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Figure 4: (a) The NSE and (b) the RMSE of downscaled TWS In rits the mode 1 and 2 in GRACE, retaining the annual variation, "  Further validation with in-situ ground measurements still needs to be
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average partial least-squares regression (MA-PLR) model is employed for the RMSE of downscaled TWS with respect to WGHM. From resolution of GRACE. ® It is still uncertain that our downscaling framework is also applicable for
training and predicting. black to white color indicates better performances. boreal catchments, which contain both solid and liquid mass variation.
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