numerical integration

With the explicit Euler method we obtain

u0 = 1

u1 = 1 + h(µ1)

u2 = 1 + hµ+ hf(x1, u1) = 1 + hµ+ hµ(1 + hµ) = (1 + hµ)2

...

uL = (1 + hµ)L .

For a fixed value x̄ ∈ R and sufficient small stepwidth, the method is converging to the
correct answer: We set h = x̄

L and obtain

uL =
(

1 + µ
x̄

L

)L
→ eµx̄ for L→∞ . (C.10)

Table C.1.: Approximation of y′ = −1000y with a stepwidth h = 0.01 via the forward
Euler method

t` u` e−1000t`

0.01 −9 4.5400 · 10−5

0.02 81 2.0612 · 10−9

0.03 −729 9.3576 · 10−14

0.04 6561 4.2484 · 10−18

0.05 −59049 1.9287 · 10−22

For a fixed value h > 0, the correctness might not be guaranteed. In particular for large
negative values of µ we might have a problem. Due to |1 + hµ| > 1 the “solution” u`
will increase in magnitude and also oscillate.

In this example, the method is converging for h → 0, but numerical unstable for fixed
values h > 0.

The implicit Euler method provides

u0 = 1

u1 = 1 + hµu1 ⇒ u1 =
1

1− µh

u2 = u1 + hµu2 ⇒ u2 =
u1

1− hµ
=

1

(1− µh)2
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C.3. Explicit Runge-Kutta method

...

uL = uL−1 + hµuL ⇒ uL =
1

(1− µh)L
.

Again the method/solution is converging to the correct function for a fixed value x̄ ∈ R.
We set h = x̄

L and obtain

uL =
(

1− µ x̄
L

)−L
=
(

1 + µ
x̄

L′

)L′
→ eµx for L′ →∞ .

For negative values µ the solution is tending to zero now without oscillations.

Table C.2.: Approximation of y′ = −1000y with a stepwidth h = 0.01 via the backward
Euler method

t` u` e−1000t`

0.01 9.0909 · 10−2 4.5400 · 10−5

0.02 8.2645 · 10−3 2.0612 · 10−9

0.03 7.5131 · 10−4 9.3576 · 10−14

0.04 6.8301 · 10−5 4.2484 · 10−18

0.05 6.2092 · 10−6 1.9287 · 10−22

For this example, the implicit method is converging for h→ 0 and numerical stable for
fixed values h > 0.

C.3. Explicit Runge-Kutta method

A general form of explicit one-step methods was described by Runge and Kutta. In each
step — within the interval [x`, x`+1] — the approximation is defined by

u`+1 = u` + h

m∑
i=1

γiki(x`,u`) (C.11)

k1 = F (x`,u`)

k2 = F (x` + α2h,u` + hβ21k1)

k3 = F (x` + α3h,u` + h(β31k1 + β32k2))

...

km = F

x` + αmh,u` + h

m−1∑
j=1

βm,jkj

 .
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C. Numerical integration

The method requires a set of parameters
{
γ1, γ2, ..., γm.α2, α3, ...αm, β21, β32, , ..., βm,m−1

}
.

These (2m− 1 +m(m− 1)/2) parameters are not completely independent. In particular
it must hold

• γ1 + γ2 + ...+ γn = 1 (consistency)

• αi =
j=1∑
i−1

βi,j (approximation of the derivatives is of the order O(h2))

The most popular version is the Runge-Kutta method of order 4, which often provides
a reasonable approximation with an acceptable effort (and the parameters are ’simple’
and symmetric: α2 = α3 = 0.5 = β21 = β32)

The parameters are often noted down in a so called butcher tableau. The tableau for
the explicit Runge-Kutta method of order 4 is given by

αk 0

1/2 1/2 βki

1/2 0 1/2
1 0 0 1

1/6 1/3 1/3 1/6 γik

(C.12)

Remark C.3 In each step we use only (x`,u`) to calculate the new functions, so it is
still a one-step method.

Exercise C.3 Approximate a solution of the ODE

ẏ(t) = y − y2 & y(0) = 0.5

by the Runge-Kutta method of order 4 and with a stepwidth h = 0.4.

k1 = F (t0 + 0h,u0) = 0.25

k2 = F (t0 + 0.5h,u0 + 0.5hk1) = 0.24750

k3 = F (t0 + 0.5h,u0 + 0.5hk2) = 0.24755

k4 = F (t0 + 1h,u0 + hk3) = 0.24020 .

The combination provides the next point of the numerical solution:

u1 = u0 + h

(
1

6
k1 +

1

3
k2 +

1

3
k3 +

1

6
k4

)
= 0.59869 .
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C.3. Explicit Runge-Kutta method

In this particular case, we can also find the exact solution of the ODE:

y(t) =

(
1 +

(
1

y0
− 1

)
e−t

)−1

(C.13)

and compare this with the numerical solution. The Euler polygon and the Runge-Kutta
method approximate the general behavior quite well, but the the second method performs
better with the same stepwidth h = 0.4 (cf. fig. C.1 and fig. C.2).

0 1 2 3 4 5 6 7 8 9 10
0.5

0.6

0.7

0.8

0.9

1

1.1

1.2
AWP: dy/dt=y-y2 with y0 = 0.5

Euler polygon (h = 0.4)
RK4 (h = 0.4)
true solution

Figure C.1.: Numerical solution and the exact solution for the ODE y′ = y − y2.

Exercise C.4 Implement the Runge-Kutta method of order 4 with a constant step-
width h in Matlab. The differential equations should be entered via function handles.
Test the routine with equation (C.3) and the initial value y(1) = (4, 1)T.

Outlook: Linear multistep method

As the evaluation of the function F might be time consuming, linear multi-step methods
have been derived.
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C. Numerical integration

0 2 4 6 8 10
-0.02

-0.018

-0.016

-0.014
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-0.008

-0.006

-0.004

-0.002

0
AWP: dy/dt=y-y*y -- differences "Euler" - "exact"

(a) approximation by Euler method

0 2 4 6 8 10
0

0.5

1

1.5
10-5 AWP: dy/dt=y-y*y -- differences "RK4" - "exact"

(b) approximation by RK4 method

Figure C.2.: Differences between the numerical approximation and the exact solution
for the ODE y′ = y − y2.

In this group of methods a subset of previous N points{
(x`−1,u`−1), (x`−2,u`−2), (x`−3,u`−3), . . .

}
is used for a polynomial approximation and the integral representation is calculated by
their linear combination. In the next step, the “oldest” element of the subset is removed
and the “latest” is added.

To avoid the solution of a non-linear equation, so-called predictor-corrector methods—a
combination of explicit/implicit form—are in use. (In satellite geodesy for example the
Adams-Moulton method of order 12 is popular, which keeps always the last 12 points
for prediction and correction in orbit simulations.)
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D. Clairaut’s differential equation

In satellite geodesy, the equation of motion is a differential equation of second order and
in three variables. If we restrict ourselves to radial symmetric forces, the equation can
be reduced to a non-linear differential equation of first order and in one variable. Hence,
the solution is – in theory – possible by the ansatz of separation and an integration.

D.1. Radial symmetric force fields

A radial symmetric force field is described by F = f(‖r‖)r = f(r)r with an arbitrary
scalar function f(r). The corresponding potential is determined by integration:

Ū(r) = −
r∫
c

r̄f(r̄) dr̄ . (D.1)

Remark D.1 Please note, that we use the physical convention r = −∇Ū in this Chap-
ter.

Exercise D.1 Verify that the potential Ū(r) correspond to the force field F .

Conservation of the angular momentum

The (mass specific) angular momentum is calculated by the cross product L = r × ṙ.

Considering the radial symmetric force field leads to

dL

dt
= ṙ × ṙ + r × r̈ = 0 + r × f(r)r = 0 . (D.2)

Hence, the angular momentum L is preserved, and the motion takes place in a constant
orbital plane!
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D. Clairaut’s differential equation

Conservation of the energy

We differentiate the sum of the kinetic energy Ekin = 1
2v

2 = 1
2 ṙ
>ṙ and the gravitational

potential Ū(r) w.r.t. time

dE

dt
=

d{Ekin + Epot}
dt

=
1

2
r̈>ṙ +

1

2
ṙ>r̈ +

dŪ

dr

dr

dt

= f(r)r>ṙ − rf(r)
dr

dt
=

= f(r)
(
r>ṙ − ṙr

)
= 0 .

Hence, the total energy E is preserved.

Polar coordinates

If the motion takes place in a plane, we can describe it by polar coordinates. This
requires the definition of an origin 0, a chosen axis, and an angle. We set the origin into
the symmetry center and choose the direction towards the smallest distance between
orbit and center as reference axis. The angle is measured w.r.t to the axis, and the later
one is related with the angle ν = 0. For compactness, we could call these quantities
“true anomaly” and the “distance to perigee”, although these names are referring to
conic sections per definition.

The orbit in the orbital plane is described by a vector

rf = r

 cos ν
sin ν

0

 = rer

with a time depending radius r. Differentiation provides us

ṙf =
dr

dt

 cos ν
sin ν

0

+ r

−ν̇ sin ν
ν̇ cos ν

0

 =
dr

dt
er + rν̇eν .

The kinetic energy is found by a scalar product

Ekin =
1

2
ṙ>ṙ =

1

2

(
dr

dt
er + rν̇eν

)>( dr

dt
er + rν̇eν

)
=

1

2

(
dr

dt

)2

+ r2ν̇2
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D.2. Clairaut’s differential equation

where we considered the orthogonality e>r eν = 0.

We add the gravitational potential to obtain the total energy

E = 1
2

[(
dr
dt

)2
+ r2ν̇2

]
+ Ū(r) . (D.3)

This equation links the orbit, radius and its derivative in the orbital plane, with energy
and potential.

D.2. Clairaut’s differential equation

Equation (D.3) contains the derivative dr
dt but also the quantity ν̇. We are looking for a

differential equation with the radius as a function of the angle ν. Considering the chain
rule dr

dt = dr
dν

dν
dt , the equation is reformulated:(

dr

dt

)2

= 2(E − Ū(r))− r2ν̇2

(
dr

dν

)2

ν̇2 = 2(E − Ū(r))− r2ν̇2

(
dr

dν

)
= ±

√
2(E − Ū(r))

ν̇2
− r2 = ±

√
2(E − Ū(r))

L2
r4 − r2︸ ︷︷ ︸

=g(r)

where the last line uses the angular momentum L = r2ν̇. In principle, we have found
a differential equation for the orbit already, but a small simplification is obtained by
introducing the inverse radius σ = r−1 as a new variable (Guthmann, 1994, pp. 70).

The transformation dσ
dν = dr−1

dν = −r−2 dr
dν leads to Clairaut’s (differential) equation1 Clairaut’sche

(Differential-)
Gleichung

dσ

dν
= −g(σ−1)σ2 = −σ2

√√√√2
(
E − Ū

(
1
σ

) )
L2

1

σ4
− 1

σ2

dσ

dν
= −

√√√√2
(
E − Ū

(
1
σ

) )
L2

− σ2 . (D.4)

(The equation in this form is only valid for orbits with L 6= 0.)

1Alexis Claude Clairaut (1713–1765), French mathematitcian, astronomer and geophysicist. His name
is also related to Clairaut’s theorem (hydrostatic equilibrum), Clairaut’s relation (geodesic lines) and
another Clairaut’s equation (planar curves)
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D. Clairaut’s differential equation

D.3. Clairaut’s differential equation and the Kepler problem

D.3.1. Derive the orbit from the potential

With the sign convention of this chapter, the potential of the Kepler problem is given
by Ū(r) = −GM

r = −GMσ. We introduce this potential in the differential equation

dσ

dν
= −

√√√√2
(
E +GMσ

)
L2

− σ2 = −
√
A0 +A1σ − σ2 (D.5)

with A0 = 2E
L2 and A1 = 2GM

L2 (cf. (Guthmann, 1994, pp. 78)).

The ansatz of separation leads to

ν∫
0

dν =

σ∫
σ0

dσ

−
√
A0 +A1σ − σ2

. (D.6)

The integrand is transformed into a standard form
√

1− ξ2 by completing the squares

1

−
√
A0 +A1σ +

(
A1
2

)2 − (A1
2

)2 − σ2

=
1

−
√(

A2
1

4 +A0

)
−
(
σ − A1

2

)2 =

1

−
√

A2
1

4 +A0

√√√√√1−

 σ−A1
2√

A2
1
4

+A0

2
=

1

−
√

A2
1

4 +A0

1√
1− ξ2

with ξ :=
σ−A1

2√
A2
1
4

+A0

.

This substitution reduces the integration:

ν∫
0

dν =

σ∫
σ0

dσ

−
√
A0 +A1σ − σ2

=

ξ∫
ξ0

dξ

−
√

1− ξ2

=⇒ ν = arccos ξ − arccos ξ0

=⇒ ξ = cos(ν + arccos ξ0) .

The angle is rewritten by ν0 := arccos ξ
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D.3. Clairaut’s differential equation and the Kepler problem

To find the inverse radius σ, we solve

ξ =
σ − A1

2√
A2

1
4 +A0

= cos(ν + ν0)

σ =
A1

2
+

√
A2

1

4
+A0 cos(ν + ν0)

and for the radius itself:

r = σ−1 =
1

A1
2 +

√
A2

1
4 +A0 cos(ν + ν0)

=
2
A1

1 +
√

1 + 4A0

A2
1

cos(ν + ν0)

=
L2

GM

1 +

√
1 + 4·2E

L2

(
L2

2GM

)2
cos(ν + ν0)

.

A comparison with the radius r(ν) = p/(1 + e cos ν) leads to the known identity p =
L2/GM and a new expression for the eccentricity.

Exercise D.2 Verify for an elliptic orbit, that the eccentricity could be written via

e =

√
1 +

4 · 2E
L2

(
L2

2GM

)2

. (D.7)

In case of an elliptic orbit, we know the energy E = GM
−2a and the relation p = L2

GM :

e
!

=

√
1 +

4 · 2E
L2

(
L2

2GM

)2

=

√
1 + 2

EL2

(GM)2

=

√√√√
1 +

2
(

GM
(−2a)

)
(pGM)

(GM)2
=

√
1− p

a

and the last line is correct due to ae2 = a− p.
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D. Clairaut’s differential equation

Remark D.2 As a side effect, we learned another expression for the norm of the Laplace
vector:

e =
‖B‖
GM

=

√
1 + 2

EL2

(GM)2
=

√
(GM)2 + 2EL2

GM

=⇒ ‖B‖ =
√

(GM)2 + 2EL2

in terms of energy and angular momentum.

All in all we have shown, that the potential Ū = −GMσ leads to an orbit in the form
of a conic section.

D.3.2. Derive the potential from the orbit

So far, we have shown, that the conic sections are a consequence of the gravitational
potential U = GM/r. Are there any other gravitational potentials, which can cause an
orbit in the form of a conic section?

Clairaut’s differential equation can be solved for the potential:

Ū(r)

(
1

σ

)
= −L

2

2

[(
dσ

dν

)2

+ σ2

]
+ E . (D.8)

Hence, if the orbit is given, the required potential can be derived. In polar coordinates,
a conic section is given by

r(ν) =
p

1 + e cos ν

=⇒ σ =
1

p
(1 + e cos ν)

with one focus in the origin. The differentiation w.r.t. the anomaly provides

dσ

dν
=

1

p
(−e sin ν)

and in the potential formula (D.8):

Ū

(
1

σ

)
= −L

2

2

[(
1

p
(−e sin ν)

)2

+

(
1

p
(1 + e cos ν)

)2
]

+ E
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D.3. Clairaut’s differential equation and the Kepler problem

= −L
2

p

(
e2(sin2 ν + cos2 ν) + 2e cos ν + 1

2p

)
+ E

= −L
2

p

(
e2 + 1 + 2e cos ν

2p

)
+ E

= −L
2

p

(
e2−1 + 1 + 1 + 2e cos ν

2p

)
+ E

= −L
2

p

e2 − 1

2p
+

2 + 2e cos ν

2p︸ ︷︷ ︸
σ

+ E

= −L
2

p
σ +

(
E − L2

p

e2 − 1

2p

)
︸ ︷︷ ︸

const.

.

It was shown before, that the relation L2

p = GM holds for conic sections. Hence, we
verified that the potential

Ū

(
1

σ

)
= −GMσ + const. (D.9)

is necessary for an orbit in the form of a conic section.

Exercise D.3 Convince yourself, that the constant
(
E − L2

p
e2−1

2p

)
= 0 will vanish for

elliptic, parabolic and hyperbolic orbits.

Exercise D.4 Investigate the inverse radius σ(ν) in a modified gravitational potential

Ū = −A
r

+
B

r2
(D.10)

for A > 0 and |B| << A (A,B ∈ R).
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E. Theory of epicycles und Equant

E.1. Aristotele

Aristotele (384–322 BC) was a Greek scientist and philosopher, who published in many
fields including physics, biology, zoology, metaphysics, logic, ethics, poetry, economics.
politics and government. He derived his knowledge in different ways, ranging from
own observations and deduction, but also theological/logical arguments or secondhand
reports. The theorems were well known and popular for centuries, sometimes with
surprising twists: Several statements in zoology have obtained blind believe, followed
by critical considerations, and finally confirmations in the last 200 years, e.g. the active
camouflage of the octopus or the usage of the elephants’ trunks as snorkel1.

Many books of Aristotele – written in Greek – were preserved through Arabic translation
and reception. The books were translated into Latin in the 12th century. In both cul-
tures, discussing and commenting the ancient philosophers was the beginning of science.
The catholic faculty of the University of Paris tried to ban the books about nature in
1210 and again in 1215, as the work neglected a genesis of Earth or Sun2. The ban was
not successful and other universities like Toulouse3 and Oxford made Aristotele to the
basis of the curriculum, which quickly spread over Europe. Some more details on conflict
of church and Aristotele’s theorems could be found in (Heuser, 2008, pp. 106–108).

Aristotele postulates in celestial mechanics were on logic and philosophy: Sun, Moon,
the visible planets, and all stars are attached on concentric spheres around the Earth,
which is in the center of the universe and move on perfect circles. Each sphere has its
own uniform (angular) velocity. The motion is generated in the outermost sphere/circle
by a prime mover.

Remark E.1 The idea of one sphere covering all fix stars cannot be falsified by ancient
observations. The measurement of declination and right ascension seems to indicate a

1en.wikipedia/wiki/Aristotele and en.wikipedia/wiki/Aristotele%27s_biology
2Aristotele discussed and postulated arguments against infinity in dimensions, but accepted an infinite

time or lifespan for the cosmos
3The university of Toulouse published advertisements, that all students are allowed to read the banned

books
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E. Theory of epicycles und Equant

constant rotation around the Earth. The relative movements in terms of angles are below
the measurement accuracy. (Today, the Doppler shift demonstrates also a movement in
radial direction.)

It was recognized already by ancient astronomers, that their observations for planets
showed retrograde motion and variable brightness, which contradicted the uniform an-
gular velocities. With today’s knowledge, two reasons can be identified (Grigull, 1996):

• Planets are not moving on circles, but on ellipses with the Sun in one focus.

• Observations are not measured from a geometrical center, but from a moving Earth
which orbits around the Sun as well.

Many astronomers were active in so-called saving the phenomena (in Greek: ”σώζεινRettung der
Phänomene τὰ φαινóµενα” = ”sōzein ta phainómena”). This research program should describe

the irregular motions of celestial bodies by circular motions with constant velocity to
obey Aristotele’s rules. Fundamental tricks were the theory of epicycles, an eccentricEpizykeltheorie

Earth and the introduction of an equant as reference point.Äquant

Even Copernicus kept the circular motion with constant velocity—and a modified theory
of epicycles—, and changed only the center to a location close to the Sun.

E.2. Theory of epicycles

Epicycles4 were a model to describe the motion of Sun, Moon and planets w.r.t. an
observer on Earth. The celestial body was assumed to move in a smaller circle—called
an epicycle—whose center turned on a larger circle known as deferent. If the observationsEpizykel

Deferent don’t fit to the model, smaller circles on the epicyle can be introduced by iteration. The
procedure can be considered as a kind of Fourier series.

To be precise, we shall allow a three dimensional model with spheres instead of circles,
but we want to keep the discussion simple. Epicycles in a plane are represented by the
sum

z = A

(
cos ζ(t)
sin ζ(t)

)
+

L∑̀
=1

B`

(
cos(β` + Z`(t))
sin(β` + Z`(t))

)
(E.1)

with |B`| < A. In the following, we use only one small epicycle and skip the index
` = L = 1. The formula includes several planar curves depending on the two radius and
the function ζ(t) and Z`(t) (cf. fig. E.1).

4Similar curves are produced if a circle rolls on the circumference, which is called an epicylcoid in
geometry.
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E.2. Theory of epicycles

Epizykel A = 1 und B = 0.5, Z/z = -1

(a) Z/ζ = −1: ellipse

Epizykel A = 1 und B = 0.5, Z/z = 1

(b) Z/ζ = +1: circle
Epizykel A = 1 und B = 0.5, Z/z = -2

(c) Z/ζ = −2:

Epizykel A = 1 und B = 0.5, Z/z = 2

(d) Z/ζ = +2:
Epizykel A = 1 und B = 0.5, Z/z = -3

(e) Z/ζ = −3:

Epizykel A = 1 und B = 0.5, Z/z = 3

(f) Z/ζ = +3:

Figure E.1.: A set of epicycles with A = 1, B1 = 0.5 and a constant ratio Z/ζ
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E. Theory of epicycles und Equant

Ellipses are a special case of epicycles with Z(t) = −ζ(t) at each time point. The angle β
causes only a rotation of the figure, and we set β = 0 in the following. The equation of
an ellipse is

x2

(A+B)2
+

y2

(A−B)2
= 1

(A2 − 2AB +B2)x2 + (A2 + 2AB +B2)y2︸ ︷︷ ︸
LHS

= (A+B)2(A−B)2

where a = (A+B) and b = (A−B) are the semi-axis.

We insert x = A cos ζ + B cos(−ζ) and y = B sin ζ + B sin(−ζ) = y = B sin ζ − B sin ζ
from formula (E.1) in the LHS and ignore the argument t:

LHS = (A2 − 2AB +B2)x2 + y2(A2 + 2AB +B2) =

= (A2 − 2AB +B2)(A2 cos2 ζ + 2AB cos2 ζ +B2 cos2 ζ) +

+(A2 + 2AB +B2)(A2 sin2 ζ − 2AB sin2 ζ +B2 sin2 ζ)

= cos2 ζ(A2 − 2AB +B2)(A2 + 2AB +B2) + sin2 ζ(A2 + 2AB +B2)(A2 − 2AB +B2)

= (cos2 ζ + sin2 ζ)(A2 − 2AB +B2)(A2 + 2AB +B2)

= (A−B)2(A+B)2 = RHS

Hence, the geometrical model of epicycles describes ellipses for Z = −ζ. The for-
mula (E.1) with L = 1 is sufficient for a heliocentric model. From a Earth-related
oberservation point more iterative epicycles L > 1 might be necessary in the model.
The locations of planets, Moon or Sun can be derived with this theory up to accuracy
of observations, if non-uniform motions are accepted.

E.3. Equant

An epicycle model explained the retrograd motion, but not the time of the observations.
For saving the phenomena, Hipparch suggested to locate the Earth center eccentric w.r.t.
the center of the deferent, quasi into a focus. (In Aristotele’s original model, this will
cause problems as the spheres were considered to be solid objects.)

As the motion shall was still not uniform in this model, an hypothetical location—the so
called equant—was postulated, in which the the angular velocity shall be seen uniform.Äquant

A reasonable location might be on the axis, which is defined by the center of the deferent
and the center of the Earth.
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E.3. Equant

In modern knowledge, the question might occur, whether the second focus of an ellipse
might be an approximation of the equant. The linearity of the anomalies is investigated
in fig. E.2 by subtracting the mean anomaly M at the same time point. It turned out,
that for an eccentricity e = 0.2, the eccentric anomaly E shows a maximal misfit of
about 25◦ and the true anomaly ν shows a misfit of 10◦. A new defined anomaly µ in
the empty focus stays below 0.8◦.

(a) all anomalies (b) zoom for µ−M

Figure E.2.: “Linearity” of the residual anomalies (E −M) and (ν −M) and (µ −M)
for an ellipse with the eccentricity e = 0.2

E.3.1. Focus with central mass

If we use the notation and knowledge of today, we can start with the area of an inifin-
tesmal triangle

dA1 =
1

2
r · r dν ⇒ 2

dA1

dt
= r2 dν

dt
= r2ω1 = c

• r: current radius depending on location

• r dν: finite line tangential to the orbit

• ω1 = dν
dt : angular velocity

• c: constant due to law of area conservation

After one revolution, the area A = abπ is covered within the revolution time T :

2
dA1

dt
= 2

abπ

T
= nab = na2

√
1− e2
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E. Theory of epicycles und Equant

with n = 2π
T . Solving for the angular velocity leads to

ω1 =
c

r2
=
na2
√

1− e2

r2

The radius r = a(1− e cosE) is known, and we obtain

ω1

n
=

c

nr2
=

a2
√

1− e2

a2(1− e cosE)2

Remember the binomial series expansion

(1± y)α =

∞∑
k=1

(
α
k

)
(±y)k

will lead to

ω1
n =

(
1− e2

2 −
e4

8 −
e6

16 + ...
) (

1− 2(e cosE) + 3(e cosE)2...
)

=

= 1− e(2 cosE) + e2(3 cos2E − 0.5) +O(e3)

⇒ ν =
∫
ω1 dt = n

[
1− e(2 cosE) + e2(3 cos2E − 0.5) +O(e3)

]
t

The true anomaly is now a function in the eccentric anomaly and the eccentricity.

E.3.2. Focus without mass

An infinitesimal triangle can be derived for the second focus (empty focus, antifocus, ...)
as well:

dA2 =
1

2
ρ · r dµ⇒ 2

dA2

dt
= ρr

dµ

dt
= rρω2 = c

• r: distance between focus with mass and the satellite

• ρ: distance between focus without mass and the satellite

• r dµ: finite line tangential to the orbit

• ω2 = dµ
dt : angular velocity

• c: constant due to law of area conservation
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E.3. Equant

After one revolution, the relation

2
dA2

dt
= 2

abπ

T
= na2

√
1− e2 ⇔ ω2 =

na2
√

1− e2

rρ

holds. Considering ρ = 2a− r = a(1 + e cosE) provides

ω2

n
=

a2
√

1− e2

a(1− e cosE)a(1 + e cosE)
=

√
1− e2

(1− e2 cos2E)

The geometrical series

(1− y2)−1 =
∑
k=1

(y2)k

leads to

ω2
n =

(
1− e2

2 −
e4

8 ...
) (

1 + (e2 cos2E) + (e2 cos2E)2...
)

=

= 1 + e2(cos2E − 0.5) +O(e4)

⇒ µ =
∫
ω2 dt = n

[
1− e2(cos2E − 0.5) +O(e4)

]
t

The new anomaly µ is “more linear” than the true anomaly ν, as the misfit if of order
e2 instead of e.
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