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1. Abstract

In this study, we present an automatic algorithm for wa-
ter body area monitoring based on maximum a posteri-
ori ( MAP) estimation of Markov Random Fields ( MRF).
We solve the optimization problem using graph cuts
technique. A graph with two terminals is constructed, af-
ter which the most probable realization of the field is de-
fined by finding the max-flow (min-cut) solution. Then to
measure the uncertainty for the solution, max-marginal
probability for each pixel of water mask is measured in
the residual graph. The outputs of our algorithm are time
series of water area, water body shapefiles, probabilistic
maps of water body and uncertainty of water body area
estimation.

2. Motivation

An appropriate classification technique to separate wa-
ter and land is the backbone of each automatic wa-
ter body monitoring algorithm. Most of the pixel-based
classification techniques fail to determine accurate wa-
ter masks because of various source of error. Apart
from pixel intensity, water bodies have strong spatial and
temporal correlation which is another source of infor-
mation should be considered to make a better decision
about the label of pixels. Therefore taking advantages
of all source of information in images to derive the water
masks improves their accuracy significantly.
Markov random fields (MRF) provide a convenient prior
for modeling spatial (or temporal) interactions between
pixels. In remote sensing MRF is quite popular because
of its ability to integrate information related to pixel in-
tensity and spatial and temporal correlation. In these
methods, to extract the object from the background, the
maximum a posteriori (MAP) estimation on the MRF must
be found.

3. Overview of the method

The problem of finding the MAP estimation is usually
solved by describing an energy function specified to-
ward the problem. Then, looking for a realization of the
fields minimize the energy function. This equation is the
general energy function in the energy based optimiza-
tion method in image processing

Etotal(f ) = (1− λ)Edata(f ) + λEsmooth(f )

In this equation:

Edata(f ) =
∑
p∈P

Dp(fp)

is a function measures the agreement between the pixel
intensity Ip and the label f . Here we define this function
as followed:
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The conditional probabilities (P
(
Ip
∣∣l) ,P

(
Ip
∣∣w)) reveal a

high possibility if the pixel label is appropriate for the
pixel value based on the initial solution. The uncondi-
tional probabilities (P (l) , P (w)) present the possibility of
occurring the label based on the long term behavior of
the pixel. The second term is

Esmooth(f ) =
∑

{p,q}∈N
V{p,q}(fp, fq)

V{p,q}(fp, fq) is a function measures the agreement be-
tween two adjacent pixels in terms of their values and
labels. Our problem is categorized as piecewise smooth
prior information. So we have

wpq =
(Ip − Iq)2

σ2
,

in which Ip and Iq are the pixel values and σ2 is the
variance of pixel values over the whole image. Now we
introduce two events and define them based on the tem-
poral behavior of the water body:
•A: two pixels have the same label
•A′: two pixels have different labels

now we measure the probability of assigning the same
label for two adjacent pixels regarding their pixel values
and temporal behavior

V{p,q}(fp, fq) = P (A|wpq) =
P (wpq|A)P(A)

P (wpq|A)P(A) + P (wpq|A′) P(A′)
,

we construct a graph based on the image and by using
the graph cuts technique, the MAP solution for the MRF
is found.

4. Graph cuts technique

G = 〈V , E〉 is a directed weighted graph where vertices,
V, is the set of all pixels of an image together with two
additional ones called terminals (source and sink ) and
edges, E , is the set of lines that connect neighboring ver-
tices. The edges connect vertices to the terminals are
called terminal links (t-links) and the function D(.) de-
fines their weights. Also, the edge connects two neigh-
bor vertices is named neighbor link (n-link) and their
weight is defined using function V (.)
A cut like C is a set of edges in the graph, which sep-
arates graph into two discrete graphs in a way that ev-
ery vertices should connect to just one terminal via a
t-link in the new configuration of the graph. The goal
is to find the cut with the smallest cost (Figure 1). To
solve this problem we take advantages of this primary
fact in combinational optimization that the minimum cut

problem can be solved by finding a maximum flow from
source to sink.
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Figure 1: For a graph with two pixels, four different cut can be con-
sidered. The cost of each cut is equal to the sum of the weight of
the dashed lines. The scenario with the smallest weight will be se-
lected and regarding remain edges in the graph, new labels for the
pixels will be assigned

Here to find the max-flow solution, we update the resid-
ual graph by augmenting the shortest st-paths until all
the ways between terminals are saturated. The proce-
dure of generating water masks is presented in the fol-
lowing Figure.
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Figure 2: Flowchart for the proposed method

5. Case study and data

Our case study is part of the Niger River. This area
is one of the most fragile ecosystems of Sub Saharan
Africa. The amount of precipitation in the basin in the
dry and wet season are significantly variable. We use
MODIS Surface-Reflectance MOD09Q1 which is avail-
able in red and near near infrared bands with 250 m
spatial resolution and 8 days revisit time.
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1. Abstract

Availability of simultaneous in situ river discharge measurements
and satellite image acquisitions is the biggest restriction of remote
sensing based river discharge estimation methods. We propose
a width-discharge method for river discharge estimation, that does
not need coinciding observations. The method constructs the rat-
ing curve through the quantile functions of measured discharge and
calculated river width. Because the time of measurement does not
play a role in quantile function of time series, there is no need for si-
multaneous data. The method is employed for Niger River in Africa.
Our validation results show that the error in discharge estimation
(10% root mean squared error) is at the same level as the conven-
tional method.

2. Motivation

• In situ river discharge measurements are the backbone of most
of the space based discharge estimation methods.
• Because of different reasons, the number of active river dis-

charge in situ stations has dramatically reduced.
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Figure 1: Change in number and distribution of in situ stations dur-
ing the years

•Dependency on synchronized observations is a serious restric-
tion in river discharge monitoring as less than 50% of gauging
stations have not been functioned after 2000.
• A large historical data set of in situ discharge measurements

remains useless, for which no coincident spaceborne measure-
ments are available.

Figure 2: Change in number of in situ stations and satellite obser-
vations during the last three decades

• To overcome this obstacle, a new approach is introduced to find
a relationship between river width and river discharge based on
quantile function mapping with data sets acquired in different time
frame.

3. Datasets and case study

Figure 3: (Part of Niger river selected as case study. The location
of in situ gauge is also defined(red box)

Datasets
• Satellite imagery: MODIS Surface-Reflectance MOD09Q1 with

250 m spatial resolution and 8 days revisit time.
• In situ runoff data from GRDC.

4. Monitoring the river width

Developing a width-discharge empirical function to estimate river
discharge based on satellite images and in situ measurements in-
cludes three major steps.
•Generating a water mask for each image separately applying

ISODATA unsupervised classification algorithm
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Figure 4: (left) A MODIS image of the river section. (center) A bi-
nary water mask of the river. (right) River width calculated every
300 m along the centreline of the river.

•Measuring the average river width along the centerline of the river
in the specified river reach (effective width) after the discharge
measurement station using RivWidth developed by Pavelsky and
Smith (doi:10.1109/LGRS.2007.908305) )
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Figure 5: Monitoring the average width of the river reach over 14
years.

5. River discharge estimation

For developing a width-discharge empirical function using mea-
sured river discharge and river width, a power law relationship be-
tween river discharge and river width is assumed.

Q = aW b (1)

Where
•Q: measured river discharge at station
•W : Measured effective river width
• a, b: Coefficients to be estimated

Here we consider the uncertainty in our measurements
• 5% of observed value for river discharge
• 100 m for river width measurement in respect to MODIS spatial

resolution.
To estimate discharge together with its uncertainty, weighted total
least squares (WTLS) is applied to estimate the unknown coeffi-
cients.

Training Validation
MODIS in situ

Simultaneous data approach 2000–2004 2004–2006

Quantile approach 2000–2004 1970–2000 2004–2006
Table 1: Training and validation period for both methods for estimat-
ing discharge.

Simultaneous observations approach
All the simultaneous measurements from two datasets during
the training period are plotted in a 2 dimensional scatterplot.
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Figure 6: (left) time series of synchronize measurements of dis-
charge and width. (right) scatterplot and the rating curve developed
based on it.

Then unknown coefficients with their covariance matrix are defined
by applying TWLS.

Quantile matching approach
To get rid of simultaneous observations requirement, an empirical
width-discharge function is defined between their quantile functions
instead of themselves directly.
The quantile functions of river discharge QQ(p) and river width
QW(p) are defined as followed

QQ(p) = inf{XQ ∈ R : p 6 F (XQ)} (2)
QW(p) = inf{XW ∈ R : p 6 F (XW)} (3)

Where F (.) is the CDF function and XQ , XW refer to the discharge
and river width. To eliminate the requirement of synchronous data
sets, we try to find a relationship between their quantile functions

QQ = T (Qw) (4)
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Figure 7: River discharge measurements and river width estima-
tions in two different time frames. Quantile functions of two time
series. A power law is fitted to the scatter.

6. Validation and comparison

The performance of proposed method is assessed by com-
paring the statistical properties with the common technique.

2005 2006
0

5000

10000

15000

Date(year)

 

 

2005 2006
0

5000

10000

15000

 

 

D
is

ch
ar

ge
(m

3 /s
)

Date(year)

Measured discharge at station
Estimated discharge from simultaneous observation
Uncertainty of discharge estimation 
Estimated discharge from quantile approach
Uncertainty of discharge estimation

Figure 8: Comparison of estimated and measured river discharge
from simultaneous observations approach (up) and quantile ap-
proach (down)

Approach Corr. RMS (%) NSE

Simultaneous data approach 0.95 13% 0.83

Quantile approach 0.95 11% 0.88
Table 2: statistical parameters are defined for both approach using
WTLS

• Both approaches are able to estimate river discharge with rea-
sonable accuracy.
• Since discharge has a strong stationary behaviour over a long

time, quartile approach is very successful to estimate discharge
• The main limitation of this technique is that it might lead to erro-

neous discharge when the behaviour of river is not stationary.
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Figure 3: Part of Niger river selected as case study. The
location of in situ gauge is also defined(red). For this
station daily in situ measurements are used from 2000–
2006 from GRDC

6. Result

We start this section with presenting four different sit-
uations of the River to assess the performance of the
proposed method.
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Figure 4: Some examples of generated water masks in
different situations.

More than binary water mask, the method is able to
measure the marginal probability for every pixel of water
mask and also the background based on the final resid-
ual graph. Measuring the marginal probability for the
pixels provides the opportunity to evaluate the quality of
labeling for each image.
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Figure 5: An example of probabilistic water mask. (a)
is the original image, (b) is the derived water mask. (c)
and (d) are the probabilistic map of the water mask and
the background. The percentage shows the level of con-
fidence to the label
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Figure 6: Time series of marginal probabilities for all im-
ages in the first and second iterations

After the first iteration the average of marginal prob-

abilities for the water mask is around 50%. But after
the second iteration, this number is increased to about
70%. The reason of this improvement is updating the
initial water masks and the frequency map in the second
iteration.
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Figure 7: Time series of water area with two uncertainty
levels

At the end to evaluate the correctness of the results,

we validate water area time series against the River
discharge measured at the station.
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Figure 8: Comparison between water area time series
and in situ river discharge

The agreement between the behavior of water area and
river discharge reveals that the algorithm is able to ex-
tract the water body correctly. By looking at Figure 7
and Figure 8, it is obvious that the water area is es-
timated in wet seasons more correctly and accurately.
The main reason of this weakness is the relatively poor
spatial resolution of the MODIS images (250m). By using
the images with better pixel size we could expect better
estimation even in dry season.

7. Conclusion and outlook

We introduce an automatic algorithm to extract the wa-
ter bodies from satellite images. Apart from water area
time series, the method provides a number of valuable
products like water body shapefiles, probabilistic water
mask, and uncertainty of the labeling and water area.
Considering additional source of data like in situ obser-
vations and terrain elevation models could be a potential
improvement for the method. Also for reducing the com-
putational afford, applying more advanced techniques
for the max-flow problem may be the next step of this
study.
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