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1. Introduction

Dynamic satellite geodesy is the application of celestial mechanics to geodesy. It aims
in particular at describing satellite orbits under the influence of gravitational and non-
gravitational forces. Conversely, if we know how orbit perturbations arise from gravity
field disturbances, we have a tool for gravity field recovery from orbit analysis.

The first part of the course aims at the understanding of the ideal Kepler orbit. These
orbits are completely determined by six initial values, i.e. a position vector r(¢y) and a
velocity vector v () with 3 components at a given time point ¢y. Further orbit locations
can be found by numerical integration of Newton’s equation of motion. If the orbit is
transformed into so-called Kepler elements, five out of six values will remain constant,
while the angular anomaly M turns out to be linear in time. An inverse transformation
of Kepler elements into Cartesian coordinates will generate the ideal Kepler orbit as
well.

initial values of positions & velocities
position & velocity at all epochs

numerical integration

ri(to)’ Vi(ta) ode-solver ri(t)) Vi(t)
Cartesian — Kepler Kepler = Cartesian
transformation transformation
cart2kep kep2cart
a, eI, Q, o, M(t) » a,e I, Q, w,
M(t)= M(t,)+n(t-t,)
M(t)
fort=t,: At: T
Kepler elements Kepler elements
of the initial point of all orbital

locations

Figure 1.1.: Orbit propagation of a Kepler orbit based on initial position and velocity.
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1. Introduction

The second part of the course investigates orbit perturbations, i.e. all effects which
causes deviations in positions and velocities in comparison to the Kepler orbit. We
analyze gravitational and non-gravitational perturbations via analytical formulas and
numerical methods. The dominant orbit perturbation is the flattening of the Earth, i.e.
the difference between reference ellipsoid and reference sphere, which causes long term
trends in the orientation of the orbit but not in the shape.



2. The two-body problem

The two-body problem is concerned with the motion of two gravitating masses, M and
m, for instance planets around the Sun or satellites around the Earth. For convenience
we consider M as the main attracting mass, and the orbiting mass m < M. This is not
a mathematical necessity, though.

2.1. Kepler’'s laws

KepleIE] was the first to give a proper mathematical description of (planetary) orbits.
Dissatisfied with the mathematical trickery of the geocentric cosmology, necessary to
explain astronomical observations of planetary motion, he was an early adopter of the
Copernican heliocentric model. Although a mental breaktrough at the time, Kepler even
went further.

Based on observations, most notably from the Danish astronomer Braheﬂ Kepler empir-
ically formulated three laws, providing a geometric-kinematical description of planetary
motion. The first two laws were presented 1609 in his Astronomia Nova (The New
Astronomy), the third one 1619 in Harmonice Mundi (Harmony of the World). They
are:

i) Planets move on an elliptical path around the sun, which occupies one of the
focal points.

ii) The line between sun and planet sweeps out equal areas in equal periods of
time.

iii) For a given central body, the cube of the semi-major axes a of satellite is

! Johannes Kepler (1571-1630). Born in Weil der Stadt, lived in Leonberg, studied at Tiibingen Uni-
versity. Being unable to obtain a faculty position at Tiibingen University, he became mathematics
teacher in Graz. He later became research associate with Tycho Brahe in Prague and — after Brahe
died — succeeded him as imperial mathematician.

2Tycho Brahe (1546-1601). He attended the universities of Copenhagen and Leipzig, and then trav-
eled through the German region, studying further at the universities of Wittenberg, Rostock, and
Basel. During this period his interest in alchemy and astronomy was aroused, and he bought several
astronomical instruments.
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2. The two-body problem

proportional to the square of the satellite’s period of revolution 7"
a® o T? (2.1)

For two satellites—or celestial bodies—this can be expressed by the ratio

&)~ G

which is constant per celestial body. The law also holds in good approximation,
if we use the Sun as central body, although there are several planets and moons
involved:

Table 2.1.: Revolution period T in sidereal years and semi-major axis a in astronomical
units in the solar system

planet — T in year ain AU T2/a3
Mercury — 0.241 0.387 1.002

Venus — 0.615 0.723 1.000
Earth - 1 1 1
Mars — 1.881 1.524 0.999

Jupiter - 11.863 5.203 0.991
Saturn - 11.863 5.203 0.991

In his formulation of the third law Kepler equated the cube of the mean radius
to T2. Later we will learn that the current radius r is a function of the semi-
major axis, the eccentricity e and an the eccentric anomaly E

r(a,e, E) =a(l —ecos E). (2.3)

The average of the radius within one revolution

1 2m 1 2
r(a,e, E)dE = — |aE —aesin E| =a (2.4)

go 2 0

is in fact the semi-major axis.
2.1.1. First law: elliptical motion
According to Kepler, planets move in ellipses around the sun. Although that was a
daring statement already at a time when church dogma still prevailed over scientific

thought, Kepler even put the Sun outside the geometric centre of these ellipses. Instead
he asserted that the Sun is at one of the foci.

10



2.1. Kepler’s laws

Geometry

An ellipse is defined as the set of points whose sum of distances to both foci is constant.
Inspection of fig. in which we choose a point on the major axis (left panel), tells
us that this sum must be (a + x) + (a — ) = 2a, the length of the major axis. The
quantity a is called the semi-major axis.

— o —

ae

QD

| a+X

Figure 2.1.: Geometry of the Kepler ellipse in the orbital plane.

But then, for a point on the minor axis, see right panel, we have a symmetrical config-
uration. The distance from this point to each of the foci is a. The length b is called the
semi-minor axis. Knowing both axes, we can express the distance to focus and centre of
the ellipse. It is v/a% — b2. Usually it is expressed as a proportion e of the semi-major

axis a:
2 b2

——,orb=v1-e?a.
a

The proportionality factor e is called the eccentricity; the out-of-centre distance ae is

(ae)2 +=d’= ¢’ =

known as the linear eccentricity.
From mathematics we know the polar equation of an ellipse:

p

- £ 2.5
14+ecosv’ (2.5)

r(v)

in which r is the radius, v the true anomaly and p the parameter of the ellipse (semi
latus rectum). From the left panel of fig. we are able to express p in terms of @ and
e. We can write down two equations:

1. sum of sides: p+zx = 2a or 22 = 4a® — dap + p®

11
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2. The two-body problem

X P p
\%
ae ae
Figure 2.2.: Parameters of the polar equation for the ellipse.
2. Pythagoras: 2 = p? + 4a’e?
eliminate z: p? + 4a’e? = 4a® — dap + p*
delete p?: ae’ =a—p
rewrite: p=a(l—eé?
b2
= E .
Knowing p, we recast the polar equation ([2.5)) into:
1—e? 1 1-
() = a(l—e€”) ora(l+e)(l—e) (2.6)

14 ecosv 1+ ecosv

Exercise 2.1 Insert v = 0 or 180° and check whether the outcome of @ makes sense.

The orbital point closest to the mass-bearing focus is called perihelion in case of planetary
motion around the Sun (Helios) or perigee for satellite motion around the Earth (Gaia).
More generally one can speak of perifocus. The farthest point at v = 180° is called,
respectively, aphelion, apogee or apofocus. Since we are mostly discussing satellite
motion, we will predominantly use perigee and apogee.

Remark 2.1 (circular orbit) In case of zero eccentricity (e = 0) the ellipse becomes
acircleanda=b=p=r.

2.1.2. Second law: area law

The line through focus and satellite (or planet) sweeps out equal areas A during equal
intervals of time At¢. This is also known as Kepler’s area law. From the left panel of

12



2.1. Kepler’s laws

fig. 23] it is seen that this effect is most extreme if a time interval around perigee is
compared to one at apogee.

At

At

Figure 2.3.: Kepler’s area law (left) and infinitesimal area (right).

As a consequence of Kepler’s second law, the angular velocity 7 must be variable during
an orbital revolution: fast around perigee and slow around apogee. Bahnumlauf

The infinitesimal picture of this law looks as follows. In an infinitesimal amount of time
dt the satellite travels an arc segment rdv. The infinitesimal, nearly triangular area,
reads dA = %’I"Q dv. Therefore:

1
dA:§r2dy ~ dt

— rldv =c dt
=’y = ¢
This sheds a different light on the area of Kepler’s law. It is the quantity r?» that is
conserved. In a later section we will bring this in connection to the conservation of

angular momentum. Here we can see already that, if we write v = ro for linear velocity, Drehimpuls
rv is constant.

Angular Momentum

Consider the epifocal coordinate system in fig. In this frame the position and velocity
vector read:

T COSV 7 CoSV — rvsinv
ry=| rsinv and vy = | 7sinv+rvcosv
0 0

13
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2. The two-body problem

Ys

Figure 2.4: Epifocal frame: z; to-
wards perigee, z; perpen-
dicular to orbital plane to-
wards angular momentum,
and y; complementary in
right-hand sense.

The angular momentum vector, by its very definition, will be perpendicular to both and
thus perpendicular to the orbital plane:

0 0
Lf:T'fX’Uf: 0 = 0
rrcosvsiny + r2cos2 vy — risinv cos v + r? sin? v r2y

2.1.3. Third law: harmony

Kepler’s third law can be rephrased as

The cubes of the semi-major axesﬂ of the orbits are proportional to the
squares of the revolution periods.

If we cast this law into mathematics, we obtain with proportionality factor c:
a? ~T? = a® = cT?.
The orbital period T is inversely related to the mean orbital angular velocity n:
——
n

The angular velocity n is conventionally referred to as mean motion. We now obtain:

3 (27T)2

a’ = c— na® = ¢(2m)?.

n

After Newton had developed his universal law of gravitation the seemingly arbitrary
constant right hand side turned out to be more fundamental: the gravitational constant
G times the mass M of the attracting bodyf}

*Kepler: mean radius in the sense of (2.4)
1GMg = 3.986 004415 - 10 27
GM = 1.327122440018 - 102 2

14



2.2. Further geometry

n?a® = GM (2.7)

Although Kepler’s third law is intriguing, the particular combination of powers—a square
and a cube—should not come as a surprise. Compare the situation of a circular orbit
with angular velocityE] w. The centripetal force (per mass unit) is balanced by the
gravitational attraction:

.  GM

wr=— = w?rd = GM ,
r
which is of the same form as Kepler’s third law.

Exercise 2.2 Many orbits and orbital features can be calculated using (2.7).

geostationary orbit: n = 1 2d7;y =wp =— a~40000km
GPS: n=2wg =— a=...

LEO: n ~ 1bwg

satellite at zero height: n ~ 16wy = Schuler frequency

2.2. Further geometry

2.2.1. Three-dimensional orbit description

The Kepler ellipse was defined in size by its semimajor axis a and in shape by its
eccentricity e. The location of the satellite within the orbit was indicated by the true
anomaly v. In three-dimensional space, though, we need two more parameters to indicate
the orientation of the orbital plane, and again one more to orient the ellipse within this
plane. In total we thus have 6 orbital elements or Kepler elements. The number 6 is
equal to the the sum of 3 Cartesian position coordinates and 3 velocity components.
Please refer to fig.

The orbital plane is inclined with respect to the equator. The corresponding angle I is
obviously called inclination. The intersection line between orbital plane and equator is
the nodal line. The node, in which the satellite crosses the equator from South to North
is the ascending node. The angle ) in inertial space between the vernal equinox (or
x;-axis) and ascending node is the right ascension of the ascending node. The angle of

5Unfortunately, the symbol w is used for the argument of perigee, one of the Kepler elements, and the
angular velocity.

15
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2. The two-body problem

Figure 2.6: Three-dimensional ge- *
ometry of the Kepler or-
bit.
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Figure 2.5:

The eccentricity e is not
involved in Kepler’s third
law. A circular orbit of
radius a apparently has
the same orbital revolu-
tion period as a highly ec-
centric (cigar-shaped) or-
bit of semi-major axis a
as in fig. Neverthe-
less, at e = 0 one orbit
has a length of 2ma (the
circumference of a sphere),
whereas if the eccentric-
ity approaches 1, one rev-
olution approaches 4a (2a
forth plus 2a back).

2a

—— 2a

2a

i

satellite

perigee




2.2. Further geometry

perigee w is counted from ascending node to perigee. The sum of angle of perigee and
true anomaly is referred to as argument of latitude: © = w + v. This is a useful angle
for circular and near-circular orbits for which the perigee is not or weakly defined.

We can classify the 6 Kepler elements as follows:

a, e — size and shape of ellipse
), I — orientation of orbital plane in space
w, v — position within orbital plane

Another classification is the following:

a, e, I — metric Kepler elements
Q w, v — angular Kepler elements

The three angular Kepler elements are required for the transformation between the orbit
vector 7y in the epifocal frame and the vector 7; in the inertial frame:

rTy= Rg(w)Rl(I)Rg(Q)’rl 4 r; = Rg(—Q)Rl(—I)Rg(—w)’r‘f . (28)

For the inclination we have in general I € [0°; 180°]. Depending on the specific inclination
(range) the orbits are known as:

I =0° - equatorial, prograde
I <90° — prograde

I =90° — polar

I >90° — retrograde

I = 180° — equatorial, retrograde

Remark 2.2 A radial projection of the satellite orbit onto the spherical surface of the
Earth provides the ground track, which illustrates the spatial coverage of the mission.
In this mapping, the maximum latitude of the groundtrack is direct related to the incli-

nation:
_ 1, prograde
Pmax = { 180° — I, retrograde (2.9)

2.2.2. Back to the orbital plane: anomalies

From Kepler’s area law it was clear that v is not uniform in time. In order to describe the
time evolution more explicitly Kepler introduces two more angles: eccentric anomaly E

17

Perigaumswinkel

Bodenspur



2. The two-body problem

equator
d)miﬂ - / —————————————————————— & *******

prograde retrograde

Figure 2.7.: The inclination determines the maximum and minimum latitude that
ground-tracks can attain: ¢min, Pmax-

and mean anomaly M. The latter will be uniform in time, in the sense that we will be
able to write M = n(t — tp) later on.

eccentric anomaly Consider fig. with the epifocal f-frame and the eccentric z-
frame. In the epifocal frame the position vector reads:

7 COSV a(1 — e2)
) = 1 5 = 210
re(r,v) TSBHV r(v) Tp— (2.10)
Using the position vector in the eccentric frame we derive:
acos B acos E — ae
ry(a, E) = | bsinE = rf(a,E)= | avl—e’sinE | . (2.11)
0 0
The ratio of second and first component provides
rsiny  avl—e2sinE V1—e2sinE
= S tany = —— . (2.12)
7 COSV acos E — ae cosE —e
After some manipulation we determine the current radius:
r=|rsla, E)]
= Va2cos? E — 2a2ecos E + a2e? + a2sin E — a2e2sin E
= \/a2(C082 E +sin? E) — 2a2ecos E + a2e2(1 — sin? E) (2.13)

= \/a2 —2a2cos E + a2e?cos? E

—a—aecos k.

18



2.2. Further geometry

Yx Y

Figure 2.8.: Definition of eccentric anomaly E from true anomaly v. The geometric
construction is similar to the definition of a reduced latitude from a geodetic
latitude.

mean anomaly Neither v nor F is uniform (linear in time). Kepler therefore defined the
mean anomaly M. The following equation is usually referred to as the Kepler equation:

M =F —esinkE |. (2.14)

The mean anomaly is a fictitious angle. It cannot be drawn in fig. It can only be
calculated from E. But it evolves linearly in time. Thus one can write:

M:n(t_t())a

in which ty stands for the time of perigee passage, where v = FF = M = 0. This allows
us to calculate the orbit evolution over time, say from tg to t; by the following scheme:

At
—

r,vQty |—| a,e, ], w,Q, My a,e, l,w,QM; |—| r,vQt; |,

in which the time step At stands more explicitly for M; = My + n(t; — tg). The
(Cartesian) position and velocity vectors at t( are known as the initial state. In summary,
if one wants to know the orbital position and velocity as a function of time, one should
transform the initial state into Kepler elements. In the Kepler element domain, only the
mean anomaly M changes over time. To be precise, it changes linearly with time. After
the time step, the Kepler elements need to be transformed back to position and velocity

again (cf. fig. .

19



The two-body problem

initial values of
position & velocity

r(t,), Vilty)

numerical integration

A

positions & velocities
at all epochs

a, eI, Q, o, M(t)

ode-solver

Cartesian — Kepler
transformation
cart2kep

r(0), vi(0)

Kepler — Cartesian
transformation
kep2cart

Kepler elements
of the initial point

M(t)= M(t,)+n(t-t,)
fort=t,: At: T

A 4

ae I Q o,
M(0)

Kepler elements
of all orbital
locations

Figure 2.9.: Determination of a Kepler orbit based on initial positions and velocity.

Reverse Kepler equation For the reverse transformation of the Kepler equation ([2.14))
an iteration is required. We first recast it into £ = M + esin E, which on the first
sight is not helpful to calculate E¥ from M. However, since e is usually small, we can

approximate the true anomaly by the iteration F;;1 = M + esin E; :

Exercise 2.3 Determine the eccentric anomaly E and the true anomaly v, when the

Ey = 0
E = M

FEy = M +esinF;
Es = M +esinkEy

etc.

mean anomaly M = 70°4500 and the eccentricity e = 0.345 are given:

20

M= Ey =

70.45m
180

=1.229584

Ey =M +esin Ey = 1.554695
Ey=M +esin By =1.574539
Es =M +esin Ep = 1.574582




2.2. Further geometry

Ey= M + esin E5 = 1.574 581
E4 = 1.574581=9072168

For the true anomaly

vV1—e?sinFE ~0.938595

tanyv =

cosE—e  —0.348785
0.938 595
= arctan ————— = —1.21 =1.92 2110°3852
v = arctan — o 5006 + 7 926 586=110°385

the quadrant of the angle must be considered. In several programming languages, this
can be realized by the function atan2(.,.) with two arguments.

301
25
20
15
10

residual anomalies [deg]
o

0 30 60 90 120 150 180 210 240 270 300 330 360
mean anomaly M [deg]

Figure 2.10.: Differences of the anomalies £ — M and v — M for an ellipse with the
eccentricity e = 0.2. The three anomalies coincides only in perigee and
apogee, and the values differ up to 20°.

Remark 2.3 In satellite geodesy, it is very common to note down angles like inclination,
anomalies or latitude and longitude in degrees. However, the solution of the Kepler
equation is only meaningful if the angles ¥ and M are considered in radians.

Remark 2.4 For non-circular orbits, the numerical values of the three anomalies coin-
cides only in perigee and apogee (cf. fig. .

21



2. The two-body problem

2.3. Newton equations and conservation laws

Kepler’s laws provide a geometric and kinematic picture of orbital motion. Although
the area law hints at angular momentum conservation already and the third law at
gravitation, the concept of forces was unknown to Kepler. A dynamic description of the
Kepler orbit had to wait for Newton. Moreover, Kepler derived his laws empirically.

In this section we will take Newton’s equations of motion — in the inertial frame — for
the two-body problem:

GM GM GM

F=V—=——7r,or| ¥+ —5r=0 | (2.15)
r r r

and apply three tricks to it:
i) scalar multiplication with velocity: - ...,
ii) vectorial multiplication with position: r X ...,
iii) vectorial multiplication with angular momentum: L x .. ..

After a subsequent time integration we will end up with fundamental conservation laws
and, eventually, with the Kepler orbit. Thus, at the end of this section we will have
achieved a dynamical description of the Kepler orbit, based on a physical principle.

2.3.1. Conservation of energy

Trick 1: “r-| Newton [’.

Remark 2.5 If 7 = v and r and v are respectively the length of r and v, then 7 # v!
Instead, the scalar radial velocity is only the projection of the velocity vector on the
radial direction: 7 =7 -r/r = Te,.

o . GM
T+ —r=0
T

. GM,
<:>'v-'v+—3r~r:O
r

G
v -0+ —7 =0, (because rr =7 -r)
T

1d d ‘M
: <G> =0 (lucky guess)

r

22



2.3. Newton equations and conservation laws

e (L G
dt \ 2 r N

This demonstrates that the sum of kinetic and potential energy is constant: ¢ = FE.
Later we will evaluate the exact amount of energy using the vis-viva equation.

Figure 2.11.: Interpretation of 7 as projection of 7 in the direction r

Remark 2.6 Please be aware that in satellite geodesy the (gravitational) acceleration
is defined by ¥ = VV, while textbooks in physics prefer # = —VV with V = GTM We
also call the energy equation a sum of the kinetic energy and the potential energy, which
is somehow inconsistent.

2.3.2. Conservation of angular momentum

7

Trick 2: “rx | Newton

rxi;+—3rxr:0
r N
=0
<—rxr =20
<:>£('r><'ﬁ)—7‘°><7‘°+'r><'i‘—0
dt _\V-’ o

= rxr==c
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Laplace Vektor

2. The two-body problem

This demonstrates that the angular momentum L = r X 7+ is constant: ¢ = L. We have
more or less reproduced Kepler’s area law from Newton’s equation. Note, however, that
we have achieved here conservation of the 3D angular momentum vector. Not only are
the areas equal over equal times (one dimension), but also is the orbital plane constant
in inertial space (two dimensions). The latter will lead to Q2 and I.

Remark 2.7 The angular momentum is conserved not only in the Kepler problem but
for all radial symmetric force fields of the form F = f(r)r (see appendix [D)).

2.3.3. Conservation of orbit vector

Trick 3: 4 Newton |xL”.

‘M
7'°'><L+G—3r><L:
T

<—rx L =
N——
LHS

LHS : %(ﬁxL) =

GM
RHS : —3L><r:
T

LHS = RHS : —(rx L) =

= rx L =

0

I
r
———
RHS

rxL+rx_ L

=0
GM )
—(rx#)xr
,
GM . .
3 [(r ) —(r- 7)r]
GM , GM
— 1 = —5 7T
r r
M
G—?'“ — —-77, (lucky guess)
r r
dr
GM — —
dt r
M
G—r + B
,

The vector B is a constant of the integration. It is a quantity that is conserved in the
two-body problem. It is known as Runge-Lenz vector or Laplace vector. The above
derivation shows that B is a linear combination of 7 x L and r. Therefore B must lie

in the orbital plane.
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2.3. Newton equations and conservation laws

At this point we have conserved 7 quantities or parameters, £(1D), L(3D) and B(3D).
Given the fact that only 5 Kepler elements are constant, the 7 conserved quantities
cannot be independent.

The last equation can be written in a different form if we perform scalar multiplication

with the position vector: r - ..., which reduces 2 dimensions.
GM
r-(rxL)=—r-r+r-B (2.16)
r

Under cyclic permutatiorﬁ the left-hand side is equal to L - (r x#) = L- L = L?, leading
to

L? = GMr + 7| B|| cos o

L2
N GM

14+ —‘g)l Ccos «
If we now identify the following quantities:

L 1Bl _

a=v |,
then we obtain the polar equation of the ellipse (2.5) again:
rv) = —=

- 14+ecosv '

At the same time we have learnt that the Laplace vector B points towards perigee.

Remark 2.8 Effectively we have now solved the Kepler problem using Newton’s equa-
tion of motion. We have implicitly obtained Kepler’s laws.

2.3.4. Vis viva — living force

It was demonstrated that the total energy[] F is conserved:

1

,1)2_G7M:E

2 r
T+V =F.

SIn the scalar triple product a- (b x ¢) = ¢-(a x b) = b- (¢ x a) the vectors can be cyclically permuted.
"Please note, that the variable E can refer to the total energy or to eccentric anomaly. The meaning
shall be clear by the content.
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2. The two-body problem

We will settle now the question: How much is the constant energy?

Since the energy is constant along the orbit, we can evaluate it at a convenient location,
e.g. in the perigee:

L = ||L|| = rvsin @ = TapoVapo = TperVper
1 L? GM cg. L*> GM
2 r28in” « r 2rfey  Tper

Making use of

L2
p=a(l—e) == = L[> =GMa(l - ¢?)

- GM
we obtain
B GMa(l1-¢*) = GM
 2a%2(1—e)?2  a(l—e)
_ EGM 1+e GM

2 a(l—e) a(l—e)

:C&B(He)q]
__GM
2a

This energy level is historically known as the vis-viva equation:

E= 02— —=—-—"— (2.18)

Remark 2.9 The energy level only depends on the semi-major axis a but not on the
eccentricity e (cf. revolution time). This can be used for estimating the energy or
impulse of a transfer orbit (e.g. Hohmann transfer in Section

The scalar velocity v = ||v]| can be derived, when the current radius r is known:

1o GM_ _GM
2 ro 2a
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2.3. Newton equations and conservation laws

Remark 2.10 (Cosmic velocities) A satellite which falls on a circular orbit very close
to the surface of the central body —and without orbit perturbations—will show the first
cosmic velocity with r = a and vy = \/GM /a. If a space probe should leave the gravity
field of the central body, the semi-major axis must increase beyond limits (a — o). This
leads to the second cosmic velocity with vi; = /2GM/r = v7V/2, when starting from
the ground. In case of the Earth, the cosmic velocities are vy = \/GM /Rg ~ 7.91 km 51
and vy = vjv/2 ~ 11.18 kms~ L.

2.3.5. Transfer orbit

Every satellite will remain in its Kepler orbit forever, when orbit disturbances and or-
bit maneuvers are ignored. However, there are several reasons for moving a satellite
intentionally into another orbit:

e lifting onto operational altitude after rocket launch

elongating life time of the mission

lifting onto graveyard orbit

adapting ground track sampling

collision avoidance

For changing the orbit, a satellite must generate an impulse via propulsion. The propul-
sion is limited in magnitude of impulse and onboard fuel. Hence, the epochs of the
impulses and the transfer orbit must be chosen carefully.

Hohmann transfer orbit

A Hohmann transfer brings a satellite from one circular orbit into another co-planar
circular orbit by two so-called Awv-thrusts. The first thrust—a short engine burn at
perigee of the transfer passage—brings the satellite into an elliptical transfer orbit. A
second boost at apogee circularizes the orbit again. It is assumed herein, that the impulse
is acting instantaneously on the satellite’s orbit, and that a boost occurs in negligible
time.

The circular initial orbit in fig. is a low-Earth-orbit (LEO) with radius R; and the
satellite should be transferred to a geostationary orbit (GEO). The energy is found via
the semi-maior axis and the vis-viva equation:
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2. The two-body problem

parking GEO

>

Earth /,
/

Figure 2.12.: Hohmann transfer between two circular orbits.

M
Orbit 1 (circular LEO): a3 = Ry E, = _GM
2Ry
M

Orbit 2 (transfer ellipse): ag = @ Ey = _(R1G+R2)
GM
Orbit 3 (circular GEO): a3z = R» Es = ~op
2

7

The quantity Av also known as “Delta-v” is used as scalar measure of impulse per unit
of spacecraft mass in flight dynamics. In a Hohmann transfer we have 4 phases:

1. vy = \/GM (R% - R%) = \/%\f on the circular low-Earth-orbit with r = a = R;

before the perigee boost.

2. vy = \/GM (Rl1 — m) in the perigee of the transfer ellipse with a = %
after perigee boost.
3. vz = \/GM (R% - m) in the apogee of the transfer ellipse with a = %

before apogee boost.
4. vq4 = % on the final circular orbit after apogee boost.

The necessary impulse per unit mass is now given by

Av = (vg —v1) + (vq4 — v3) .
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2.3. Newton equations and conservation laws

Exercise 2.4 The Hohmann transfer of a satellite between circular LEO with r1 =
6800km and a circular GEO with ro = 42000km requires the following changes in
velocity:

2 1
= — — —— | =10044.
V2 \/GM (7‘1 " +r2)/2) 0044.8m/s

2 1

‘M
vy = G— = 3080.6m/s
T2

and in total Av = (vy —v1) + (v4g — v3) = 3842.9m/s.

Remark 2.11 The Hohmann transfer is optimal for co-planar and circular orbits if the
ratio ro : r1 < 11.94 holds. If the ratio is larger a so-called bi-elliptic transfer might
perform better.

Remark 2.12 Thrusters can only deliver a limited amount of Av. The Hohmann trans-
fer can be applied in successive steps, leading to phase of apogee raising with small
perigee boosts at every perigee passage. In the second phase, when the right altitude
has been achieved, the orbit is circulated by a sequence of apogee boosts.

Remark 2.13 The concept is reversible, i.e. the calculation can be used for moving to
a lower orbit, but the propulsion must fire in opposite directions then.

Bi-elliptic transfer orbit

A bi-elliptic transfer brings a satellite from one circular orbit into another co-planar
circular orbit by three Awv-thrusts and via two subsequent elliptic transfer orbits. In
opposite to intuition, the first ellipse has a semi-major axis which is larger than the final
circular orbit.

We can reformulate the calculation:

1. Avpy = \/GM (R% — %) — 4/ GR—]\I/[ is the impulse for moving the satellite from the

initial circular orbit with radius » = R; to an elliptic orbit with semi-major axis
a; = @ by a boost in the perigee.
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2. The two-body problem

Bi-elliptic transfer

Figure 2.13.: Bi-elliptic transfer (in gray) between two circular orbits (in black).

al

2. Ay, = \/GM (r% - %) — \/GM (% — i) is the impulse for moving the satellite

from the first ellipse onto another with semi-major axis as = % by a boost in
the apogee

az

3. Avyy = \/GM (R% — i) — \/% is the impulse for moving a satellite from the

second ellipse onto a circular orbit with radius r = Ry with a boost in the perigee.

The “radius” 7, is the maximum distance between the central mass and the satellite.
This value is a degree of freedom in the calculation.

Exercise 2.5 Verify that a bi-elliptic transfer with R; = 6800km, Ry = 93800 km and
ry, = 40R; requires a smaller total impulse than the corresponding Hohmann transfer.
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2.4. Further useful relations

2.4. Further useful relations

2.4.1. Understanding Kepler

Epifocal; r, v

7 COSV 7 CcosSV — rvsinv
rp=| rsinv 7= | 7sinv+rcosv
0 0
0
Lf:rfxf'f: 0 rfoi“f:w"
r2u
Eccentric; a, E
acos FE —aEsinE ' n
ry = | bsinE o= | bEcosE F=——
1—ecosFE
0 0
Epifocal; a, £
acos F — ae —aEsinE
ry=|avl—e?sinE 7= | avl—e2FEcosE
0 0
L = |rx7||=|Ls=sl

= a’cos’ Ev/1— e2F — a%e\/1 — e2Ecos E + a®\/1 — e2Esin®’ E
= a*V1—e2E —a%e\/1 —e2Ecos E

= a*V1-e2E(1 —ecos E)
2

L
from (2.18)) we have: af = P= a(l —€?)

L = /GMa(l—e2)
— /GMa(l — €2) = a*\/1 — e2E(1 — ecos E)
GM .

3 = E(l—ecosE)=n
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2. The two-body problem

If we integrate the last line w.r.t. time, we obtain the Kepler equation M = F —esin E.
Hence, the equation, which popped up in page is a consequence of Kepler’s laws!

Now: 7 -7 = —a®cos Esin EE + a’eEsin E 4 a*(1 — ¢?)Esin E cos E
= a?eEsin E — a?e?Esin E cos E
= d®eEsin E(1 — ecos E)
= d’ensin E
Together with r - 7 = r7* we obtain

ri- = a’ensin E = VGMaesin E (2.19)

2.4.2. Partial derivatives v < FE < M

Goal:
ov B ov OF

OM — OE OM
The first part at the right side is difficult. We need to get back to the expression of the
radial distance, both in terms of true anomaly v and of eccentric anomaly E.
a(l —e?) or a(l—e?) r?esinv

r(y)zl—&—ecosu BV:(l—i—ecosy)Qesmyza(l—eQ)

r(E)=a(l —ecos E) = 36; =aesin £

Thus, we get:
ov v or a(l-—e?)
OFE  0Or OF r2siny o
Remember that the y-coordinate in the epifocal frame can either be expressed as yy =
rsinv or as yy = bsin E. Therefore, we end up with
v _a(l-e) b _b
0E rb b7
The second part at the right side of the equation above is easily obtained from Kepler’s

equation:

oM
M:E—esinEia—Ezl—ecosEzg

Combining all information, we get:

v _ v OE _ab
OM  OEOM  r2
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2.5. Transformations Kepler «— Cartesian

2.5. Transformations Kepler +— Cartesian

2.5.1. Kepler —» Cartesian

Problem: Given 6 Kepler elements (a,e, I,w,Q, M), find the corresponding inertial
position r; and velocity 7.

Solution: First get the eccentric anomaly E from the mean anomaly M by iteratively
solving Kepler’s equation:

E—esinE=M = E;;1 =esinFE; + M , with starting value £y = M (2.20)

Next, get the position and the velocity in the epifocal f-frame, which has its z-axis
perpendicular to the orbital plane and its z-axis pointing to the perigee:

a(cos E —e) na —sin F
rr=|avl—e?sinE | , ﬁf:ﬁ V1—e?cos E (2.21)
0 € cos 0

In case the true anomaly v is given in the original problem instead of the mean anomaly
M, the vectors 7y and 7 are obtained by:

7 COSV na —sinv
ry=| rsinv | , Py = ——— | etcosv (2.22)
0 V1—e 0
with ( 2)
a(l —e
= "/ 2.23
1+ ecosv ( )

The transformation from inertial i-frame to the epifocal f-frame is performed by the
rotation sequence R3z(w)R1(I)R3(§2). So, vice versa, the inertial position and velocity
are obtained by the inverse transformations:

r; = Rg(—Q)Rl(—I)Rg(—w)’I‘f (2.24)
7.’1‘ = Rg(—Q)Rl(—I)Rg(—w)’f“f . (2.25)

In particular, we find by multiplication of the rotation matrices
R3(—Q)R1(-I)R3(-w) = (2.26)

cosw cos ) —sinwsinQcos] —sinwcos{) — coswsin{2cosI sinlsin)
coswsin ) + sinwcosQcosI —sinwsinQ 4+ cosw cos 2 cosI —sin I cos
sin [ sin w sin I cosw cos
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Gauflvektoren

2. The two-body problem

and for the position

cosu cos ) — sinusin 2 cos 1
ri = R3(—Q)Ri(—I)R3(—w)ry =7 | cosusin) +sinucosQcosl | .  (2.27)
sin I sinu

Remark 2.14 Please not that the direction towards the satellite in equation is
also the first column of the rotation matrix @) for v = 0°. The second column of
the matrix can be found from the first one by differentiation w.r.t. w, or by inserting
v = 90°. The third column of the rotation matrix is orthogonal to the orbital plane.
Hence, these three vectors form an orthogonal triad related to the Kepler orbit, which
is also labeled as Gaussian vectors (Montenbruck and Gill, 2001, p.27)

2.5.2. Cartesian — Kepler

Problem: Given a satellite’s inertial position r; and velocity 7;, find the corresponding
Kepler elements (a, e, I,w,, M).

Solution: The angular momentum vector per unit mass is normal to the orbital plane.
It defines the inclination I and right ascension of the ascending node 2:

fanQ — =1 (2.29)
—Li—2
L2 + L2
fanf = YL 72 (2.30)
Li—3

Rotate r; into the orbital plane now and derive the argument of latitude u:

r, = Rl(I)Rg(Q)T‘Z (231)

T'n=2

tanu = tan(w+v) =
T'n=1

The semi-major axis a comes from the vis-viva equation and requires the scalar velocity

v = ||7*||. The eccentricity e comes from the description of the Laplace-vector and needs
the scalar angular momentum L = ||L||:

roy-v M _ G (2.33)

34



2.5. Transformations Kepler «— Cartesian

Figure 2.14.: n-frame

Figure 2.15.: The angular momentum vector L defines the orientation of the orbital

plane in terms of 2 and 1.

(vis-viva equation)

(Laplace vector)

@

B GM r

- 2GM — rv?
12

" GMa

(2.34)

(2.35)
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2. The two-body problem

In order to extract the eccentric anomaly F, we need to know the radial velocity first:

r-Tr
= 2.36
P " (2.36)
cosE=2"" (2.37)
ae
sinf = — (2.38)

evGM a
The true anomaly is obtained from the eccentric one:

vV1—e?sinF

t = 2.39
anv cosE —e ( )
V1 —e?si
tan = Y~ 0F (2.40)
cosv + e

Subtracting v from the argument of latitude u yields the argument of perigee w. Finally,
Kepler’s equation provides the mean anomaly:

E—esinE=M (2.41)

Exercise 2.6 The initial values of a satellite orbit are given by

<—11 092826.57) . (—1 883.7915) m
0 = m ’[‘0 =

2174279.13 ~5207.2702 ) s

in its orbital plane. Determine all possible Kepler elements.

1. complement the vectors to 3D form (for the latter cross product)

—11092826.57 ~1883.7915\
ro = 217427913 | m o= | —=5207.2702 | =
0.00 0.0000 / ®

2. norm of vectors:
r = |lrol = 11303906.01m v = ||iv|| = 5537.5385?
3. specific energy: E = %02 — % = —19930025 é

(negative energy implies an elliptic orbit)

4. angular momentum: L =7 x 7 = (0, 0, 61859233775) =
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2.5. Transformations Kepler «— Cartesian

5. semi-major axis: a = —$4 = 10000000 m

6. parameter of the ellipse: p = ”g’—l\lf = 9600000 m

Pt o — _ 96 __
7. eccentricity: e = \/1 — £ = \/1 — 100 = 0.2

8. radial velocity: 7 = ¥ = 847.009

T

9. eccentric anomaly:

o _0.651953

cosE =
ae

T
sin F = ——— = (.758259
evGMa

E = atan2(sin E, cos E) = 2.280953=130268901

10. true anomaly: tany = Y= SnE — , — 9 494440=138°91018

cos E—e
11. If we assume, that the vectors are given in the n-frame, we can calculate also the
argument of latitude and the angle of perigee:

U = atan2(2 174279.13, —11092 826.57) = 2.94803=168°91018
w = u — v = 30700000

The angle I and ) cannot be determined as the vectors are in the orbital plane.
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3. Introduction to perturbation theory —
Lagrange Planetary Equations

3.1. Representation of orbit perturbations

In the Kepler problem, a satellite falls around a central body on a conic section. Both
objects are considered as point masses (or spheres with radial symmetric density) with
gravitational attraction between them. All other forces are ignored. The potential
V= GTM leads to Newton’s equation of motion # = VV = GM 257 in the inertial frame
and the solution is called a Kepler orbit.

If any force influences the satellite motion, we will observe orbit perturbations. Orbit
perturbations can be investigated in two forms:

1. disturbing force
%:——r+2f (3.1)

Disturbing forces f, can depend on position and velocity of the satellite, but also
on time or other parameter like the density of the atmosphere. (Any effect can be
written in this form)

2. disturbing potential

V = GTM + R(r,t) (3.2)

. GM
=7 =VV = i + VR(r,t) (3.3)

Disturbing potentials R(r,t) can depend on position or time, but not on Velocityﬂ

!Unfortunately, the symbol R is used by convention for the disturbing potential and the radius of the
central body (and also for rotation matrices) in satellite geodesy.

Bahnstorungen

Storkraft

Storpotential



3. Introduction to perturbation theory — Lagrange Planetary Equations

Version 1 is possible for all forces, while version 2 requires a conservative force field with
a corresponding potential. Hence, we distinguish between:

Volumenkrifte, e conservative forces, acting on volume or center of mass

konservative Krafte = (in-)homogeneous gravity field represented by Kjn,-coefficients (in Chapter [4] [f]
and , gravity of other celestial bodies, and relativistic effects
(The magnetic field is also a conservative vector field with a potential, but its
impact on orbits is usually neglected.)

Oberfléchenkriifte, e non-conservative or dissipative forces, acting on surfaces (of the satellite)
Reibungskrifte = atmospheric drag, solar radiation pressure, albedo (in Chapter [5)

Order of Magnitudes

The order of magnitude of all orbit perturbations in different orbital heights is presented
in fig. [3.1] Details will be discussed in the following sections and chapters.

Let us collect some first information from the figure:

e The axes are in a log-log style, which leads to straight lines for all functions of the
form y = az®. In a strict sense, only the central term is exactly radial dependent,
for the other accelerations averaged values are presented.

e The main acceleration of a satellite motion is the —GTA:? -term of the central mass,

which is labeled by GM in the figure.

e The non-homogeneous gravity field of the Earth is modeled by a (generalized)
Fourier series (see Chapter @ A few components are labeled here by their coeffi-
cients {J20, J2.2, J6.6, J18,18}. The dominant orbit perturbation is the flattening of
the Earth corresponding to the disturbing potential

GM _ (R\?
RQ’O(T, )\, 9) = *TJQ ( ) J2P270(COS 9)

r
e The forces of other celestial bodies (Moon, Sun, Venus and Jupiter) depend on
their distance to the satellite. The acceleration of the Moon is larger than the

corresponding value of the Sun. For the planets, these forces differ significantly
during a year, which is not shown here.

e The drag describes the acceleration due to the atmosphere, up to a distance of
r = 780km. As the atmosphere is very variable, maximal and minimal acceleration
are visualized.
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3.1. Representation of orbit perturbations

10 T T T IR T T T T IR

‘Lageos GPS: TDRS!

Iridium
(780 km)

107

= : :
£ 1010 : -
£ L Solar :
< Dynamic Radiation :
5 Solid Tide  Pressure :
. Albedo
Jupiter
-15
1077
Jls.xs
10200 | I Lt ! ! L

6.4 7.8 9.6 11.8 14.5 17.9 21.9 27.0 33.1 40.7 50.0
Distance from the center of the Earth [1000 km]

Figure 3.1.: Order of magnitude per orbit perturbation type in different orbital heights
(Montenbruck and Gill, 2001}, p. 55).
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Oskulierende
Keplerelemente

3. Introduction to perturbation theory — Lagrange Planetary Equations

3.2. Osculating Kepler elements

3.2.1. Effect on Kepler elements

All orbit perturbations are small compared to the acceleration of the central body.
Hence, the orbit differs only slightly from a Kepler orbit. At each epoch, we can calculate
6 Kepler elements based on current position and velocity. Any (subsequent) location will
produce another set of Kepler elements. All elements are now time-dependent:

{r(®),7(t)} < {alt),e(t), [(t), 2t), w(t), M (1)}

For a given epoch, we can draw the orbit and the Kepler ellipse, and the curves coincide
in most cases only in one location and adapt to each other in the close surrounding,
which is rephrased as osculating ellipse or osculating Kepler e]ementsﬂ A time series of
resulting Kepler elements may consist of

e short-time periodic perturbations, often with frequencies like once per revolution
or twice per revolution,

e long-time periodic perturbation with periods ranging from sub-daily to months,

e secular effects, often in the form of a linear trend.

3.2.2. Investigation of orbit perturbations

Orbit perturbations can be investigated in two ways:

e Numerical integration of the force model provides a time series of Cartesian
positions and velocities. The method can be applied for several orbit perturbations
in one “run” and can consider very complex models. For a better understanding,
the solution should be converted to Kepler elements.

e Analytical solutions, i.e. closed formulas for the variable Kepler elements depen-
dent on the disturbing forces, are only possible for certain orbit perturbations
and require the Lagrange planetary equations (cf. section or their Gaussian
counter part. In particular, the long term effects caused by the inhomogeneous
gravity field of the Earth are described and analyzed in this way.

Exercise 3.1 Use the vis-viva equation to investigate how an extra impulse in flight
direction influences the semi-major axis a.

20s, oris (lat): mouth; osculum: small mouth, kiss
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3.3. Canonical Equations

The vis-viva equation provides a relation between scalar velocity and the semi-

major axis:
2 1
v2:(MI<——>
roa

An impulse in flight direction will not effect the current radius r. The total derivative
provides then

o2r—1 da~t GM

= — = —(— -2 = —
2vdv—GM< o dr %a da) GM (—(—a*da)) 2 da

2

2a
= da = G—MU dv

e A positive impulse in the flight direction (dv > 0) will increase the semi-major
axis, and the effect depends on the current size of the ellipse.

e The change da in the semi-major axis will be maximal, when the velocity is max-
imal, i.e. in the perigee.

3.3. Canonical Equations

Newton’s equations of motion # = VV are a set of three coupled differential equations
of 2" order. Using the components of position and velocity as variables, the equations
are rewritten as ODEs of 15 order.

=7
{ v=VV (3-4)
The sum of potential and kinetic energy

F::T—V:%v-v—V(r) (3.5)

is also known as force function F' or Hamiltonian (often written as H), although it is
not a force in a physical sense.

We can combine the differential equation and the derivatives of the force function F to
obtain the system

. OF _oT
"Tow v
(3.6)
. OF ov
== ——
or or
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3. Introduction to perturbation theory — Lagrange Planetary Equations

Written out in 6 dimensions one obtaines the matrix-vector form

T 0 0 0j100 OF /0ry
79 0 0 0010 OF /Ory
r3 | 0 0 0001 OF [Ors (3.7)
| | =10 0000 OF /v, ‘
U 0 -1 0000 || 0F/dvs
U3 0 0 —-1000 OF /0vs
Y (01 VpF .
:><1';)_<—IO) (VUF):S—JVSF. (3.8)

Any equation of motion that can be brought into this form is called a canonical equa-
kanonische Gleichung  tion. The variables » and v are correspondingly called canonical variables. The skew-
kanonische Variable symmetric structure, represented by the matrix J, is called symplectic. In its most

general form, in which the canonical variables are not the Cartesian position and veloc-

ity anymore, the canonical equation read:

OH
G = , generalized coordinates
Op;
. OH .
pi = — generalized moments
dq;

3.4. Crash course LPE

Starting from the Newton equations in the form of eqn. (3.6)) we now want to address the
question: Can we find a set of 15¢ order differential equations for the Kepler elements,
which relates their variations to a force function F'7

_oF
r_ﬁ'v

— § =7
. or
v or

s:(aeIQwM)T
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3.4. Crash course LPE

The differential equations are found by using the Hamiltonian F' =T — V:

dt  9s dt "= 8_817
dv_ovds i oF
dt  0s dt v=As= or

We want to solve for the vector s, but the matrices A, A € R3%6 cannot be inverted.
Therefore we apply the following trick:

ATr = ATAs = ATB—
ov
. F
ATo=ATAs = ATa—
or

Note that ATA and ATA are 6 x 6 matrices of rank 3 each. We combine them into
ov . 0T

AT— — AT —
or ov

. TOF oF
= [ATZ— L ATZZ
( ov * 87‘>

(ATA _ ATA) 5 =

The composite matrix at the left is abbreviated as L, yielding

OF
Ls = ~ 58 L = matrix of Lagrange brackets {sg, s;}
s
{5k, 51} = 3 %(%i B or; 0v;
o 21 881 8sk 8Sk 831

=1

with s = (a el Quw M )T. After inversion of L we obtain the desired result

oF
R s |
s=-L s

which is called Lagrange Planetary Equation.

Properties L

e antisymmetric:
LT = —L — 15 independents elements
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3. Introduction to perturbation theory — Lagrange Planetary Equations

e time invariant:

L = ATA-ATA=0

. 0v; oV
A_- = t =
ik 8sk ar,;ask
- or; 0°V 0’V
ATA) = - = i
( )lk Z 0s; Or;0s; 8slask symumetric

— evaluate e.g. in perigee

Exercise 3.2 Determine the Lagrange bracket {a,e}.

For the Lagrange brackets, the position and velocity are represented in the epifocal frame
with a subsequent rotation r; = R(w,I,Q)ry and 7; = R(w,I,Q)7y into the inertial
frame.

{a.c] = é Ot Ot — Ot Ot =
= (50 () - (30 () =

= (R%2) (R%E) - R (R%Y) =

%) RTR(G2) - (3) RTR(FY) =
= (50 (%) - 0" (%)

An evaluation in the perigee simplifies the calculation, as the vectors

—

_ a(1—€?) Cf)SV _ a(1—€?) !
Ty ~ l4ecosv Slgl/ = 14e 8
v=0
—sinv 0
f*f:\/% e+gosu :\/?117(1—1—6) [1)
v=0

are orthogonal. A differentiation w.r.t. semi-major axis or eccentricity will not change
the orthogonality. Hence, we find the Lagrange-bracket {a,e} = 0.

LPE

OF
1
-L s

L~! = matrix of Poisson brackets [sg, 5]
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3.4. Crash course LPE

e equations of motion in s e.g. in Kepler elements

6 ODE of 1%% order

e non-linear

coupled

The equations of motion with disturbing potentia][ﬂ R in Cartesian coordinates are:

G

M

After transforming position r and velocity 7 into Kepler elements, the equations of
motion are called the Lagrange Planetary Equations (LPE):

2 OR
1= 1
@ = — o7 (3.10a)
1—¢?0R 1—¢e20R
s L-@OR V1-cOR (3.10D)
nae OM nale Ow
i= cos 1 OF _ ! oRr (3.10c)
na?v/1 —e2sinl 0w na2y/1 — e2sin I 052
. 1 OR
0O — i 3.10d
na?v1 — e2sinl 01 ( )
1 V1 — e?
o= OR | v1—¢'0R (3.10¢)
na?v/1 —e2sin I 01 naZe Oe
, 1-e2dR 2 OR
M=n— 27 .10f
" hale Be  na Oa (3.106)
The differential equation can be re-written into a matrix vector form:
a 0 0 2 OF [0a
e 0 0 ¥l g OF /de
d T o 1 cot I 0 aF/al
— = nabsin [ nab
al o OF /00 (3.11a)
w anti-symm 0 OF /0w
M OF /]OM

Please note, that we switch the representation from the disturbing potential R to the
complete Hamiltonian

3This implies that only gravitational forces can be treated in the following. For dissipative forces, the
Gauss form of the equations of motion should be used. To reduce confusion with the Earth radius,
we note down the later one by Rg in the following.
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3. Introduction to perturbation theory — Lagrange Planetary Equations

with

20F _20{-5% R} 20{-%} 20R_  20R .,
na da  na Oa " na Oa na O0a -n na Oa '

Remark 3.1 Kepler elements are not canonical variables, but the matrix is still anti-
symmetric and relative sparse.

The LPE will be used in sections [4.2) and [7.2] for analyzing the orbit perturbation due to
the inhomogeneous gravity field of the Earth. For non-gravitational orbit perturbations,
the Gauss representation of LPE is introduced.

3.5. Gauss form of LPE

The LPE describe perturbed motion as long as the force can be written as the gradient of

a potential and with the Kepler elements as variables. For non-gravitational forces, e.g.

solar pressure or air drag, Gauss found an alternative form. To simplify the modelling,

we introduce two rotating coordinate systems with the origin in the center of the satellite:
e Hill-frame (2,31, 21) (H-frame):

— 2. radial component is parallel to =

— yH: cross-track component is parallel to L

— 2H: complements the RHS and points quasi-along track

e tangential frame (z°,4°, 2%) (t-frame)
— 2% along-track component is parallel to v

— y% cross-track component si parallel to L

— 2% complements the RHS and is quasi-radial component

For non-circular orbits the two systems differ by a rotation around the common y-axis.

LPE in Gauss form in Hill frame

When the (specific) force f = ( fi, fo, f3 )T is expressed in the Hill-frame, the Gauss-

form of LPE are the following equations
. 2 . p
a = ——= |esinvfs + — ) 3.13a
s (esinvfs + T (3.13a)

é = 1n;62 (sinvfs + (cos E + cosv) f1) (3.13b)
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3.5. Gauss form of LPE

H = Hill-triad
t = tangential triad

Figure 3.2.: Hill-triad H, tangential triad t.

= cos(w + 1) fa (3.13¢)
nab
Q= L sin(w + v) fo (3.13d)
nabsin I
/1 — e2 .
o=y (—cosyf3+ <T+1> sinyf1> —cos I (3.13e)
nae D
. 1 /2r 1—¢€2 1—e2 r\ .
M=n——|—-— cosv | f3 — 1+ —)sinvf; (3.13f)
na \ a e nae D

In the formula we have considered:

r= —L2 P 1 4ecosy
1+ecosv r

L2

GM
— L =+/pGM = /a(1 — €2)n2a® = nab

a?—a%? = V¥ =aV1l—-e2=b

p = a(l—¢€?)and p=

Exercise 3.3 Assume a constant or a periodic (“once per revolution”) component in
the force f given in the Hill-frame. How will the Kepler elements a, I, or ) change due
to this force?
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3. Introduction to perturbation theory — Lagrange Planetary Equations

For near-circular orbits (e =~ 0) the Gauss LPE reduce to:

2

1= — 3.14

@=—f (3.14a)
1

é = i (sinvfs +2cosvfi) (3.14b)

. 1

I = —cosufs (3.14c¢)
na

Q= e ufo (3.144)

LZ)—FM:Tl—ifg—COSIQ (3.14e)
na

Attention: The atmospheric drag is an orbit perturbation, which acts in flight direction,
i.e. in tangential direction. In the tangential frame the force vector has only a first non-
zero component:

fi

drag
. o=120

0 t

To use the previous formulas, we must rotate the system from the tangential frame to
the Hill-frame via a rotation matrix:

d d
W = Ra(—r)f18

The matrix itself is expressed in Kepler elements

esinv
= Ra(k with tank = ——
e (k) f i 1+ ecosv
l+ecosv —esiny 0 i
V1+e2+2ecosv V1+e2+2ecosv coSHr Y TSR
Ry (r(v)) = 01 0 SRl =| 0 10
esiny ltecosv sink 0 cosk

V1+4e24+2ecosv V1+e242ecosv

Exercise 3.4 Verify, that the matrix Ro(k(v)) is a rotation matrix. Check its determi-
nant and the orthogonality.
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3.5. Gauss form of LPE

LPE in Gauss form in tangential frame

The previous rotation can be avoided by using the representation of the Gauss’ LPE
directly in the tangential frame:

2a2v
V= 1
“= G (3.152)
) 1 /7 .
‘T (asm% +2(e +cos u)f1> (3.15b)
I= Jcosufy (3.15¢)
. r X
= Tang el (3.15d)
: 1 r . rcosl .
w = o (— (Ze—i- g> cosv fg + 2S1n1/f1) ~ Tsinl sinu fo (3.15¢)
. b1
M=n+-—— <rcosyf3—2<1+€2r> sinyf1> (3.15f)
a ev a P

In the formula we have considered:

L:nazm = nab
b _ 1+ ecosv

r

v = i\/1+e2+2ecosu
U =w+v

Exercise 3.5 Most geosynchronous satellite are injected by a rocket into the ‘“stan-
dard geostationary transfer orbit” (GTO) and continue their journey with subsequent
Hohmann transfers. Due to malfunction of Arianne 5, the telecommunication satellite
Artemis was injected into an elliptic low-energy orbit (hper = 592km,hapo = 17528 knﬂ)
below GTO in July 2001. The onboard chemical propellant was not enough to reach
the geostationary orbit, but the satellite could be lifted into an orbit 5000 km below the
GEO via 5 perigee boosts and 3 apogee boost and a series of engine burns. Luckily,
the satellite also carried experimental ion thrusters, which were now used to alter the
semi-major axis by permanent thrusts (= 10 &3 ) (Oppenhauser and Bird, |2003). Which
time is necessary to lift the satellite into its geosynchronous orbit? Which changing rate
could be observed for the semi-major axis?

4spaceflightnow.com/arianne/v142/01073followup.html
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3. Introduction to perturbation theory — Lagrange Planetary Equations

e geostationary — one revolution per (sidereal) day:

5 T\? 3 (86164 )2
acro = \|GM <> — {’/3.986005 o1 2 % = 42164 km
27 S 47
GM km?

Egro = = —4.726 ——
2aGEO s2

starting ion thrusters

Qion = agro — 9000 km = 37164 km

M km?
B o= M g
2aGE0 s2

differences in velocities are relative small

GM
VGEO = — 3074 2
AGEO S
GM
Vion = — 32742
Qion S

and can be replace by the average v = 3174 ¢
permanent firing of ion thrusters
AE:/f-ds:/ f d5:/fvdt%vat
~~
S

along—track

(The acceleration is considered to act only and always in flight direction.)

transfer time

L JAB] 5362 km?® 4,726 b
fo 10-1076 53174 %

LPE in Gauss-form

2 a3 m km
1= —f1 =24/ 22 =022 — ~ 19 —
¢ nfl GM S day

A

~ 20030518 s ~ 231 days

(3.16)

(3.17)

According to|Oppenhduser and Bird (2003) the “lifting rate” might reach 20 é‘Tmy in best

scenarios with an average value of 15 é‘Tm. The ion thruster started in 19 February 2002
and finished their firing in 31 January 2003. This is longer then our estimation, but
three out of four thruster units failed during the journey.

Changing the satellite’s maneuvers in space required “largest” software patch of onboard
systems so far with more than 15 000 words of code!
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4. Orbit perturbation due to Earth
flattening

The main deviation from a central gravitational field V = GTM is caused by the dynamic

flattening of the Earth. In the GRS80 normal field the flattening is represented by the
dimensionless constant Jo = 1.08263 - 1073, while the central term has the numerical
value Cpo = 1. For actual gravity fields, the flattening is represented by the spherical
harmonic coefficient Co g = —Jo.

4.1. Qualitative assessment

In a thought experiment, we want to understand the Js-effect on the ascending node
without calculations.

The gravity of a reference ellipsoid can be replaced by a mass in the center and an
additional ring in the equatorial plane representing the difference between sphere and
ellipsoid, i.e. the equatorial bulge.

A satellite is now attracted by the point mass and the ring. Considering the differences
in magnitudes and the directions, the satellite gets an extra force F' pulling towards the
equatorial plane in almost all locations of the orbit.

A force acting with a distance r on a rotating object leads to a torque T'= F xr = %,

which changes then the angular momentum L, i.e. the orbital plane.
Now we imagine the figure of the modulus of the torque ||T’|| for one revolution:

e The figure will show a maximum, when the argument of latitude is v = 7/2 and
the satellite has the largest distance to the equatorial plane at its northernmost
point.

e In the opposite location u = 37/2, both the force F' and the radius = change their
sign and the term ||T’|| has another maximum.

e The minimum is obtained, when the satellite is in the equatorial plane with v = 0

Aquatorwulst

Drehmoment

Drehimpuls



4. Orbit perturbation due to Earth flattening

\"\ .F - V Rut

Figure 4.1.: Torque on a satellite orbit.

(ascending node) or u = 7 (descending node) as force and radius are parallel here.
e The average value T, will be a positive.

If we assume a circular orbit, the sum
T =||T| =T, + T,sin(2nt)

with two maxima and two minima per revolution (and with ¢ = 0 in the ascending node)
fits to the previous facts.

Exercise 4.1 Which torque will occur, when the satellite orbit remains in the equatorial
plane with inclination I = 07

4.2. Quantitative assessment

To analyze the effect, the gravitational potential must be complemented by the so-called

CQ’O-teI'H]HI

F=T-V
5’0 - T - R2,0(r7 ¢7 >\)

The modeling of the gravitational potential will be part of Chapter @ For the moment, we have to
accept, that a complicated gravity field can be represented in a kind of Fourier series in 3 variables,
ie. (r,\, ¢). In East-West direction the basis functions are trigonometric functions {cos mA, sinmA},
as the field must be continuous after one revolution. In radial direction the inhomogenous structure
must get damped for large distances, but the exact form {r_(”+1)} cannot be explained for now. In
North-South direction, the basis are the Legendre functions P, ., (sin ¢).
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4.2. Quantitative assessment

GM GM (Rg

3
= —Z — R7E <7‘> 02’0P2’0(81H¢) .

The non-normalized Legendre function is of the form P o(sin¢) = %(3 sin? ¢ — 1). The
argument sin ¢ must be expressed here in Kepler elements for differentiation. In a
spherical triangle we find the relation sin ¢ = sin I sin u.

1GM (Rp\®
Ropo = 2 Ry (rE) C2,0(3 sinusin® I — 1)
z
Simp:%
sinp=sinusinl

Figure 4.2.: Relation between latitude ¢ and the Kepler elements I and « in a spherical
triangle.

Inserting the potential Ry into the LPE leads to
1 8R2,0
nabsinl 0Ol

1 1 n?d ’
- - na <RE> Cs02-3 sin®w  cosIsinl
r ’ W—/

0=

2 nabsin I Ry
%(lfcos(Qu))

3a?n [ Ry 2
=———|—] CycosI(l—cos(2u)).
5 (B2 cancos 11 cos2a)
The rate of the ascending node varies with two osculations per revolution, but it also

shows a constant term, which coincides with previous qualitative analysis.

The time variable ascending node can be found by integration, i.e.

Q(t):Qo+/ Qdt.

70
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sekularer Trend

4. Orbit perturbation due to Earth flattening

The oscillating component cos(2u) will cancel out, when we integrate the effect within
one or multiple (integer) revolutions.

The constant term in the disturbing potential Ra generates a secular trend
. 3 Oy Rg\?
Q=-n—"5|—) cosl 4.1
2 (1—e2)2\ r (4.1)
which corresponds to a long-term linear trend in the ascending node

Q(t) = Qo + Qt — to) .

In the following, we are only interested in the secular effect of the Earth’s flattening,

which is parameterized by the unnormalized coefficient Coq = —1.08263 - 1073, The
equations of motion (3.10a)) to (3.101f) reduce to:
a=20 (4.2a)
e=10 (4.2b)
I=0 (4.2¢)
. Sanga]%: 2 oY 2
w:m(1—5cos I) :nﬁ (1—5COS I) (42d)
. 3n020a]23 K
Q= m cos [ = 2771? cos (426)

M _M(SCOSQI—U_ - \/1—72i (Beos® I —1)  (4.2f)
b= 4(1 _ 62)3/2a2 =n n € aQ .

3027()@%
4(1 — e2)?

Discussion The flattening of the Earth has no secular effect on the shape and size of
the orbit (a and e). The inclination of the orbital plane remains constant, too (I). There
will be a precession of the orbital plane, though (Q) Within the orbit, the flattening
effect is twofold: the perigee starts to precess (w) and the mean motion gets an additional

term.

Exercise 4.2 For a satellite at about 750 km height, following a near-circular orbit (e.g.
e = 0.01), the above equations become:

w =~ 3735 (5 cos® I — 1) per day

Q ~ —6°7TcosI per day

: 3235

M =~ 14°4 + 360° (3 cos? I — 1) revolutions per day
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4.2. Quantitative assessment

1=180° I:Oro 1=180° I=0°

Figure 4.3.: Sign-analysis of w (5 cos? I — 1) and Q oc —cos 1.

The secular rates of the Kepler elements due to Earth flattening constitute the next level
of orbit design tools beyond Kepler’s 3" law. Some applications of the above formulae:

Polar orbit For a polar orbit (I = 90°), the equatorial bulge has no effect on the ascend-
ing node. Its precession remains zero and the orbital plane keeps it orientation in
inertial space.

Sun-synchronous orbit For remote sensing purposes (illumination angle) and engineer-
ing purposes (no moving solar paddles, no Earth shadow transitions) a sun-synchronous
orbit is very useful. Sun-synchronicity is attained if the orbital plane precession is
equal to the Earth’s rotation around the sun, i.e. Q = 27 /year, which is nearly 1°
per day. For the above numerical example, this is achieved at the near-polar ret-
rograde inclination of 98°5. Examples of sun-synchronous orbits are ERS, Envisat,
Landsat, GOCE, Sentinel-3 and many more.

Critical inclination Perigee precession does not occur if 5cos?] = 1, which leads to
I =~ 63°43 and its complement I ~ 116°57. This inclination is used in altimetry,
for instance. An interesting use of this property is made by the Russian system of
Molniya communication satellites, which have a very large eccentricity (e = 0.74)
and semi-major axis (¢ = 26000km). The perigee at 270° is fixed by a critical
inclination. Thus these satellites swing around the Southern hemisphere rapidly,
after which they will be visible over the Northern hemisphere (Russia) for a long
time.

Repeat orbit A repeat orbit performs S revolutions in a nodal days while the spatial
sampling is determined by the inclination I. The concept is presented in the next
section.
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4. Orbit perturbation due to Earth flattening

4.3. Repeat orbit

Many Earth observations benefit from repeated data in space and time. A repeat orbit
performs 3 revolutions in « nodal days while the spatial sampling is determined by the
inclination I. The integers « and [ are relative primes, i.e. they have no common divisor.

A number of geodetic satellites with repeat orbits are listed in table

Table 4.1.: Satellites with repeat orbits

Satellite ‘ I} «
geosynchronous | 1 1
GPS 2 1
TOPEX 127 10
ERS 501 35
GOCE 979 61
Sentinel-3 385 27
CryoSat-2 5344 369
IceSat 1354 (119) 91 (8)

The flattening of the Earth is for most missions the dominant orbit perturbation, and
must be considered in the orbit design if the parameter shall persist. The inclination [ is
fixed by the sampling requirements and also launch restrictions, while the eccentricity e
tends in many missions to zero for homogeneous observations. The semi-major axis a
is then determined by the repeat condition i.e. the ratio of a and .

The semi-major axis of a repeat orbit is found in two steps:

1. A first approximation can be estimated by Kepler’s third law already:

Blrev = aTqay (4.3)

- Taay Nrev L

Trev Nday WE

2
zn:éwE:ﬂperday
a !

—

i
«

Inserted in Kepler’s third law, one obtains a semi-major axis ag:

3 GM 3 GMQQ
— ag = n2 = /32@)]%
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4.3. Repeat orbit

2. For a more precise estimate, the effect of the Earth flattening on the orbit must be
considered. On the one hand, we express the mean motion n by the differentiated
argument of latitudeﬂ % = w + 7. On the other hand, the sidereal day Ty, is

replace by the so called nodal day. A nodal day is the duration of the Earth’s Knotentag

rotation around its axis relative to the (precessing) node. The angular velocity is
wg — € and, hence,

2T

T =—. 4.4
nodal wp — 19 ( )
The repeat condition is then the ratio
/B j— THO a. ~ .+M
o= TR LUEfQ (45)
i o
= —(Wwp—Q)~rw+M (4.6)
o

Inserting the solution of the LPE on page [56| leads to

éwE—2én%cosI ~ n% (1 —5c0821) —i—n—n\/l—e2£2 (300821— 1)
o a a a a

n ~ éwE+%/§ [—Qﬂcosl— (1—5(3082[) + 1 —e2 (360821— 1)}
o a «

ﬂzéwE GM/@ —2écosl—(1—5cos2l)+ 1—e2 (3(3082]—1)
a3/2 o a7/2 o

The non-linear equation can be solved by an iteration, with the starting value ag:
—2/3

a1 ~ i\/CZJLM +ﬁ [2§COSI — (1 =5cos’I) + /1 —e2(3cos® I — 1)] (4.7)
H,—/ 2

(ag)—3/2
Exercise 4.3 Which semi-major axis a must be chosen for a repeat orbit with 8 = 901,
« = b5, when the eccentricity e = 0.3 and the inclination I = 60 are given?

e initial guess: ag = 3 Gﬂé\{f‘; = 6548780 m
E

dv dv dM

?We ignore here the difference between mean and true anomaly: & = = drda = %’M ~ M
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4. Orbit perturbation due to Earth flattening

e iteration leads to

—2/3
@ = ((ao>—3/2+f/2[...]> = 6483139 m

Qg

—2/3
az = ((ao)‘?’/2 v [...]) — 6480813 m

—2/3
as = ((ao)—3/24—7/2[”j> — 6480729 m

ayq = 6480726 m
as = 6480726 m

Remark 4.1 The iteration will quickly converge as the numerical value

1

30270(1%] 1
P

‘4(1 — e2)2 q243/2

~
~

3Ca (aj)? 1

0.00075 (@)2
4(1—e?)2\a/ a3/?

23/2

a

is significantly smaller than a, 3/2,
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5. Non gravitational orbit perturbations

Non-gravitational orbit perturbations are difficult to model, and their integrated effect
is often observed by on-board accelerometers in the geodetic space missions. The per-
turbations on satellites are caused by

e atmospheric drag
e solar radiation pressure

e Earth albedo

We will recognize, that the effect depends in particular on relative orientation, i.e. the
effective area of the satellite—mnon-gravitational perturbations are also known as surface
forces—, but also time-dependent parameters like the density of the atmosphere.

5.1. Atmospheric drag

In case of low Earth orbiters, the atmosphere is the largest non-gravitational effect. It is
also the most difficult one to model, as the density is highly variable and poorly observed.

Figure 5.1.: Volume passed by the satellite in a time span At

In fig. a simplified empirical model, we investigate the mass Am of an atmospheric

Oberflachenkrafte



5. Non gravitational orbit perturbations

volume. This volume “hits” a surface A of our satellite, flying with velocity v. In the
finite time span At the volume represent a mass and, hence, a finite linear impulse Ap:
Am = pAV = pAvAt
An impulse will be exerted on the satellite
Ap = —vAm = —pAv?At

which is related to the force
F=""=_pAv?.

Dividing by the the satellite mass yields the specific force:

f=—p—v".
m
This concept must be improved by several steps:
e The density p(r, t) of the atmosphere is depending on position, time, but also tem-

perature, Sun activity, particles distribution. A very coarse model is an exponential
h

form pasm &~ poe Ho with a reference height hg and density pg.

Table 5.1.: Density of upper atmosphere (Seeber, 2003, p. 103)
height [km] density [g/km?]

100 497400
200 255 - 316
300 17-35
400 22-75
500 0.4-20

600  0.081 - 0.639
700  0.020 - 0.218
800  0.007 — 0.081
900 0.003 - 0.036
1000  0.001 - 0.018

e The shape of the body influences the atmospheric drag. This is considered in a
factor (%CD), where the term % is extracted for consistency with theories in flight
dynamics.

e The direction and magnitude of the force must be considered: v? becomes ||v||v
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5.2. Solar radiation pressure

e So far we assumed, that a satellite passed through an unmoved atmosphere in
the inertial frame. In a better approximation, the atmosphere co-rotates with the
Earth, on top of which also other atmospheric circulation may occur. Hence, the
relative velocity (v — vam) must be known for modelling.

Integrating these steps leads to the specific atmospheric drag:

1 A
fdrag = _ich(rat)E(U - Uatm)H’U - Uath . (5.1)

Remark 5.1 The product (C’D%) is also known as ballistic coefficient. ballistischer
Koeffizient

Remark 5.2 The area-to-mass ratio % is an important parameter for orbit design. Flichen-zu-Massen-

Non-gravitational orbit perturbations are reduced if the ratio gets smaller. On the one Verhiltnis
hand, the size of the satellite is determined by the onboard instruments and payload,

while the mass can be changed by materials. On the other hand, possible size and mass

are also limited by the launch vehicles and costs.

5.2. Solar radiation pressure

The sun (®) emits permanently photons in all directions. These particles generate a
solar flux Photonenfluss

_AE

N
i.e. an amount of energy AFE passing the area A in a time span At, which acts on
satellites, but also on Moon or Earth.

In a simplified, mechanical interpretation each photon delivers an “impulse”:

Py, = — (B, = myc® =myc-c= Pue)
c
AE @
= Ap=— = —AAt linear momentum

c c

and also a force: A o

p
F=—=-A
At c

These impulses cause a pressure P = % on the satellite surface. To highlight the sun as
its “source”, we write the in pressure as

o
Po=—.
C
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effektive Flache

Reflexionskoeffizient

5. Non gravitational orbit perturbations

Close to the Earth orbit, the solar flux is almost constant: ® =~ 1367 %, which leads to
the pressure Py ~ 4.56 - 1076 % Thus the basic specific force reads

F P A
== =22 (5.2)

m cm’

Note that the area-to-mass ratio appears again.

Orientation of Surfaces — absorption or reflection

Each surface element has its particular normal vector n, which forms an inner angle 6
with the incoming light rays. Hence, the effective area is given by A.g = Acosf.

A
A\

n n
F

Figure 5.2.: Reflection and absorption of photons (Montenbruck and Gill, 2001, p.78).

Photons are either absorbed into the material of the surface (or generate electricity),
which leads to the force
F s = —PscosfAeg

or they are reflected by the same angle with
Fren = —2P5 cosfAcosfn .

The reflection coefficient (€) describes the relative amount of reflected energy, while its
counterpart (1 — €) describes the absorbed energy.

= Flapsirei = —Pocos0A[(1 — e)eq + 2ecosOn] .

The coeflicients depends on the material.
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5.2. Solar radiation pressure

Table 5.2.: Absorption and reflection coefficients in satellite geodesy

material — e (reflection) 1 — € (absorption) Cr=1+c¢
solar panel — 0.21 0.79 1.21
antenna = — 0.30 0.70 1.30
aluminum - 0.88 0.12 1.88

Distance to the Sun

The flux ® of the Sun is attenuated quadratically with the distance, and the orbit of the
Earth has an eccentricity of e = 0.017. Hence, the distance rg to the Sun varies around
3.3% between the perihelion a(1 — e) = 147 Gm and the apohelion a(1 + e) = 152 Gm.

We consider the variation by the squared ratio of the actual radius and a mean distance
f@ =1 AU

N
f= F =P, (TQ) écos@[(l —€)eg + 2ecosbn (5.3)
m

o m

Remark 5.3 Solar panels are usually large and often flat. If the panels are also oriented
perpendicular to the incoming sun-light, the two vectors are aligned

n==eg = 7"7@
e
with 8 = 0 and the specific force is simplified:
_ 2 — 2
To A A o]
=-Py(— ] —[(1- 2 =—PFP,Cpr— | — 5.4
I @(7@) — (1= e)eq + 2eeq)] oCr— (r@) €o (5.4)

CR:1+6

Shadow function x

So far, we assumed, that the each surface is in direct sunlight. In fact, there are always
parts of the satellite which are not illuminated by the sun-light, either because of the
relative orientation of the surface, or if the light is blocked by another body, in particular
the Earth. This is taken into account by introducing the shadow function. The value of
the shadow function varies between 0 < x < 1 depending on the circumstances. If the
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Sonnensegel

5. Non gravitational orbit perturbations

Fundamental
Plane
Penumbra
V2
2 Umbra
Penumbra
G €2

Figure 5.3.: The shadow function is derived via a geometrical model (Montenbruck and
Gill, 2001, p. 80).

surface is fully illuminated, we find xy = 1, while in the shadow x = 0 holds. There is
also a transfer time, where the value is changing.

2
A
fF=xPs <T®> —cosO[(1 — €)eg + 2¢ecosbn)|
o m

Remark 5.4 Solar sails are a (theoretical) concept of moving a space probe without
onboard fuel only due to the reflection of sunlight on large mirrors, i.e by solar radiation
pressure. The space probe IKAROS demonstrated by its flyby of Venus in 2010, that
inner planets can be reached as well by solar sails. Another idea are “static satellites”
which hover in a location like the polar regions, where geo-stationary satellites are not
possible. Challenges are here the precise control of the solar sails, the stability of their
construction, the restrictions in payload weight and also the very small accelerations.

Exercise 5.1 A balloon sate]]iteﬂ (Cp ~ 2) with the mass m = 46kg is launched into
a circular orbit with h = 700km. The spherical surface with radius R = 10m is made

!Classic balloon satellites in 1960-1975 had a significant higher altitude, for example Echo 1 with
h = 1600 km
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5.3. Relativistic corrections

by mylar with € ~ 0.9 and it acts as solar sail. Which non-gravitational force on the
satellite is stronger?

e effective area in all directions: A = r?m due to spherical shape

e maximum solar radiation pressure:

N 1007 m2 m
6 R .10-5 =
(1 +0.9) 16kg 5.92-10 2

AT@ _9

| Fsrp max | = PQCR 7"@ =4.56-10"

e atmospheric drag with table[5.1] (atmosphere without relative movements)

1 A A GM

—7.69-1062

_ Ly (0.020 2-001ke 1007rm?  3.986005 - 104 2
~ 2777 1000°m3 ) 46kg  6378136.6 m + 700000 m

At the first glimpse, the effect of the solar radiation pressure is significantly larger than
the atmospheric drag. But we have used only the lower limit of the density; with the
upper limit the effect of the drag will increase by one order of magnitude. It also
should be pointed out, that the atmospheric drag acts permanently with same effect, i.e.
lowering the orbital height. The solar radiation pressure might be blocked by the shadow
of the Earth, and the effect on the orbit is variable and partly counterproductive.

5.3. Relativistic corrections

Special relativistic theory is beyond the scope of this course. Nevertheless, we find in
(Montenbruck and Gill, [2001, p. 111) a post-Newton correction of the acceleration

N N 2 2
Trel = oM [(4G — U> e, + 42—2(&, ey)ey (5.5)

72 cr 2
with the ¢ = 299792458 m/s as speed of light and v as the scalar velocity of the satel-

lite. The unit vectors e, and e, are pointing towards the position and velocity vectors,
respectively.

Exercise 5.2 Compare the relativistic effect and the acceleration due to gravity for a
satellite on a circular orbit with an altitude of h = 600 km.
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5. Non gravitational orbit perturbations

In case of a circular orbit the unit vectors e, and e, are orthogonal, which eliminates

the term (e, - €,)e,. The scalar velocity v? = GTM is also known:
w GM [ GM  v?
P = \ta T @)
GM ([ GM GM
-T2 4027“_7'02 ér =
 GM GML
2 T e2r ||
and )
. GM eI
[[Frelll = 3 5 3) ~ 1.5608 - 107° = .
T lh=600km 8
The acceleration caused by gravity is ¥ = —%4”2—” which leads to the ratio
o GM
et _ 30 0.013305m . -
'8 1 r
Trel ~ 1.9067 - 10~
T |h=600km

The relativistic acceleration is about 9 orders of magnitude smaller than the acceleration
of the central term, which is also reflected in fig. [3.]
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6. The gravitational potential and its
representation

The Lagrange Planetary equations (LPE) require the partial derivatives of the force
function—or Hamiltonian—to all Kepler elements, i.e. VgF'. Thus, the main objective
in this chapter is to transform V(r, 8, A) into V(a,e, I,Q,w, M) = V(s).

The Gauss version of the LPE requires forces in a local satellite frame, either eg or e;.
These can be generated by taking suitable derivatives of V(s). Second derivatives in the
local satellite frame will be presented, too. They are needed for gravity gradiometry.

6.1. Representation on the sphere

The gravitational potential is usually represented in a spherical harmonic. Such a repre-
sentation turns out to be of advantage, since spherical harmonics possess the following
properties:

- orthogonality,

- global support,

- harmonicity.

Because the geopotential fulfills the Laplace equation AV = 0 outside the masses, the
harmonicity of the spherical harmonics makes them natural base functions to V. Their
orthogonality allows the analysis of the coefficients of the base functions.

For reasons of compactness complex-valued quantities will be employed here:

V(0,0 = = > K Yim(0, ), (6.1)
m=—1

GM X R\
()
in which
r,0, A\ = radius, co-latitude, longitude
R = Earth’s equatorial radius

GM = gravitational constant times FEarth’s mass



6. The gravitational potential and its representation

Yim (0, \) = surface spherical harmonic of degree [ and order m

K}, = spherical harmonic coefficient, corresponding to Y, (6, \).

The coefficients Ky, constitute the spherical harmonic spectrum of the function V. They
are the parameters of the gravitational field. The surface spherical harmonics Y, (6, A)
are defined in the following way:

Yim(8,A) = Py (cos )™ (6.2)

It follows from this definition that for the complex conjugated it holds: Y;® =Y, _,.
Without explicitly using overbars, we assume that all complex quantities are (fully)

normalized by the factor:
l—m)!
Ny, = \/(QZ 4y l=m)t (6.3)

(I+m)"

Unnormalized spherical harmonic functions are multiplied by this factor to make them
normalized. Unnormalized spherical harmonic coefficients are divided by (6.3)). The
orthogonality of the base functions is expressed by:

1 *
E // Yllm1 (97 )‘) lama (Ha )‘) do = 611125m1m2 : (6'4)

Remark 6.1 (Normalization conventions) In literature, the factor ﬁ is sometimes
taken care of in the normalization factor by incorporating a term /4w. Another differ-
ence between normalization factors, found in literature, is a factor (—1)". It is often
used implicitly in the definition of the Legendre functions.

In geodesy, one usually employs real-valued base functions and coefficients, cf. (Heiskanen
and Moritz, |1967). The series (6.1) would become:

GM o0 <&>l+1
R
=0

l
V(r,0,\) = Z (Cim cosmA + Sy, sinmA) Py, (cos ) (6.5)

r
m=0

with normalization factor:

(I —m)!

=k (6.6)

Ny = \/(2 —0mo) (21 + 1)

The real- and complex-valued spherical harmonic coefficients, each with their own nor-
malization, are linked by:
%(Clm - iSlm) , m>0
Klm = Clm ) m =10 ) (67)
%(Clm +iSpm), m<o0
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6.2. Representation in Kepler elements

such that K;, = K;_, . Now it is easy to demonstrate the equality between complex and
real-valued series expansions. If we ignore the dimensioning factor GM /R, the upward
continuation term and the arguments of the spherical harmonics, we can write:

l
V= §lj > EimYim

m=—1

l
= Z Z K Yim + Ki - Y —m
I m=0
l
I m=0
l
= Z Z Klmiflm + (Klmnm)*
I m=0

l
I m=0

!
= Z Z 2%3‘%{(C’lm — 1S ) (cosmA + isinmA) } Py, (cos 0)
I m=0
l

= Z Z (Cpm cosmA + Sy, sinmA) Py, (cos )
I m=0

We made a minor mistake in the second line for the case m = 0, that could have been
repaired explicitly by dividing by (1 + d,,0). However, the definition (6.7)) already takes
care of this. The opposite mistake is made in the second last line.

Remark 6.2 (Complex vs. real) From the derivations above the benefits of a series
expansion in complex quantities is obvious: compactness and transparency of formulas.
An added benefit in the next section will be the transformation properties of spherical
harmonics under rotation of the coordinate system. Such transformation properties
would be extremely laborious in real notation.

6.2. Representation in Kepler elements

In order to transform the potential into a function of Kepler elements, two steps are
required:
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6. The gravitational potential and its representation

i) Rotate the spherical harmonics from the earth-fixed system into a coordinate
system such that the orbit plane becomes the new equator and the new x-axis
points towards the satellite. The following Euler rotation sequence is required:

R313(Q — GAST, I, w + I/) = Rg(w + I/)Rl(I)Rg(Q — GAST) , Or
R313(A, I, u) = Rg(u)Rl (I)Rg(A) s

ii) Express (R/r)!*1e"” as a Fourier series in the mean anomaly M, multiplied
by (R/a)™*".

Step 1: Rotation of spherical harmonics. If we rotate the coordinate system around
the 34 axis over an angle a, R3(a), the coordinates themselves change as:

0 =60,and N =\—a.
Under this rotation, surface spherical harmonics transform as:
Yim(0, ) = Pom(cos 0)ei™A = Py (cos @)™ + @) —yp @ Ayefma . (6.8)
Two of the three rotations can be dealt with now.

For rotations Ry and R; things are not that simple. From representation theory we
know that the transformation of a spherical harmonic Y, (6, \) of a specific degree [
and order m in one frame requires all spherical harmonics Yj; (6, \') of that same degree
over all possible orders —I < k < [ in the rotated frame in a certain linear way. The
linear mapping is expressed by representation coefficients dj,,j, that are a function of the
rotation angle. For a rotation Ry(«) we have the following transformation:

Yim (0, \) Z i () Yie (0", X)) (6.9)
k=—1

with

=[RS () o

in which ¢ = cos3a, s = sinta, a = k—m+2t, t{ = max(0,m — k) and t, =

min(l — k,l +m).

Note that can be cast into a similar form when we use Kronecker deltas:

l
Yim(0,0) = Y Smre’™ MYk (6, X') .
k=—1
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6.2. Representation in Kepler elements

Instead of a full (20 + 1) x (2] + 1) linear system we have a diagonal matrix only.

Since we need to perform the rotation R;(I), needs to be revised. A rotation
around the 15% axis is achieved by a rotation around the 2°¢ axis if we properly pre- and
postrotate by Rg(+17):

Ri(a) = R3(3m)Ra(a)Rs(—57) .

Note that the rotation sequence is read from right to left. A spherical harmonic trans-
forms under Ry () therefore as follows:

l l
lm (9 )\ Z (§] Zm Trd k:( ) k TrY 9/ )\/ Z ’Lk dlmk lk(@’,)\’) . (6.10)
k=-1 k=-1

In summary:

= Rg(u + %’R’)RQ(I)Rg(A — %W)T‘ (6.11a)
l
= Yim(0,3) = > Digi(A, T u)Yie (6, X) (6.11b)
k=—1
with Dyni(A, I, u) = ¥ ™ dpy, (I )ei(ku—i—mA). (6.11c)

New coordinates. Using the time-variable elements w(t) and A(t), the rotation se-
quence will keep the new z-axis pointing to the satellite. Its orbital plane will instan-
taneously coincide with a new equator. The satellite’s coordinates reduce to ' = %71’
and \' = 0, so that Y;;(0’,\') = P(0). In principle the third rotation could have been
omitted such that the representation coefficient Dj,x (A, I,0) should have been used in
. In that case the longitude in the new frame would have been N = u, leading
to the same expression. In both cases the satellite is always on the rotated equator. In
the second interpretation the argument of latitude would become the new longitude. In

this view the name argument of latitude his highly misplaced.

Inserting the transformation (6.11b)) and the representation coefficients ((6.11¢|) into (6.1)),

combined with 6/ = 27r N =0:

00 +1 1 l
Viru A T) = fMZ () % 3 Bt (D Pl )

m=—1I k=—1
(6.12)
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6. The gravitational potential and its representation

Inclination functions. As a simplification a so-called inclination function is introduced:
Fim(I) = " e (I) Pt (0) (6.13)

so that the along-orbit potential (6.12)) is finally reduced to the series:

GM 0o R +1 1 l )
Vit )= GEY ()3 S Kfisnetmd. o)
=0 m=—lk=—I

The inclination functions (6.13)) differ from Kaula’s functions Fj,,(I) (Kaula, [1966) in

the following aspects:
- they are complex,
- they are normalized by the factor (though written here without overbar),
- they make use of the index k.

The 3'¥ index of Kaula’s inclination function, p, is due to the following. The inclination
function Fj,,;(I) contains the equatorial Legendre function Py (0). Legendre functions
Py, (z) are either even or odd functions on the domain x € [—1;1] for (I — m) even or
odd, respectively. Thus, if (I —m) is odd, Pj;(0) will be zero and the whole inclination
function becomes zero. Consequently the k-summation can be performed in steps of 2:
22:7172. This fact allows the introduction of another index: p = %(l —k)or k=1-—2p,

which yields the summation Zézo-

Remark 6.3 (p vs. k) The p-index has two advantages: it is positive and it runs in
unit steps. The third summation in becomes Z;:o' The major disadvantage is
that it does not have the meaning of spherical harmonic order (or azimuthal order) in the
rotated system anymore. The index p is not a wavenumber, such as k. Thus, symmetries
are lost, and formulae become more complicated. For instance exp(i(ku+mA)) must be
written as exp(i((l — 2p)u +mA)). The angular argument seems to depend on 3 indices
in that case.

Step 2: Eccentricity functions. So far, we have achieved an expression in terms of
r,u, I, A, which is not the full set of Kepler elements yet. This partial results has to be
complemented by the following transformation:

1 - .
™ = 2 Gl O, (6.15)
g=—00

which can be regarded as a Fourier transformation of the function etk /r*1. The Fourier
coefficients Gyq(e) are called eccentricity functions. This transformation finalizes the
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6.2. Representation in Kepler elements

required form of the geopotential in terms of Kepler elements:

0 l l 00 I+1 .
(CEE DI IPIPIIC S I SR

=0 m=—lk=—-1,29q=—00
¢mk’q = kw + (k + Q)M +mA (616b)

The fourth summation over ¢ runs in principle from —oo to co. However, the eccentricity
functions decay rapidly according to:

Girg(e) ~ O(elly .

Therefore, the g-summation can be limited for most geodetic satellites to |g| < 1 or 2 at
most. Note that the metric Kepler elements (a, e, I') appear in the upward continuation,
eccentricity and inclination functions, whereas the angular Kepler elements define the
angular variable 1.

If the p-index is used for a Kaula-type of inclination function, the eccentricity function
becomes Gy, (e). Moreover, the composite angle 1,1, turns into:

Yimpg = (1 = 2p)w + (I — 2p+ q)M + mA..

The apparent dependence of 1 on the degree [ is artificial.

Real-valued expression. If we return to real-valued coefficients and functions, the in-
clination functions need to become real too. Only the term =™ in (6.13) needs to be
adapted. Since [ and k have the same parity, due to Pj;(0) = 0 for [ — k odd, we can

write: .
ik—m — il—2p—m — (_1);7 ,L-l—m — (_1)% ,L-l—m ]

The power of (—1) can be absorbed into the definition of a real-valued inclination func-
tion. The power of 7 needs to be taken care of by a case distinction between [ — m even
or odd and by a proper selection of either Cj,, or Sj,,. After some manipulations (6.16al)
is recast into:

00 l l I+1
V(s)z%MZZ >y @E) Fook (1) Gieg (€) Stmiq (w, 2, M)

l—m even
Stmkg(w, Q, M) = [ B Sﬁ )coswmkq + < Cﬁ >Sln1/)mkq} (6.17)
m m l—m odd

with the same definition of 1,,,44. Again, one may use the p-index in order to have Z;;:O

as the 3™ summation. Also, recall that real-valued quantities use a slightly different
normalization factor.
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6. The gravitational potential and its representation

6.3. Lumped coefficient representation

Let us return to , i.e. the expression of the geopotential in terms Kepler elements
before introducing the eccentricity functions. The part exp(i(ku + mA)) reminds of a
2D-Fourier series. The argument of latitude u and the longitude of the ascending node
A attain values in the range [0;27). Topologically, the product [0;27) x [0;27) yields a
torus, which is the proper domain of a 2D-Fourier series. Indeed the potential can be
recast into a 2D-Fourier expression, if the following Fourier coefficients are introduced:

A= > HlywKi, (6.18a)
I=max(|m|,|k]|)

With these quantities, the potential reduces to the series:

Vi d) = Y Y Ay el¥mi, (6.18¢)

m=—00 k=—o0

Pk = ku+ mA . (6.18d)

Just like , the above equations are valid for any orbit. They are not necessarily
restricted to circular orbits. The 2D-Fourier expression makes only sense, though,
on an orbit with constant I and r. This is the concept of a nominal orbit. Only then do
the H l‘:nk and correspondingly the Fourier coefficients Axlk become time independent.

The Fourier coefficients A,‘;k are usually referred to in literature as lumped coefficients,
since they are a sum (over degree [). All potential coefficients K, of a specific order
m are lumped in a linear way into A:;k. The coefficients Hl‘%k are denoted transfer
coefficients here. They transfer the spherical harmonic spectrum into a Fourier spectrum.
They are also known as sensitivity and influence coefficients.

Both A, and H, _, are labelled by a super index V, referring to the geopotential V. In
the next section, we will see that the same formulation can be applied to any functional
of the geopotential. Only the transfer coefficients is specific to a particular functional.

Remark 6.4 (Lumped coefficients) The word lumped merely indicates an accumu-
lation of numbers, e.g. here a linear combination of potential coefficients over degree I,
in general. Nevertheless a host of definitions and notations of lumped coefficients exists.

An early reference where lumped coefficients are determined and discussed, is (Gooding),
1971). See (Klokoc¢nik et all (1990) for a list of lumped coefficients from several reso-

76



6.4. Pocket guide of dynamic satellite geodesy

nant orbit perturbations. Also in (Heiskanen and Moritz, |1967) lumped coefficients are
discussed; zonal lumped coefficients, to be precise, that include non-linearities.

6.4. Pocket guide of dynamic satellite geodesy

Not only the potential, but also its functionals can be represented by a 2D-Fourier
series, similar to 1) For f#, in which the label # represents a specific functional,
the spectral decomposition is:

=SS bt mA) g (6.192)
m=—00 k=—00
# [e.9]
A= Y Hf K. (6.19b)

l=max(|m|[kl)

By means of the above equations, a linear observation model is established, that links
functionals of the geopotential to the fundamental parameters, the spherical harmonic
coefficients. The link is in the spectral domain. The elementary building blocks in this
approach are transfer coefficients, similar to . The linear model provides a basic
tool for gravity field analyses. E.g. the recovery capability of future satellite missions
can be assessed, or the influence of gravity field uncertainties on other functionals.

Pocket guide vs. Meissl scheme A collection of transfer coefficients H#nk for all rel-
evant functionals—observable or not—will be denoted as a pocket guide (PG) to dy-
namic satellite geodesy. Such a PG reminds of the Meissl scheme, cf. (Rummel and
van Gelderen, 1995), which presents the spectral characteristics of the first and second
order derivatives of the geopotential. This scheme enables to link observable gravity-
related quantities to the geopotential field. A major difference between the PG and the
Meissl-scheme is, that the former links SH coefficients to Fourier coefficients, whereas the
latter stays in one spectral domain, either spherical harmonic or Fourier. Consequently,
the transfer coefficients do not solely depend on sH degree [. In general, the spherical
harmonic orders m and k are involved as well. The transfer coefficients can not be con-
sidered as eigenvalues of a linear operator, representing the observable, as in the case of
the Meissl-scheme.
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6. The gravitational potential and its representation

6.5. Derivatives of the geopotential

In this section the transfer coefficients of the first and second spatial derivatives of the
potential are derived in the local satellite frame: = quasi along-track, y cross-track and
z radial.

Since the satellite is in free fall, the gradient of the potential, VV, is not an ob-
servable functional. Nevertheless, the gradient vector—and consequently its transfer
coefficients—are highly relevant. They supply the force function to the dynamic equa-
tions. In particular, with the derivatives in the satellite frame, the resulting gradient
vector can directly be used in Gauss-type equations of motion. In the transfer
coeflicients of all gradient components will be derived.

Gravity gradiometry is the measurement of the gradient of the gravity vector, which is
a gradient by itself. The gradient of a gradient of a potential is a matrix or tensor of
second derivatives. The gravity gradient tensor is also referred to as Hesse matrix in
mathematics or Marussi tensor in physical geodesy. In the transfer coefficients of
all tensor components will be derived, also in the local satellite frame.

6.5.1. First derivatives: gravitational attraction

Before applying the gradient operator V = [c%: g— %]T = [0, Oy 0. ]T to the geopo-
tential expression (6.14) or to (6.18al)—(6.18d)), it is recalled that in the rotated geocentric
system u plays the role of longitude, 8’ that of co-latitude (although its nominal value
is fixed at %7’[’) and r is the radial coordinate of course. Thus the gradient operator in
the satellite frame becomes:

19
r ou
10

0

o

8 =

(97; r 06’
0 0
0z or

Let the potential be written as V' = 3, . Vimi. Then the mechanism for deriving
transfer coefficients is explained for the x and z components:

10V 1 OVi, Oct¥mk ik

o OVimk o OVimk a(R/T’)l+1 B [+1
0:Vimk = or  O(R/r)+1  or B r Vi -
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6.5. Derivatives of the geopotential

So the along-track component of the gradient, 0, V', will be characterized by a term ik /r,
and the radial derivative by the usual —(I +1)/r.

Cross-track derivative. The cross-track component requires special attention. The 6'-
coordinate is hidden in the inclination function Fj,,; (1), . It is therefore convenient
to introduce a cross-track derivative of the inclination function, denoted as F’ . (1), cf.
(Sneeuw, 1992):

OF k() g mio dPy(cosf")
a0 ! dimik (1) T .

0'=m/2
With the parameter ¢t = cos f the derivatives are: dpé’;(t) = dzll’;l (;ZZG) At the equator
(0 =7/2, or t = 0) no confusion about the sinf factor can arise. Let the derivative with
respect to ¢ be simply called P/, (0), then the cross-track inclination function is defined
as:

Fye(D) = "™ djygo (1) P (0) . (6.20)

When applying recursions of derivatives of Legendre functions, e.g. (Ilk, 1983), to the
equator, one obtains:

dP =
(1- ”“ = V1=2Pp(t) — ktPi(t) = PR(0) = Pirsa(0).  (6.21)

So the derivative Pl’k will be an even function for ! — & odd and an odd one for | — &
even. Thus the cross-track inclination functions will vanish for [ — k& even. This would

allow the introduction of a Kaula-like cross-track inclination function Flfnp(l ).

Alternative cross-track derivatives. Other approaches, circumventing the introduction
of F} . (I), exist. Colombo (1986) suggested as cross-track derivative the expression

o _ 10
Oy  rsinudl’

which shows singularities in u. See also (Betti and Sanso|, [1989, Rummel et al., 1993).
Depending on coordinate choice, better worked out in (Koop, [1993) or (Balmino et al.,
1996)) other expressions can be derived, e.g. the following singular one:

0 1 18 0
—=—""—/|cosl———|.
Oy  rcosusinl Oou OA
By multiplying the former by sin® u, the latter by cos? u and adding the result, |Schrama
(1989) derived the regular expression:

87_1 0 cosu Ig_i
gy 7 |SYar T s du A )|
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6. The gravitational potential and its representation

which leads to a corresponding cross-track inclination function:

* 1[(k=1)cosI —m] = 1.,
Fimi(D) = 2 [ sin 1 ] Fin 1 (1) = 9 lm,kﬂ(f) +
1[(k+1)cosI —m]| - 1_,
5 |: sin 1 :| Em,k+1(1) + §F1lm,k+1(1) ) (622)

where the primes denote differention with respect to inclination I. Although numerical
equivalence between the real version of and could be verified, it was proven
analytically in (Balmino et al.,|1996)) that this last expression consists in fact of a twofold
definition:

Fpi(D) = [(k sLLIE m} Fii1(I) = Fypge 1 (D). (6.23a)

sin [

Finps1(I) + Fpp o1 (1) (6.23b)

)

(k+1)cosI —m] - _
sin [

FislD) = |

In summary, the spectral characteristics of the gradient operator in the local satellite
frame are given by the following transfer coefficients:

GM /R 142 .

Z Himk = 53 <TE> [ik]  Fimk(I) (6.24a)
GM /R 142 .

9y Hiypp, = Tz <TE> 1] F() (6.24D)
GM R 142

0: ¢ Hipg= 7o (TE) [—( +1)] Fyr(I) (6.24c)

Remark 6.5 (Nomenclature) The different parts in these transfer coefficients will be
denoted in the sequel as dimensioning term containing (GM, R), upward continuation
term (a power of R/r), specific transfer and inclination function part. Especially the
specific transfer is characteristic for a given observable.

According to this nomenclature, the specific transfer of the potential is 1, cf. equation
(6.18b). Both H}Y . and H} , show a transfer of O(l, k) which is specific to first deriva-
tives in general. Higher frequencies are amplified. The same holds true for H lymk, though
hidden in F*  (I). Equations indicate already that F}* , (I) ~ O(l, k) X Fppi(I).
This becomes clearer for the second cross-track derivative, cf. next section. Note also
that only the radial derivative is isotropic, i.e. only depends on degree [. Its specific
transfer is invariant under rotations of the coordinate system like . This is not

the case for V, and V}, when considered as scalar fields.
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6.5. Derivatives of the geopotential

6.5.2. Second derivatives: the gravity gradient tensor

- In contrast to the first derivatives, the second derivatives of the geopotential field are
observable quantities. The observation of these is called gravity gradiometry, whose
technical realization is described e.g. in (Rummel, 1986a). For a historical overview of
measurement principles and proposed satellite gradiometer missions, refer to |[Forward
(1973), |[Rummel| (1986}).

The gravity gradient tensor of second derivatives reads:

Vmc ny V;:z
V=1V Vy Vi | . (6.25)
‘/;x szy sz

The sub-indices denote differentiation with respect to the specified coordinates. The
tensor V' is symmetric. Due to Laplace’s equation AV =V, + V,, + V., = 0, it is also
trace-free. In local spherical coordinates (r,u,#’) the tensor can be expressed as, e.g.
(Koop, (1993, eqn. (3.10)):

7niz‘/uu + %Vr _T%%’u %Vur - T%Vu
V= Voo + 3V = Vor + 5V | (6.26)
Symm. Vir

Again, use has been made of the fact that the satellite is always on the rotated equator
0 = %7& With Laplace’s equation one can avoid a second differentiation with respect to
the #’-coordinate by writing:

1 1
Viy="Vaz = Veo = =5 Vi — Vo = Vi
r r

As usual, the purely radial derivative is the simplest one. It is spectrally characterized
by: (I4+1)(1+2)/r%. The operator 0., will return the term: —[k?+(I+1)]/r%. The second
cross-track derivative 8y, thus gives with Laplace [k? + (I+1) — (I+1)(1 +2)]/r? = [k* —
(I4+1)2]/r2. The spectral transfer for 9., becomes: [—ik(l+1) —ik]/r? = —ik(l+2)/r%.
The components V,, and V. make use of 0y, which requires the use of F}7 , (I) again.
Starting from the expression for V;, one further ik /r-term is required to obtain V,,. For
V- one needs an extra [—(l+1) —1]/r = —(I+2)/r. The full set of transfer coefficients,
describing the single components of the gravity gradient tensor is thus given by:

GV [ R\ 13

Ope - imk = T (TE> [— (K +1+1)] Fymr(1) (6.27a)
GV [ R\ 13

Op  : Hypyp = R <TE) [k* — (I +1)?] Fink (1) (6.27b)

81



6. The gravitational potential and its representation

GM /R +3

0 HEe= e (M) 0] ) (6270
R +3

Op : HY = (r> [ik] Fro () (6.27d)
B RE 143

0. H;’mk—(r) 42 B (621

The specific transfer is of order O(I2, 1k, k?), as can be expected for second derivatives.
This is also true for H}Y, and H}”,  that make use of F}*, (I). Again, the purely radial
derivative is the only isotropic component. Adding the specific transfers of the diagonal
components yields the Laplace equation in the spectral domain:

(P +I+ D)+ = (+1)*+(+1)(1+2)=0.

Alternative cross-track gravity gradient. An alternative derivation of V,, could have
been obtained directly, i.e. without the Laplace equation, by a second cross-track dif-
ferentation. A new inclination function, say F;** (I) is required, defined as:

60/2

From known recursions ([lk, [1983), we have for the second latitudinal derivative of the
unnormalized Legendre function at the equator:

P(0) = [k* =11+ 1)] Pir(0) .

F(I) = = """y (1) P (0) .

A normalized version of this expression must be inserted in the definition of F}*% (I)
above, yielding the specific transfer [k? — (I + 1)] of the second cross-track derivative
Vergr. Since Vi, = Vyrgr /72 +V, /7 one ends up with exactly the same transfer, as derived
above with the Laplace equation, namely [k? — (I + 1)?]/r2. Moreover, it demonstrates
again that F,* (I) is of order O(l,k), since the second cross-track derivative has a
transfer of O(12, Ik, k?).

Space-stable gradiometry. The transfer coefficients pertain to tensor compo-
nents in the local satellite frame. Especially for local-level orientations, such as Earth-
pointing, these expressions are useful. In principle any other orientation can be deduced
from them, since a tensor V' is transformed into another coordinate system by:

V' =RVRT,
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6.5. Derivatives of the geopotential

cf. (Koop| 1993), in which R is the rotation matrix between the two systems. For
instance the rotation sequence

R =R3(-AN)Ri(-1)R3(-u),

which is the inverse of the rotations from may be used to transform the gravity
gradient tensor back into an Earth-fixed reference frame. Note, however, that the angles
u and A are time-dependent. The derivation of transfer functions becomes cumbersome.
An alternative approach, based on the work of |Hotine| (1969), is followed by |1k (1983)
and (Bettadpur) (1991}, 1995|).
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7. Gravitational orbit perturbations

We are now able to write down the equations of motion of a satellite in a gravitational
field. To that end we need to take the partial derivatives of the gravitational potential
to all Kepler elements and combine them according to the LPE. The first step we
take in is to solve the LPE for the main effect, that is the secular orbit change due to
the flattening of the Earth. In the subsequent section we will derive the remaining
gravitational orbit perturbations from linear perturbation theory (LPT). In we will
discuss the orbit perturbation spectrum and related aspects like resonance.

7.1. The J, secular reference orbit

The main deviation from a central gravitational field GM/r is caused by the dynamic
flattening of the Earth. In the GrRS80 normal field the flattening is represented by the
dimensionless constant Jo = 1.08263 - 1073, For actual gravity fields, it is represented
by the spherical harmonic coefficient Cog = Koo ~ —J2. To be precise, these are
non-normalized coefficients. A division by v/5 would normalize them.

The gravitational field produced by K3 o reads:

GM (R’ SERS ilkw + (k + )M
Vaal) = G () Koo 3 3 Foos(Gieg(eeloe 00

It can be expected that periodic excitations give mainly rise to periodic perturbations.
Thus the main perturbation can be expected from the zero-frequency term with k = ¢ =
0:

GM (RE

3
R = Vagoo(a,e ) = R a) Ko 0F50,0(1)G2,0,0(e)

GM [ Rg\* 3., 1 o
RE<a) Ca,0 <4sm 2)( e”)

The LPE require the partial derivatives of this expression. The partial derivatives w.r.t.
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7. Gravitational orbit perturbations

the angular variables are all zero. Only the following remain:

OR RIQ'E 3 . 2 1 2\ —3
% = —3GM¥CQ7Q <4 sin® I — 2) (1 —e€ ) 2
OR R]%] 3 . 2\ —3
9 GMﬁCZOismIcosI(l—e )2
OR . R]2—3 3 . 2 1 2\ —2
% = 3€GM¥CQ7O <4 sin” I — 5 (]. —e ) 2

(7.1a)

(7.1b)

(7.1c)

These partial derivatives are to be inserted in equations ((3.10af) to (3.101)). Substituting

GM = n”a® and performing the necessary simplifications will yield the LPE for secular

orbital motion due to the flattening of the Earth:

a=20
e=20
I=0
cb*%nC (B 2(1—50082[)
4770122\ a
.3 1 R\’
Q= 2n0270(1_62)2(a) cos I
1 2
M=n- §nC’27073 (RE> (3cos® T —1)
4 (1—e2)2 \ a

(7.2a)
(7.2b)
(7.2c)

(7.2d)

(7.2¢)

(7.2f)

The first three of these equations are trivially solved: a, e and I are constant. The
orbit does not change its size and shape under the influence of the Earth’s flattening.
Nor does the inclination change. With the metric Kepler elements constant, the right
hand sides of the remaining three LPE become constant too. The full set of differential

equations ([7.2a]) is easily integrable to:

M(t) = M(to) + M(t —to)

with the above indicated rates. The nodal line will precess at a constant rate . Also
the perigee will precess linearly in time. Moreover, the flattened Earth causes the mean
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7.1. The Jy secular reference orbit

anomaly to accelerate (or decelerate). An orbit with these constant angular rates is
called secular. In summary, the secular J-orbit is characterized by:

a, e, I constant
secular Jy orbit: (7.4)

w, Q7 M constant

Perigee precession. The perigee precession rate depends on the inclination. It can be
made to zero if cos® I = %, resulting in the critical inclinations I = 63°4 or I = 116°6.
For lower inclinations—orbital plane closer to the equator—the perigee precession rate
becomes positive: both (1 —5cos?I) and Caq are negative. For higher inclinations—

orbital plane closer to the poles—w is negative.

The Russian communication satellite system Molniya makes a clever use of this property.
Molniya satellites are in a highly eccentric orbit (e ~ 0.74). After sweeping through
perigee, they will move slowly and be visible for a long time. To ensure that this occurs
over Russia, or over the Northern hemisphere in general, the perigee must be fixed over
the Southern hemisphere at w = 270°. This is done by choosing an inclination of 63°4.

Perigee precession will also occur for equatorial orbits, or, in a heliocentric setting, for
ecliptical orbits. Thus the relativistic perigee advance of Mercury’s orbit around the
sun, may be obscured by an inadequately known gravitational flattening of the Sun.

Nodal precession. The nodal precession is proportional to cosI. Thus, the plane of
polar orbits will not change. This can be expected, since the rotationally symmetric
flattened Earth does not exert a gravitational torque on a polar orbit. For prograde
orbits, the nodes will move clockwise (2 < 0), whereas € > 0 for retrograde orbits.

Mean motion change. Similarly, the mean motion change due to the Earth’s flattening
is proportional to (3 cos? I —1). On orbits with an inclination lower than 54°7 or higher
than 125°3 the satellite will actually move faster than the mean motion n. In between
these inclinations, the satellite is held back by the gravitational torque.

Remark 7.1 (Numerical example) For a satellite at about 750 km height, following
a near-circular orbit (e.g. e = 0.01), the angular rates typically become:

w ~ 3235 (5 cos® I — 1) per day

Q ~ —6°7TcosI per day

. 3235
M ~ 14.4
+ 360°

(3 cos? I — 1) revolutions per day
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7. Gravitational orbit perturbations

7.2. Periodic gravity perturbations in linear approach

With the main orbit perturbation described by the J secular orbit, we will now de-
rive periodic orbit perturbations due to the remaining spherical harmonic contributions
Vimkq, including the periodic Jo effects V50 4. Since the LPE will be non-linear we will
apply linear perturbation theory (LPT). The algorithm is as follows:

- Take the partial derivatives of (6.16a)) to the Kepler elements,

- Insert the partial derivatives into the LPE ((3.10a]) to (3.101f)),

- Evaluate the right hand side of the resulting non-linear equations on the J reference
orbit, thus leading to a linear system,

- Replace the integration to time by integration to the angular variable 4.
The resulting LPT solution is an approximation to the real orbit perturbations, because of
the linearization on the reference orbit. In principle, the LPT solution might be inserted
again into the right side of the LPE. The method of successive approximation would lead
to higher approximations. This process is extremely laborious, though.

Partial derivatives. In the following we will abbreviate Fj,,; (1) into F' and Gy (e) into
G. Primes will denote derivatives of the functions towards their argument. We will also
recast the power of the upward continuation in (6.16a)) by adjusting the dimensioning
factor.

l .
o= AL S e (B2) pomipeitini

9 2
da a e a
l .
87‘/ — G7M <]%E> FG/Klme“pmkq
de a
Imkq
l .
al — G7M @ F/GKlmeZwmkq
ol a
Imkq
l .
o _ GM <RE> FGik] Kpyne¥Ymka
Ow a a
Imkq
l
87‘/ — Gf @ FG’[Zm}KlmeZwmkq
15,9/ a
Imkq
v G Rg\' i
- - =\ F K mkq
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7.2. Periodic gravity perturbations in linear approach

Insertion into LPE. Collecting all derivatives, combining them into the equations (((3.10al)
o (3.10f)) and simplifying some factors using GM = n?a? leads to the following set of
Lagrange Planetary Equations:

a = 2na Z ( ) FGKy, [k + ¢ i e Wmkq (7.5a)
Imkq
1 .
e=2% <RE> FGEKm [(1 ) k+q) — V1 e2k;] ie¥mka  (7.5D)
e a
Imkq
I= FGKy, [kcosI — Wmkg 7.5¢
SIDI\/1—6212;< > im | m] i ( )
1 — e2 .
o=nY <RE> PYI=C O Gl g it (7.5d)
a e 1—e?
Imkq
! .
= F'GKy, Wmkq 7.5
smI\/1—6212k< > € (7.5¢)
. _ 2 .
M=n-n Z <P;E> F [1 ee G —2(1+ 1)G] Klmewmkq (7.5f)
Imkq

Linear Perturbation Theory. The above LPE are nonlinear ordinary differential
equations. They can be solved in linear approximation. The J, reference orbit
is considered as the zero-order approximation, i.e. a trajectory of Taylor points. The
remaining orbit perturbations are expected to be relatively small, that is, the real orbit
is expected to oscillate around the reference orbit.

Remark 7.2 Naturally, all zonal coefficients will contribute a zero-frequency (DC) term
with m = k = q = 0. Although they will be several orders of magnitude smaller than
the Jy-effect, they will cause secular perturbations nevertheless. Thus it may be wise to
incorporate the DC contributions from other zonal coefficients into the definition of the
reference orbit, too.

Now, the right hand side of (|7.5al) is evaluated with with constant a, e and I. At the same
time, since the time ¢ appears linearly in the complex exponentials, the time integration
is replaced by an integration towards the angular variable ¢, 1:

o[l J s f o
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7. Gravitational orbit perturbations

with 1) = thrg = ko + (k + q)M +m(A) .

The whole set of differential equations immediately becomes linear. A straightforward
integration yields for each {lmkq}-combination:

Atk = ——2a <H;E> FGEyy [k + q] e!¥mka (7.6a)
mkq

Aepmig = ¢:kqi<iE> FGKyp, [(1 — )k +q) Mk] Wmkq  (7.6b)

Blimkg = Qb:;cq sin I\/lm <RE> FGKm [kcosI —m]e Wmkq (7.6¢)

Bedimbq = z,z}qu @E) E 16_62@/ -F /\/%G K [—i] /Vmka (7.6d)

n 1 RE ;
AQie = — F'GK),, [—i] e/ ¥mka 7.6e
tmkq Umkg sSinTV1 — €2 < > im [ =] ( )

AMjppg = — <RE> F [2(5 +1)

mkq a

} Ko [—i] ¥mkq (7.6f)

The A’s have to be understood as perturbations to the Jy reference orbit. In order
to achieve the full orbit in linear perturbation theory we have to add the combined
summations to the reference orbit :

l 00

0o l
s(t)=s0+8t—t0)+ D D D D> Asyg. (7.7)

=2 m=—lk=—1lg=—00

Remark 7.3 (Linear orbit perturbations accuracy) The above orbit perturbation
solution was achieved through linearization. The orbit perturbations are said to
be linear. The main deviation from the zero-order solution, i.e. the Jy reference orbit,
are the periodic effects due to Cap, which are of the order O(Jy) = 1073. Thus, the
zero-order solution achieves roughly a relative accuracy of 1073, The linear solution has
a relative precision of 1075, The main approximation error is O(J3).

Real-valued solutions. To express the linear perturbations (7.6a) in terms of real-
valued quantities, similar to (6.17)), the following adaptations have to be made:

- The summation over m in (7.7)) starts at m = 0.
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7.3. The orbit perturbation spectrum

- Combine terms with Klmei(ku +mA) ipto Simkq, as defined in 1’

- Combine terms with K, [—i] Wmkq into Simkq = [ Stmkq Wmpg-
- Usually the k-summation is changed into a p-summation, including Fj,,,(I) and
Gipgle).
Again it is seen that complex-valued expressions are far more compact. They are also
more transparent. For instance, the terms [—4] that stem from the integration of ¢®¥mka
are a simple phase-shift: —i = e *2. In the real-valued case, the integration from Sjkq
into S'kaq requires a more complicated interchange of Cj,,, Si, and cosines and sines.

7.3. The orbit perturbation spectrum

Linear system. In linear perturbation theory, the originally non-linear equations of
motion were linearized at the Js reference orbit. As a consequence became
a set of linear ODE. One characteristic of linear systems is that an input forcing at a
certain frequency causes an output disturbance at the same frequency. Indeed, if the
Kepler elements are perturbed at a specific frequency 1/}mkq, cf. the RHS of , the
resulting orbit perturbation will be at the same frequency.

In order to emphasize the spectral character of the orbit perturbations in a Fourier sense,
we can go back to a lumped coefficient expression again as in (6.18]). The main step is
to turn the outer [-summation in ([7.7)) into an inner summation:

00 ! l 00 00 00 00 (o)
)PP DI DD DED DI DI
=2 m=—1 k=—1 g=—00 Mm=—00 k=—00 g=—00 [=max(|m/|,|k|)

perform the summation (i.e. lump) over the degree [, and collect the appropriate terms
into a corresponding transfer coefficient. As an example, we can write for the perturbed
semi-major axis:

(0.) [o.¢] o0 .
Fourier series: a(t) = Z Z Z Agnkqe“bmkq(t—tO)

m=—00 k=—o00 qg=—00

o
lumped coefficients: mkq = Z Hip g Kim
I=max(|ml,|k[)
l
: a n Rp
transfer coefficients:  Hj,, = .2a<> Fimi(1)Gig(e) [k + q]
wmkq a

Which spherical harmonic coefficients contribute to a (lumped) Fourier coefficient Aﬁk q

at the frequency mekq? The frequency does not involve the degree [. Thus, if the {mkq}-
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7. Gravitational orbit perturbations

combination is fixed, all spherical harmonic coefficients Kj, of that specific order m will
contribute, i.e. all degrees larger than m. Because of the vanishing inclination functions
Fyni(I) when (I — k) is odd, it will be either only the even or the odd degrees that
contribute.

Perturbation spectrum. The perturbation frequencies 1/}mkq are composite frequencies:

Yimkg = ko + (k + q)M +m(Q — GAST) , or (7.8a)
= (k+q)(w+ M) +mA — qi. (7.8b)

The perigee drift & and the nodal drift  are small: typically a few degrees per day.
The freqency GAST is the daily rotation rate, i.e. 360° per siderial day. Since this is far
larger than the nodal rate (in absolute value), the nodal daily rate A ~ —GAST. The
frequency M is the largest. For LEO satellites it is approximately 16 times faster than
the daily rate.

The rewritten version is illustrative. The main frequency lines will be at an
integer amount of (w + M), i.e. the orbital revolution frequency. These main peaks are
interspersed with frequency lines mA. On top of that, the orbit perturbations will be
modulated by the apsidal frequency qw.

For near-circular orbits the terms with ¢ # 0 will become small. The simplified pertur-
bation spectrum reads:

Vi = kit +mA . (7.8¢)

Resonance. The linear orbit perturbations all contain a denominator lemkq. That
means that the input forcing is greatly amplified for the low frequency spectrum. For
an actual forcing at DC, i.e. the zero-frequency, the amplification would be infinite. This
behaviour is called resonance, which is a common phenomenon in dynamical systems. If
the dynamical system is excited close to the zero-frequency we have near-resonance or
shallow resonance.

In case of exact resonance, the linear perturbation solution is invalid. A forcing at DC
can simply not be represented by the type of oscillatory solutions as in . Instead,
a zero-frequency forcing will likely result in secular orbit perturbations similar to the
Cy effect in In case of near-resonance the linear perturbation theory does not
necessarily break down, though care should be taken.

When does (near-)resonance occur? If we analyse the simplified frequency (7.8¢c), we
can distinguish the following cases:
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7.3. The orbit perturbation spectrum

zonals With m = 0 we have ¢0,k = k4. Trivially, a zero frequency arises for k£ = 0, cf.
Thus, all even degree zonal coefficients will contribute.

m-dailies As mentioned before, the nodal-daily frequency A are nearly 16 times smaller
than the orbital revolution rate. Thus, if & = 0 the frequencies d}m,O = mA are
close to zero, in particular for very low order m. Thus, low order coefficients give
rise to near-resonance at a frequency of m cycles per day (CPD), hence the name
m-dailies.

repeat orbits In general, resonance occurs if

U =0= kit = —mA = — = — = 2%
m U T

in which T, denotes the orbital revolution period and T is one nodal day.

Now the ratio % is an integer ratio. Thus the resonance condition can be met—i.e.
we can find a suitable {mk}-combination—if the above periods T, and T are in

an integer ratio is well:
U T
4 _Ta_B (7.9)
A Ty a
This mathematical commensurability means geometrically a repeat orbit. After 3
revolutions exactly a nodal days have passed. The integers a and 8 have to be

relative primes, i.e. they can not have a common divisor.

Repeat orbits. The repeat ratio 8/« will be close to 16 for LEO orbits, e.g. 49/3 or
31/2. For repeat orbits the simplified spectrum 1,5 can be simplified even further:

@mkzkﬂ+m/\:u<k+m2> :a(kmg> :g(k‘ﬁma). (7.10)

Since (kS — ma) is solely composed of integers, we can map them onto a single integer
n. The base frequency /8 pertains to one full repeat period (of a nodal days =
revolutions). With:

(kB —ma)—n = @Dmkr—mﬁn:ng

B

Even if the repeat orbit condition (7.9 is not met, there will always be specific {mk}-
combinations that, for the given u and A, give rise to the near-resonance situation
Ymi = 0. That will particularly occur when

m:fyint<5>, vy=1,2,...
«
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7. Gravitational orbit perturbations

As an example, suppose we have a 49/3 repeat ratio. Now take the situation & = 1 and
m = int(%?) = 16. Then we get a near resonant frequency of

(kB —ma)=(1-49—16-3) =1 = ¢1671:439,

which is even smaller than the 1-daily near-resonance.
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8. A viable alternative: Hill Equations

The standard procedure in dynamic satellite geodesy is to develop a linear perturbation
theory in terms of Kepler{ﬂ elements. To this end, the NewtorE] equations of motion
7 = a are transformed into equations of motion of the form:

s$=f(s), s=(a,e,1,Qw,M).

These are the so-called Lagrangeﬂ planetary equations, a set of 6 first-order coupled non-
linear ordinary differential equations (ODE). They are solved by noticing that the major
gravitational perturbation is due to the dynamic flattening of the Earth (expressed by
J2), causing the Kepler orbit to precess with Q, & and M all proportional to Jo. The
non-linear ODE are linearized on this precessing or secular reference orbit. This is the
procedure followed in |Kaula (1966]) and most other textbooks.

Here we will follow a different approach. Most satellites of geodetic interest are following
a near-circular orbit. Therefore, we will use a set of equations that describes motion in a
reference frame, that co-rotates with the satellite on a circular path. These are the Hil]E]
equations, that were revived for geodetic purposes by O.L. Colombo, E.J.O. Schrama
and others.

8.1. Acceleration in a rotating reference frame

Let us consider the situation of motion in a rotating reference frame and let us associate
this rotating frame with a triad that is rotating uniformly on a nominal circular orbit, for
the time being. Inertial coordinates, velocities and accelerations will be denoted with the
index ¢. Satellite-frame quantities get the index s. Now suppose that a time-dependent

! Johannes Kepler (1571-1630). Gave the first mathematical description of (planetary) orbits: i) Planets
move on an elliptical orbit around the sun in one of the focal points, ii) The line between sun and
planet sweeps equal areas in equal times, and iii) The ratio between the cube of the semi-major axis
and the square of the revolution period is constant.

2Sir Tsaac Newton (1642-1727).

3Comte Louis de Lagrange (1736-1813). French-Italian mathematician and astronomer.

4George William Hill (1838-1914), American mathematician. He developed his eponymous equations
to describe lunar motion in his Researches in the Lunar Theory (1878), American Journal of Math-
ematics, vol. 1, pp. 5-26, 129-147, 245-260
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8. A viable alternative: Hill Equations

rotation matrix R = R(«/(t)), applied to the inertial vector r;, results in the Earth-fixed
vector 5. We would be interested in velocities and accelerations in the rotating frame.
The time derivations must be performed in the inertial frame, though.

From Rr; = ry we get:
ri = R'r, (8.1a)
| time derivative
7 =R, + RTrg (8.1b)
|} multiply by R
Ri; = 75 + RRTr,
=75+ Qr; (8.1¢)

The matrix 2 = RRT is called Carta matrix. It describes the rotation rate, as can
be seen from the following simple 2D example with «a(t) = wt:

coswt sinwt
R = .
—sinwt coswt

coswt sinwt —sinwt — coswt 0 —w
= Q= . w . =
—sinwt coswt coswt — sinwt w 0
It is useful to introduce 2. In the next time differentiation step we can now distinguish

between time dependent rotation matrices and time variable rotation rate. Let’s pick
up the previous derivation again:

| multiply by RT
7 = R, + RTQr, (8.1d)
| time derivative

i =RT#,+RT7 + RTQr, + RTQr, + RTQ7,

= R"#, 4+ 2RT7, + RTQr, + RTOr, (8.1e)
| multiply by R
Rit; = #¢ + 2Q7, + QQr, + Qg (8.1f)

This equation tells us that acceleration in the rotating e-frame equals acceleration in the
inertial i-frame—in the proper orientation, though—when 3 more terms are added. The
additional terms are called inertial accelerations Analyzing we can distinguish the
four terms at the right hand side:

5Elie Joseph Cartan (1869-1951), French mathematician.
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8.1. Acceleration in a rotating reference frame

- R#; is the inertial acceleration vector, expressed in the orientation of the rotating
frame.

- 2Q7; is the so-called Coriolis acceleration, which is due to motion in the rotating
frame.

- QQr, is the centrifugal acceleration, determined by the position in the rotating
frame.

- Qr, is sometimes referred to as Fuler acceleration or inertial acceleration of rota-
tion. It is due to a non-constant rotation rate.

Remark 8.1 Equation (8.1f) can be generalized to moving frames with time-variable

origin. If the linear acce]eratmn of the e-frame’s origin is expressed in the i-frame with
b;, the only change to be made to -) is Rit; — R(#; — b; i)-

Properties of the Cartan matrix Q. Cartan matrices are skew-symmetric, i.e. QT =
—€. This can be seen in the simple 2D example above already. But it also follows from
the orthogonality of rotation matrices:

d

RR' =1 —
dt

—RRTN=RR'"+RR'=0 — QT =-0. (8.2)
—— \\Q,./
QT

A second interesting property is the fact that multiplication of a vector with the Cartan
matrix equals the cross product of the vector with a corresponding rotation vector:

Qr=wxr (8.3)

This property becomes clear from writing out the 3 Cartan matrices, corresponding to
the three independent rotation matrices:

00 O
Rl(wlt) = Ql = 00 —w
0 w1 0

0 0wy 0 —ws wa
RQ(WQt) = 92: 0 00 ggal Q= w3 0 —W1 . (8.4)
—wy 0 0 —w2 w1 0
0 —Ww3 0
Rg(w?,t) = 93: w3 0 0
0 0 O
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8. A viable alternative: Hill Equations

Indeed, when a general rotation vector w = (wy, wg,wg)T is defined, we see that:

0 —w3 wo T w1 T
w3 0 —wp yl=w | x|y
—wy w; O z w3 z

The skew-symmetry (8.2 of € is related to the fact w x r = —r x w.

Exercise 8.1 Convince yourself that the above Cartan matrices 2; are correct, by doing
the derivation yourself.

Using property (8.3)), the velocity (8.1c) and acceleration (8.1f) may be recast into the
perhaps more familiar form:
Rr; =7, +wxr, (8.5a)
Riri = s+ 2w X s+ w X (W X 7)) +w X7y (8.5b)

8.2. Hill equations

Rotation. As inertial system we will use the so-called perifocal system, which has its
x;y;-plane in the orbital plane with the xz;-axis pointing towards the perigee. Thus the
z; axis is aligned with the angular momentum vector. This may not be the conventional
inertial system, but it is a convenient one for the following discussion. If you don’t like
the perifocal frame you have to perform the following rotations first:

r; = R3(w)R1(I)R3(Q)7y, ,

with Q the right ascension of the ascending node, I the inclination, w the argument
of perigee (not to be mistaken for the rotation rate), and the index iy referring to the
conventional inertial system.

The s-frame will be rotating around the z; = zs-axis at a constant rotation rate n that
we will later identify with a satellite’s mean motion. Thus, the rotation angle is nt:

rs = Ra(nt)r;. (8.6)

-n
and Q2 =0.

o)
Il
o3 o
oo o

0
0
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8.2. Hill equations

The three inertial accelerations, due to the rotation of the Earth, become:

Ys
Coriolis: =207, = 2n | —i4 (8.7a)
0
Ts
centrifugal: —QQr, = n? [ y, (8.7b)
0
Euler: —Qr, =0 (8.7¢)

Translation. Now let’s introduce a nominal orbit of constant radius R, which should
not be mistaken for the rotation matrix R. A satellite on this orbit would move with
uniform angular velocity n, according to Kepler’s third law: n?R> = GM.

The origin of the s-frame is now translated to the nominal orbit over the x-axis. While
the frame is revolving on the nominal orbit, the x, axis continuously points in