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1. GRACE mission

*Two satellites in the same orbit,
separated along-track by about
200km.

eContinuously, measuring their
relative velocity, with very high
accuracy.

eChanges In the relative velocity
are related to changes in
gravity:

Courtesy of CSR



1. GRACE mission (cont.)

The representation of the monthly given gravity field solutions is in spherical
harmonics

o0 n+1 n
V(r,0\) = GTM (1 + Y (%) > -Yn,m(é’,)\)>

m=—n

The coefficients in this linear combination are called monthly GRACE solution
and get an acronym as for instance GGMO02.



2. Motivation

residual signal
measured - GGSM02 derived range-rates
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Observed GRACE range-rates are compared to synthetic range-rates, computed
from global GRACE gravity field solutions, as e.g. GGSM02

eRemaining difference is not white noise, but contains (at least partially)
unresolved gravity information.

*The incomplete exploitation of range-rate information is due to the global support
of the base functions

Unresolved gravity information can be resolved regionally by modeling
it by radial base functions



1. Motivation (cont.)




1. Motivation (cont.)

Two options:

iIdentical shape for all base
functions

centered at the nodes of a regular
grid

=> only the amplitudes have to be
optimized

=> |inear problem

shapes as well as positions and
amplitudes of the base functions
are subject to optimization

=> non-linear optimization
problem

=> |ower number of necessary
base functions



3. Radial base functions

A radial base function at the sphere with its center in 7 , Is a function, which is
Invariant against rotation around a axis passing to 7 and the center of the sphere.

the value of the base function ¥ (7, ®)
INn some point £on the sphere only
depends on the spherical distance
between £ and 7 .

Hence, the base function must have
the following expansion in Legendre
polynomials

¢(77, £, 0) — Z O'nPn(éTn)
0
The parameter sequence

o=A09,0 ...}

IS called shape parameter of the
base function.



3. Radial base functions (cont.)

Depending on the choice of the shape parameter, different kinds of base functions
are generated

all o, positive.

' o
Potential of a buried point mass. leading  “n set to zero.

Spherical wavelet.

I In all cases the support of the base function is much smaller than the
sphere. Therefore, it is the mathematical description of a local change.



4. Non-linear optimization

Assume the regionally improved gravitational potential be the sum of a global
solution Vy and the sum §V of radial base functions

V=Vy+oV =V, + chw(m,fﬁj)

J

location parameters

The improved gravitational potential V generates via orbit integration synthetic
range-rates, which depend upon time and the parameters of the radial base
functions:

(X2,synth — Xl,synth)T(XQ,synth — Xl,synth)

psynth :psynth(t, nga-j)nj) — HX2 th — X1 thH
,SYn ySYM

The parameters of the radial base function have to be chosen in such a way that at
a given number of epochs ¢, the synthetic range-rates optimally fit the observed
ones:

1Y — F(X)H2 — min

Y = (,O(tl), SRR 7lb(tN))T7 F(X) — (psynth(thcjvo-j?nj)? R 7p8ynth(tNacj70janj))T



4. Non-linear optimization (cont.)

The minimum is found using the Levenberg-Marquardt iteration

o1 = o+ (F (@) TF () + pnd) " (F'(20))T (Y = F(z))

[ 22(ty) %(tl)_
L(ty) ... n—f,(tz)
Flxp,)=1]" :
) ().

with
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Usually, the partial derivatives 9z 9% are obtained as the solutions of the variational
Op’ Op

equations
. ox

C— VWV =VoV, (=
op

4 N systems of ordinary initial value problems of dimension 6 have to be
solved in each step



4. Non-linear optimization (cont.)

» We aim at a description of the HessianF'(z,,)in closed formulas

_%( 1) %(tl)_
o= (t2) o (t2)
F'(x,) =
92 (L) L (tar)

Because, this will not be possible in full generality, we restrict ourselves to short

orbital arcs.
For short orbital arcs a simplified orbit model will be sufficiently precise.

One simplified orbital model are the Hill equations of satellite motion.



5. Hill equations

Assumptions  ealmost circular orbit
earc-length smaller than one revolution

Technique: e|ntroduction of an fictitious satellite in the same orbital plane
on a circular orbit with the same orbital period as the actual
satellite.

eDefinition of a rotation coordinate system (x,y,z) with
ethe x-y plane identical to the orbital plane and
ethe x-axis pointing to the artificial satellite.



5. Hill equations (cont.)

The deviations  Ax = (Ax, Ay, Az) of the positions of the actual satellite
from the fictitious satellite, with respect to the rotating system solve the

following differential equations:

AZ —2uAy + 3u*Azr =
Ay 4+ 2ulAx =

A2+ 1?Az =

oVy + 0V

ox
Vo + 0V

dy
oVy + oV

0z

The corresponding variational equations are

ACw — 2,LLAny + 3:LL2ACx

simple ODE with ACy + 2uAC,
constant coefficients
=> closed solution can be : 5
found, if simple expressions AG +7AC
for r.h.s exist

(Ca»r Cys C2)

020V
OxOp
05V
OyOop
05V
0z0p
0Ax 0Ay 0Az

(6p7 8p7 ap

)



5. Hill equations (cont.)

Al — 2uAGy + 3 AL =
AGy +2uA(, =
ACz T NZACz —

(CCC7Cy7CZ) —

For the solution of the variational equations the potential

020V
Ox0p
020V
Oyop
020V
0z0p
0Ax 0Ay 0Az

50 Bn " oy

oV

produced by radial base functions hast to be rotated into the Hill

system. This rotation Is given by

Rs(u)R1(1)R3(2 — ©), © = sideral angle

)



6. SO(3) group

A surface spherical harmonic YZ,m(H’, A") in a rotated system can be
expressed by a linear combination of its non-rotated cousins Y ,,,(8,\) as:

Yim(0', A Z Dy, (0, B,7)Y 16(0,0)
k=—1

The weights Dj, ,,(a, 8,7) of this linear combination are the matrix elements
of an invariant representation of SO(3) of order 2|+1

l z l
l?—z,—l ll)—z+1 Y ll)l,—l \
D! D™y vy Doy v - Dy
l z l )
\ Iy D™y Dy,



6. SO(3) group (cont.)

These weights are defined by

Di:’m = e_’ko‘dfc,m(ﬁ)e_"m'y, dﬁc,m — Jacobi polynomials

With the help of the matrix elements of a SO(3) representation spherical harmonics
can be transformed into a rotated system.
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/. Radial base functions in Hill System

The typical structure of a radial base function with respect to an Earth-fixed system is:

Y(o,n,x E:U

neN

For a transformation into the rotating Hill System,
the following equivalent representation can be

used
variable position
i \
’QD(J,??,J?) — o Z Ynm 77>Yn m(.flf)

2n + 1

neN m——V

position of the center with respect to the Earth

> Only the second factor has to be transformed into the Hill System



6. Radial base functions in Hill System (cont.)

Transformation of a spherical surface harmonics into a rotated system can be
obtained using the representation coefficients of the SO(3) group

E , d z((k m) % —|—mQ)Y T ~t(ku—mO)

(270) g ~ _

k=—n" ~~ d pertodic
constant

Wigner function of inclination

> structure of a base function in the Hill System

Adro™ . —m)E 7T _
somm) = 33 Y gy (e Iy, (T o). gk me)
n=0m=—nk=—n\ -~ - per;gdic
::An,m,k:

_ y: y: y: An,m,kez(ku_m@)

n=0m=—nk=—n

> periodic force function in the Hill equations




/. Closed solution of variational equations in Hill system

Recall the variational equations in Hill system

. . 925V
AC, — 2uA AC, =
. . 925V
A 2UA(, =
. 040V
AC, AC, =
Gz + 1A 5207

0Ax 0Ay 0Az
(CmC:wCZ) T ( ap Y ap Y ap )

and the structure of the disturbing force:

C 925V ] - i -
g;ﬂgfj ;‘ S‘ ;‘ S‘ An’m’k (k 0)
_ . Y _ LRu—m
8%/819 - v J v J Cj ﬁn,m,k €
0°oV j m m k “
_ 0z0p 4 L Tn,m ko

C e (ku—m®) has to be considered

> due to the superposition principle for linear ODEs, only the force term




/. Closed solution of variational equations in Hill system

Aly — 2uAG + 3uPAL, = CFerFumm®)
Al + 2uNC, = CYerlku—m®)
ACZ 4+ ,UJZACZ _ Czez(ku—m@)

This is the equation of a coupled harmonic oscillator with periodic excitation.
Closed solution can easily be obtained via Laplace transform

The result is the sum of two oscillations:
1. the satellite rotation rate u .
2. the linear combination of the satellite rotation rate n and the Earth rotation rate 6

All together this yields the following computation strategy:

e Computation of the Wigner function only once
e Update of the coefficients C in each iteration step (due to changing values of p)
e Multiplication with exponentials at each epoch



8. Numerical verification

Aim: Closed formulas for the Jacobian

numerical solutions of variational equations

The following August 2002 GRACE scenario was chosen:

a 6867504 m 6867504 m
e 0,004 0,004

i 89.0169° 89.0169°
Q -23.471° -23.471°

omega 92.861° 93.952°
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8. Numerical verification (cont.)

All tracks crossing the following test area were investigated.

Investigated base function close to
the middle of the arc in red
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8. Numerical verification

partial derivatives with respect to sigma_j (shape)
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8. Numerical verification (cont.)

partial derivatives with respect to ¢ | (amplitude)
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8. Numerical verification (cont.)

Using the closed solution for the variational equations, a small-scale simulation study
was carried out. It consisted of four steps:

1. Three radial base functions were randomly chosen. (All parameters randomly).
These base function were superimposed the GGMO02 field.

2.The orbits of the two GRACE satellites and the resulting range rates were
computed in this combined field.

3. The same procedure was repeated for the GGMO2 field alone.

4.From the residual range rates the parameters of the base functions were
estimated, using non-linear optimization techniques



8. Numerical verification (cont.)

Regional test: (synthetic data)
(i) Collect all data along the orbital arcs.
(i) Find best fitting radial base function approximation
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8. Numerical verification (cont.)

Global test:
*GRACE data of August 2002 - GGMO02c produce residual observations.

*Earth divided in 72 equi-angular subregions.
*Separate analysis of the regional residual data on each patch
*Merging the 72 patches to a global solution

27



9. Summary

e approximation of a residual potential by radial base functions with
variable sizes and position leads to a non-linear optimization problem

e [terative solution of the non-linear optimization problem requires the
computation of the partial derivatives in each step

e the usual computation via variational equation is computational
demanding

e an arc-wise treatment in a rotating Hill system leads to variational
equations which can be solved in a closed form

e the feasibility of regional gravity field improvement via the closed
solution was demonstrated

e further examples for
ecnergy-balance approach
o[ine-of-sight gradiometry
esatellite-to-satellite tracking
egradiometry

can be found in the PhD thesis of M. Antoni.



