Construction of directional wavelets on the sphere

Markus Antoni, Matthias Roth, Wolfgang Keller

Geodätische Woche 2014

Motivation

model refinement by localizing base functions

- tend to zero outside the area of influence
- model mainly data within the area of interest

Fig: Mascons (Lemoine, 2007)

Fig: Boundary elements (Weigelt, 2012)

Motivation

model refinement by localizing base functions

- tend to zero outside the area of influence
- model mainly data within the area of interest
- very often: radial symmetric

Fig: Radial base functions on a sphere

Fig: Mascons (Lemoine, 2007)

Fig: Boundary elements (Weigelt, 2012)

Motivation

GIS

observations by satellites have

- preferred direction
- converging of tracks

- isotropic functions Ψ(x, y) in spatial domain
 (x: location, y: node/center)
- linear transformation $\tilde{\mathbf{x}} = \underline{\mathbf{E}} \cdot \mathbf{x}$ and $\tilde{\mathbf{y}} = \underline{\mathbf{E}} \cdot \mathbf{y}$
- 'elliptical' contour lines per wavelets

Poisson wavelets

Poisson wavelets of order N:

$$\mathcal{X}_n = \left(\|\mathbf{y}\| \frac{\partial}{\partial \|\mathbf{y}\|} \right)^n \frac{1}{\|\mathbf{x} - \mathbf{y}\|}$$

for $n = 0, 1, ..., N + 1$ and
 $\Psi(\mathbf{x}, \mathbf{y}) = \frac{1}{4\pi R^2} \left(2\mathcal{X}_{N+1} + \mathcal{X}_N \right)$

recursive formulas up to N = 9

Fig: (Normalized) wavelet on the sphere

Fig: Cut along the meridian

Transformation

GIS

keep size in North-South directionscaling in East-West direction

• empirical factor:
$$f(\phi) := \exp\left(\frac{1}{2} - \frac{1}{2}\left(\frac{\phi}{45}\right)^2\right)$$

Fig: Points within modified spherical caps and points per cap

'Elliptical' wavelets

$$\underline{\mathbf{E}}^{-1} = (\underline{\mathbf{R}}_{g}^{e})^{\top} \begin{pmatrix} 1 & 0 & 0 \\ 0 & f(\phi) & 0 \\ 0 & 0 & 1 \end{pmatrix} \underline{\mathbf{R}}_{g}^{e} \quad \text{with} \quad \underline{\mathbf{R}}_{g}^{e} = \underline{\mathbf{R}}_{2}(90 - \phi)\underline{\mathbf{R}}_{3}(\lambda)$$
$$\Rightarrow \Psi(\underline{\mathbf{E}}\mathbf{x}, \underline{\mathbf{E}}\mathbf{y})$$

GIS

Fig: (Normalized) original and modified wavelet on the sphere

Spherical grid

Fig: Fibonacci grid (depth = 100 km)

- well suited for standard wavelets
- not enough nodes for 'elliptic' wavelets

Spherical grid

Fig: Fibonacci grid (depth = 100 km)

Fig: 'scaled helix grid'

Fig: Potential in space

- GRACE-like orbit parameter
- energy balance approach
- subtraction of a reference field
 - 'regional' selection
- statistic in [m²/s²]:

MEAN	0.1191
MAX	0.9814
MIN	-0.5464
STD	0.2774

Synthesis

Fig: Synthesis by radial and 'elliptic' wavelets

	radial	'elliptic'
nodes	623	598
cond(<u>A</u> [⊤] A)	1709	495
regularization	$3.58 \cdot 10^{-7}$	$2.56 \cdot 10^{-7}$
correlation [%]	0.94 (0.99)	0.93 (0.99)

Residuals in the inner zone

Fig: residuals after wavelet synthesis

GIS

$[m^2/s^2]$	synthesis		residuals	
	radial	'elliptic'	radial	'elliptic'
MAX	1.0101	1.0325	0.1623	0.2060
MIN	-0.6260	-0.6138	-0.1550	-0.1477
MEAN	0.1137	0.1095	0.0056	0.0098
STD	0.2782	0.2769	0.0283	0.0278

So far, similar quality for both kinds of wavelets

But for 'elliptic' wavelets

- smaller condition number and regularization parameter
- consideration of observation geometry
- improvements by grid modifications

Summary

construction of spherical base functions

- non-isotropic/directional dependent
- re-scaling in East-West direction with latitude
- in spatial domain
- easy/fast calculation

Summary

construction of spherical base functions

- non-isotropic/directional dependent
- re-scaling in East-West direction with latitude
- in spatial domain
- easy/fast calculation

Open Questions

- scaling should depend on orbital parameters (I,r)
- unchanged caps in higher/lower latitudes?
- analysis in other directions?
- special grid design?

