An automatic water body area monitoring algorithm for satellite
Images based on Markov Random Fields

1. Abstract I

In this study, we present an automatic algorithm for wa-
ter body area monitoring based on maximum a posteri-
ori (MAP) estimation of Markov Random Fields (MRF).
We solve the optimization problem using graph cuts
technique. A graph with two terminals is constructed, af-
ter which the most probable realization of the field is de-
fined by finding the max-flow (min-cut) solution. Then to
measure the uncertainty for the solution, max-marginal
probability for each pixel of water mask is measured in
the residual graph. The outputs of our algorithm are time
series of water area, water body shapefiles, probabilistic
maps of water body and uncertainty of water body area
estimation.

‘ 2. Motivation I

An appropriate classification technique to separate wa-
ter and land is the backbone of each automatic wa-
ter body monitoring algorithm. Most of the pixel-based
classification techniques fail to determine accurate wa-
ter masks because of various source of error. Apart
from pixel intensity, water bodies have strong spatial and
temporal correlation which is another source of infor-
mation should be considered to make a better decision
about the label of pixels. Therefore taking advantages
of all source of information in images to derive the water
masks improves their accuracy significantly.

Markov random fields (MRF) provide a convenient prior
for modeling spatial (or temporal) interactions between
pixels. In remote sensing MRF is quite popular because
of its ability to integrate information related to pixel in-
tensity and spatial and temporal correlation. In these
methods, to extract the object from the background, the
maximum a posteriori (MAP) estimation on the MRF must
be found.

‘ 3. Overview of the method |

The problem of finding the MAP estimation is usually
solved by describing an energy function specified to-
ward the problem. Then, looking for a realization of the
fields minimize the energy function. This equation is the
general energy function in the energy based optimiza-
tion method in image processing

Etotal(f) — <1 - )‘)Edata(f) + )‘Esmooth(f)
In this equation:

Eqatalf) = Z Dp(fp)

peP

IS a function measures the agreement between the pixel
intensity I,, and the label f . Here we define this function
as followed:
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The conditional probabilities (P (I,,|1) ,P (I,|w)) reveal a
high possibility if the pixel label is appropriate for the
pixel value based on the initial solution. The uncondi-
tional probabilities (P (1) , P (w)) present the possibility of
occurring the label based on the long term behavior of
the pixel. The second term is
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Vip gy (fp, fq) is @ function measures the agreement be-
tween two adjacent pixels in terms of their values and
labels. Our problem is categorized as piecewise smooth
prior information. So we have
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in which I, and I, are the pixel values and o is the
variance of pixel values over the whole image. Now we
introduce two events and define them based on the tem-
poral behavior of the water body:

e A: two pixels have the same label

o A’: two pixels have different labels

now we measure the probability of assigning the same
label for two adjacent pixels regarding their pixel values
and temporal behavior
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we construct a graph based on the image and by using
the graph cuts technique, the MAP solution for the MRF
Is found.

‘ 4. Graph cuts technique |

G = (V,€&) is a directed weighted graph where vertices,
V, Is the set of all pixels of an image together with two
additional ones called terminals (source and sink) and
edges, &, is the set of lines that connect neighboring ver-
tices. The edges connect vertices to the terminals are
called terminal links (t-links) and the function D(.) de-
fines their weights. Also, the edge connects two neigh-
bor vertices is named neighbor link (n-link) and their
weight is defined using function V' (.)

A cut like C is a set of edges in the graph, which sep-
arates graph into two discrete graphs in a way that ev-
ery vertices should connect to just one terminal via a
t-link in the new configuration of the graph. The goal
Is to find the cut with the smallest cost (Figure 1). To
solve this problem we take advantages of this primary
fact in combinational optimization that the minimum cut
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problem can be solved by finding a maximum flow from

source to sink.
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Figure 1: For a graph with two pixels, four different cut can be con-
sidered. The cost of each cut is equal to the sum of the weight of
the dashed lines. The scenario with the smallest weight will be se-
lected and regarding remain edges in the graph, new labels for the
pixels will be assigned

Here to find the max-flow solution, we update the resid-
ual graph by augmenting the shortest st-paths until all
the ways between terminals are saturated. The proce-
dure of generating water masks is presented in the fol-
lowing Figure.
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Figure 2: Flowchart for the proposed method

‘ 5. Case study and data |

Our case study is part of the Niger River. This area
IS one of the most fragile ecosystems of Sub Saharan
Africa. The amount of precipitation in the basin in the
dry and wet season are significantly variable. We use
MODIS Surface-Reflectance MOD09Q1 which is avail-
able in red and near near infrared bands with 250 m
spatial resolution and 8 days revisit time.

Figure 3: Part of Niger river selected as case study. The
location of in situ gauge Is also defined(red). For this
station daily in situ measurements are used from 2000—
2006 from GRDC

6. Result |

We start this section with presenting four different sit-
uations of the River to assess the performance of the
proposed method.
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Figure 4: Some examples of generated water masks in
different situations.

More than binary water mask, the method is able to
measure the marginal probability for every pixel of water
mask and also the background based on the final resid-
ual graph. Measuring the marginal probability for the
pixels provides the opportunity to evaluate the quality of
labeling for each image.
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Figure 5: An example of probabilistic water mask. (a)
Is the original image, (b) is the derived water mask. (c)
and (d) are the probabilistic map of the water mask and
the background. The percentage shows the level of con-

fidence to the label
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Figure 6: Time series of marginal probabilities for all im-
ages in the first and second iterations

After the first iteration the average of marginal prob-

abilities for the water mask is around 50%. But after
the second iteration, this number is increased to about
70%. The reason of this improvement is updating the
initial water masks and the frequency map in the second
iteration.
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Figure 7: Time series of water area with two uncertainty

levels
At the end to evaluate the correctness of the results,

we validate water area time series against the River
discharge measured at the station.
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Figure 8: Comparison between water area time series
and in situ river discharge

The agreement between the behavior of water area and
river discharge reveals that the algorithm is able to ex-
tract the water body correctly. By looking at Figure 7
and Figure 8, it is obvious that the water area is es-
timated in wet seasons more correctly and accurately.
The main reason of this weakness is the relatively poor
spatial resolution of the MODIS images (250m). By using
the images with better pixel size we could expect better
estimation even in dry season.

‘ 7. Conclusion and outlook |

We introduce an automatic algorithm to extract the wa-
ter bodies from satellite images. Apart from water area
time series, the method provides a number of valuable
products like water body shapefiles, probabilistic water
mask, and uncertainty of the labeling and water area.
Considering additional source of data like in situ obser-
vations and terrain elevation models could be a potential
improvement for the method. Also for reducing the com-
putational afford, applying more advanced techniques
for the max-flow problem may be the next step of this
study.
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