Comparing the local gravity field recovery based on radial base functions with the boundary element method

M. Weigelt, W. Keller, M. Antoni

weigelt@gis.uni-stuttgart.de

7th July, 2009

The VII Hotine-Marussi Symposium, Session 4

Motivation

• Residual signal

<u>G</u>IS

Motivation

• Leakage – problem:

No function can be spacelimited and band-limited at the same time

- Example:
 - Total mass change in equivalent water height
 - CSR GRACE-solutions for a six year period
 - Gauss filter with radius 500km.

Methodology

- Position-optimized Radial Base Functions
- Boundary Element Method

Methodology

- Position-optimized Radial Base Functions
- Boundary Element Method

Position-optimized Radial Base Functions

Modelling the (residual) signal by superposition of localizing radial base functions:

$$\delta V(\lambda, \theta, r) = \frac{GM}{R} \sum_{b=1}^{B} \eta_b \Psi(\sigma_b, \varpi_b, r)$$
$$= \frac{GM}{R} \sum_{b=1}^{B} \eta_b \sum_{n=1}^{N} \left(\frac{R}{r}\right)^{n+1} \sigma_b(n) P_n(\cos \varpi_b)$$

with:

 η_b

 $\sigma_b(n)$

 λ, θ, r

GM

R

 ϖ_b

scale factor

shape parameter

spherical distance to the center of the base function

- $P_n\left(\cos \varpi_b\right)$ Legendre polynomial
 - spherical coordinates of the point of interest
 - gravitational constant

Earth radius

Properties

G

- localizing system of base functions
- isotropic = symmetric to the center point
- parameter $\sigma_b\left(n
 ight)$ defines shape

Position-optimized Radial Base Functions

Methodology

Position-optimized Radial Base Functions

• Boundary Element Method

Motivation of Boundary Element Method

- Mascon approach by Lemoine et al. (2007), Rowlands et al. (2007)
 - successfull modelling of GRACE monthly variations
 - use of a small additional layer

$$\Delta A_{lm}(t) = \frac{\left(1 + k_{1}'\right) R^{2} \sigma\left(t\right)}{M\left(2l+1\right)} \int_{\Omega} Y_{lm} d\Omega$$

- use of partial derivatives w.r.t. SH-coefficients:

$$\begin{array}{lll} \frac{\partial \mathbf{x}}{\partial \sigma_{i}} & = & \displaystyle \sum_{lm} \frac{\partial \mathbf{x}}{\partial \Delta C_{lm}} \frac{\partial \Delta C_{lm}}{\partial \sigma_{i}} \\ & & + \frac{\partial \mathbf{x}}{\partial \Delta S_{lm}} \frac{\partial \Delta S_{lm}}{\partial \sigma_{i}} \end{array}$$

- Possible improvements:
 - use $\frac{\partial \mathbf{x}}{\partial \sigma_i}$ directly
 - use elements with a finite support
- Here: test the approximation quality of different shapes

Boundary Element Method

• Modelling the potential of a single layer

$$V\left(\mathbf{x}\right) = \int_{\Omega} \frac{\sigma\left(\mathbf{y}\right)}{\|\mathbf{x} - \mathbf{y}\|} d\Omega$$

• Decomposing the boundary into finite elements:

$$\Omega = \bigcup_{i=1}^{N} \Omega_i$$

 Assuming a constant behavior of surface mass densities within an element

$$\sigma|_{\Omega_i} = \sigma_i = \text{const.}$$

$$V(\mathbf{x}) = \sum_{i=1}^{N} \sigma_{i} \int_{\Omega_{i}} \frac{1}{\|\mathbf{x} - \mathbf{y}\|} d\Omega_{i}$$

Boundary Element Method - Rectangles

• Considering regular rectangles:

 $\Omega_i = \{ (\lambda, \phi) | \lambda_i \le \lambda \le \lambda_i + \Delta \lambda_i, \phi_i \le \phi \le \phi_i + \Delta \phi_i \}$

$$V(\mathbf{x}) = \sum_{i=1}^{N} \sigma_{i} \int_{\Omega_{i}} \frac{1}{\|\mathbf{x} - \mathbf{y}\|} d\Omega_{i}$$

=
$$\sum_{i=1}^{N} \sigma_{i} \int_{\lambda_{i}}^{\lambda_{i} + \Delta\lambda_{i}} \int_{\phi_{i}}^{\phi_{i} + \Delta\phi_{i}} \frac{R^{2} \cos \phi \, d\phi_{i} d\lambda_{i}}{\|\mathbf{x} - (R \cos \phi \cos \lambda, R \cos \phi \sin \lambda, R \cos \phi)^{T}\|}$$

- Discontinous and non-differentiable elements
- Numerical quadrature
- Many (small) elements for smooth surfaces ⇒ Regularization

Boundary Element Method - Rectangles

Example for rectangles

GI S

Boundary Element Method - Triangles

• Considering triangles and linear interpolation of the surface mass densities **and** the kernel within a triangle

$$\kappa_i\left(\mathbf{x},\lambda,\phi\right) = \frac{\sigma_{i,1}}{\|\mathbf{x}-\mathbf{y}(\phi_{i,1},\lambda_{i,1})\|} \Phi_{i,1} + \frac{\sigma_{i,2}}{\|\mathbf{x}-\mathbf{y}(\phi_{i,2},\lambda_{i,2})\|} \Phi_{i,2} + \frac{\sigma_{i,3}}{\|\mathbf{x}-\mathbf{y}(\phi_{i,3},\lambda_{i,3})\|} \Phi_{i,3}$$

• Potential:
$$V(\mathbf{x}) = \sum_{i=1}^{N} \int_{\Omega_{i}} \frac{\sigma_{i}}{\|\mathbf{x} - \mathbf{y}_{i}\|} d\Omega_{i}$$

$$= \sum_{i=1}^{N} \sum_{k=1}^{3} \frac{\sigma_k}{\|\mathbf{x} - \mathbf{y}(\lambda_k, \phi_k)\|} \int_{0}^{1} \int_{0}^{1-\xi} \Phi_{ik} |J| \, d\eta \, d\xi$$

• with $\begin{aligned} \Phi_{i,1}\left(\lambda\left(\xi,\eta\right),\phi\left(\xi,\eta\right)\right) &= 1-\xi-\eta \\ \Phi_{i,2}\left(\lambda\left(\xi,\eta\right),\phi\left(\xi,\eta\right)\right) &= \xi \\ \Phi_{i,3}\left(\lambda\left(\xi,\eta\right),\phi\left(\xi,\eta\right)\right) &= \eta \end{aligned}$

- Continuous but non-differentiable elements
- Analytical solution of the normal triangle

Boundary Element Method - Triangles

• Example for triangles

GΙ

Simulation study

- a) Single point mass
- b) Multiple point masses forming a residual field

Simulation study

a) Single point mass

b) Multiple point masses forming a residual field

a) Single point mass

- Single point mass at depth 125km
- Area: 20° x 20°
- Keplerian orbit
 - height = 385 km
 - 30 days
 - 5 second sampling
 - 3204 observation

 Pseudo-observation: potential energy

$$V(\lambda, \phi, r) = \frac{2 \cdot 10^{-8} \cdot GM}{\sqrt{(R-d)^2 + r^2 - 2r (R-d) \cos \psi}}$$

a) Single point mass – BEM at depth 10km

GIS

a) Single point mass

GIS

a) Single point mass – BEM at depth 110km

G

S

a) Single point mass - BEM at depth 110km

Simulation study

- a) Single point mass
- b) Multiple point masses forming a residual field

Simulated residual field

- 4225 point masses at depth 120km – 130km
- Area: 20° x 20°
- Keplerian orbit
 - height = 385 km
 - 30 days

GΙ

- 5 second sampling
- 3204 observation
- Pseudo-observation: potential energy

$$V(\lambda, \phi, r) = \sum_{i=1}^{4225} \frac{\sigma_i \cdot GM}{\sqrt{(R - d_i)^2 + r^2 - 2r (R - d_i) \cos \psi_i}}$$

Simulated residual field - BEM at depth 110km

G

S

Simulated residual field - BEM at depth 110km

G I

Conclusions

Conclusions

- Position-optimized radial base functions for distinct features
 - number of parameter is small (4 x number of bases)
 - problem is non-linear
- Boundary element method for smooth features
 - preferably continuous/differentiable elements (no regularization)
 - grid?
 - preferably numerical quadrature of the Kernel

Outlook:

- Integration: near-zone and far-zone
 - singular, quasi-singular, regular
- Shape elements: higher order triangles and quadrilaterals
- Partial derivatives of the range rate w.r.t. to the surface mass densities

Comparing the local gravity field recovery based on radial base functions with the boundary element method

M. Weigelt, W. Keller, M. Antoni

weigelt@gis.uni-stuttgart.de

7th July, 2009

The VII Hotine-Marussi Symposium, Session 4