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Abstract

The recovery of the Earth’s gravity field on a global scale is
mainly based on satellite data, in particular the tracking of
positions and velocities. The global behaviour of the grav-
ity field is derived from the energy balance approach and
analyzed by spherical harmonics.
In the region of interest, potential differences are created
from range observations to achieve a higher spatial resolu-
tion. The remaining signal is modeled by triangular bound-
ary elements and the results are converted into potential.
The residuals demonstrate the benefit of this combination of
base functions, but also some challenges for further stud-
ies.

1. Boundary Elements

As the gravity field can only be observed on the surface
and the outer space, the inhomogenous mass distribution
can be compressed to a single layer in the modelling. The
potential V of the layer on the surface is described by

V (~x) = G

∫∫
f

σ( ~XQ(λ, ϑ))

‖~x− ~XQ(λ, ϑ)‖
d ~XQ(λ, ϑ) (1)

with
•G: gravitational constant
• σ: surface density
• (λ, ϑ): longitude and co-latitude
• ~x: position of interest
• ~XQ: location on the surface f.

In the approach of boundary elements, the surface is sub-
divided into I simpler geometries like rectangular patches
or – in our case – triangles.
Each triangle is defined by nodes located at the corners
(k = 1, 2, 3), where the density values σi,k are estimated in
the adjustment. Apart from that, a ‘rule’ for interpolating
the density values is required, which is denoted as shape
function Φi,k.
Figure 1 shows the triangles for the regional improvement
of this study, where the initial grid is generated by an itera-
tive sub-division of an icosaedron. The color in the nodes
represent the density values based on the potential differ-
ences.

Figure 1: Triangulation in the region of interest

In the implementation, the triangles are transformed by the
Jacobian matrix Ji(ξ, η) to the normal triangle with the local
coordinates (ξ, η) and the nodes {(−1,−1), (1,−1), (−1, 1)}:

V = G
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i=1

K∑
k=1

σi,k
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−ξ∫
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Ji(ξ, η)Φi,k(ξ, η) sinϑ(ξ, η)

‖~x− ~XQ(λ(ξ, η), ϑ(ξ, η))‖
dξdη (2)

The integrals per boundary element are solved by numeri-
cal quadrature with Gaussian evaluation points [2].

2. Modeling of SST-data

A GRACE-like scenario of 30 days is simulated with a con-
stant rotation ωE = 7.292115 · 10−5 rad

s of the Earth and the
Keplerian elements in Table 1.

GRACE A GRACE B
semi-major axis a 6791049 m 6789925 m
eccentricity e 0.00045 0.00044
inclination I 89.45◦ 89.45◦

rectascension Ω 171.50◦ 171.50◦

perigee ω 6.33◦ −17.66◦

Table 1: Initial Keplerian elements of the simulation

The gravity field of the orbit integration consists in spheri-
cal harmonic coefficients of the EIGEN model up to degree
and order 30 and 4 rectangular patches of single mass lay-
ers in the area of interest. The latter one cause a disturbing
potential of max |δT | ≈ 1 m2

s2 along the orbit.

3. Analysis

3.1 Spherical Harmonics
The global behaviour is recoverd via the energy balance
approach applied on both satellites [3]:

T =
1

2
‖~̇xi‖2 − ~̇x>i (~ω × ~xi)− E0 (3)

• T potential along the orbit
• ~xi position in the inertial frame
• ~ω = (0, 0, ωE) rotation vector
•E0 contstant of the integration

The global potential is modeled by a superposition of spher-
ical harmonics up to degree 30

T̂global =
GM

R

30∑
n=0

(
R

‖~xi‖

)n+1 n∑
m=0

Pnm(cosϑ)

·
[
Cnm cosmλ + Snm sinmλ

]
,

(4)

where the Stokes coefficients {Cnm, Snm} are estimated by
least square adjustment together with the offset E0.
For the further investigation, the data are restricted to a
region of interest around the disturbing patches. By sub-
tracting the spherical harmonic synthesis of the estimated
coefficients from the energy balance, the residual potential
along the orbit is achieved (cf. Figure 2). As the maximum is
smaller than the known potential of the disturbing patches,
parts of this signal are already modeled by the spherical
harmonics!

Figure 2: Residual potential: energy balance minus poten-
tial of estimated coefficients

3.2 Boundary elements
To increase the spatial resolution, the range-rate ρ̇ of
GRACE-like missions is introduced into the observation
equation. Therefor, equation 3 is applied for both satellites
– with the positions ~xi respectively ~yi – and subtracted from
each other [1]:

T12 = ~̇x>ρ̇ +
1

2
‖ρ̇‖2 − ~̇y>i (~ω × ~yi) + ~̇x>i (~ω × ~xi)−∆E0 (5)

The potential difference T12 and the residuals after remov-
ing the potential of the boundary elements with estimated
densities are shown in Figure 3 and 4 and Table 2.

Figure 3: Potential differences T12 based on satellite track-
ing

Figure 4: Residuals of potential differences after removing
the effect of the boundary elements

T12 synthesis difference
MEAN 32.22 · 10−3 29.23 · 10−3 14.54 · 10−3

MAX 262.05 · 10−3 217.11 · 10−3 76.85 · 10−3

MIN 0 0.131 · 10−6 1.500 · 10−6

STD 35.54 · 10−3 33.19 · 10−3 11.59 · 10−3

Table 2: Statistic of the potential differences (correlation:
89%)

As the true potential is known in the study, we can com-
pare these values with the potential caused by the esti-
mated spherical harmonic coefficients and the boundary el-
ements. For a better visualization, the differences between
the true field and the estimated reference T̂global is consid-
ered in Figure 5 and Table 3.

T (true)− T̂global synthsis difference
MEAN 43.45 · 10−3 45.51 · 10−3 18.32 · 10−3

MAX 236.88 · 10−3 195.04 · 10−3 68.427 · 10−3

MIN 0.90152 · 10−3 18.835 · 10−6 0.35980 · 10−6

STD 31.60 · 10−3 29.49 · 10−3 15.72 · 10−3

Table 3: Statistic of the true potential and the reconstruction
(correlation: 75%)

Figure 5: True signal caused by the spherical harmonic co-
efficients of the true field minus the estimated coefficients
(almost equivalent to Figure 3 except of the integration con-
stant)

Figure 6 visualizes the residuals of the potential between
the error of the spherical harmonics coefficients and the
boundary elements. The structures in the residuals are al-
most in the size of the boundary elements and with a mag-
nitude of one third of the resdiual signal. A higher degree
for the spherical harmonics and adaptive triangles will avoid
this systematic behaviour.

Figure 6: Residuals of the true signal after removing the
potential of the boundary elements

4. Conclusion

The combination of energy balance approach and potential
differences can reproduce the gravity field along the orbit
only to a certain extend at the moment. Further improve-
ments are expected by
• adaptive modifications of the nodes and size of the trian-

gles,
• boundary elements with more nodes and a non-linear

shape function,
•weighted adjustment of both kind observations,
• and tuning of maximum degree of spherical harmonics

and the size of the boundary elements.
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and Fernando Sansò: VII Hotine-Marussi Symposium on Mathematical Geodesy,
Vol. 137, pp 199-204

[3] M. Wermuth (2008): Gravity Field Analysis from the Satellite Missions CHAMP
and GOCE. PhD, TU-München

IAG 2013, Potsdam


