
1

Local improvement of GRACE gravity 
field solutions using SO(3) 

representations
 M. Antoni & W. Keller

 Institute of Geodesy, Universität Stuttgart, 
Germany

7. January 2012



2

1. GRACE mission

•Two satellites in the same orbit, 
separated along-track by about 
200km.

•Continuously, measuring their 
relative velocity, with very high 
accuracy.

•Changes in the relative velocity 
are related to changes in 
gravity:

Courtesy of CSR
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1. GRACE mission (cont.)

The representation of the monthly given gravity field solutions is  in spherical
harmonics

The coefficients in this linear combination are called monthly GRACE solution 
and get an acronym as for instance GGM02.
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2. Motivation

•Observed GRACE range-rates are compared to synthetic range-rates, computed 
from global GRACE gravity field solutions, as e.g. GGSM02

•Remaining difference is not white noise, but contains (at least partially) 
unresolved gravity information.

•The incomplete exploitation of range-rate information is due to the global support 
of the base functions

Unresolved gravity information can be resolved regionally by modeling 
it by radial base functions
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1. Motivation (cont.)
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1. Motivation (cont.)

Two options:
identical shape for all base 
functions
centered at the nodes of a regular 
grid
=> only the amplitudes have to be 
optimized
=> linear problem

shapes as well as positions and 
amplitudes of the base functions 
are subject to optimization
=> non-linear optimization 
problem
=> lower number of necessary 
base functions 
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3. Radial base functions

A radial base function at the sphere with its center in       , is a function, which is 
invariant against rotation around a axis passing to    and the center of the sphere.

⌘
⌘

the value of the base function           
in some point    on the sphere only 
depends on the spherical distance 
between    and    .

Hence, the base function must have 
the following expansion in Legendre 
polynomials

The parameter sequence

is called shape  parameter of the 
base function.
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3. Radial base functions (cont.)

Depending on the choice of the shape parameter, different kinds of base functions 
are generated

all      positive.
Potential of a buried point mass. leading          set to zero.

Spherical wavelet.

�n �n

! in all cases the support of the base function is much smaller than the 
sphere. Therefore, it is the mathematical description of a local change.



⇤Y � F(x)⇤2 ⇥ min

Y = (⇥̇(t1), . . . , ⇥̇(tN ))>, F(x) = (⇥̇synth(t1, cj , ⇤j , �j), . . . , ⇥̇synth(tN , cj , ⇤j , �j))>

⇢̇synth = ⇢̇synth(t, cj , �j , ⌘j) =
(ẋ2,synth � ẋ1,synth)>(x2,synth � x1,synth)

kx2,synth � x1,synthk

V = V0 + �V = V0 +
X
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4. Non-linear optimization

Assume the regionally improved gravitational potential be the sum of a global 
solution       and the sum       of radial base functions V0 �V

amplitudes

shape parameterslocation parameters

The improved gravitational potential V generates via orbit integration synthetic 
range-rates, which depend upon time and the parameters of the radial base 
functions:

The parameters of the radial base function have to be chosen in such a way that at 
a given number of epochs      the synthetic range-rates optimally fit the observed 
ones:

tk
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4. Non-linear optimization (cont.)

with

Usually, the partial derivatives             are obtained as the solutions of the variational 
equations

�x
�p , �ẋ

�p

4 N systems of ordinary initial value problems of dimension 6 have to be 
solved in each step

The minimum is found using the Levenberg-Marquardt iteration

xn+1 = xn +
�
(F ⇥(xn))⇤F ⇥(xn) + µnI

⇥�1
(F ⇥(xn))⇤ (Y � F (xn))
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4. Non-linear optimization (cont.)

We aim at a description of the Hessian           in closed  formulasF0(xn)
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Because, this will not be possible in full generality, we restrict ourselves to short
orbital arcs. 
For short orbital arcs a simplified orbit model will be sufficiently precise. 
One simplified orbital model are the Hill equations of satellite motion.



12

5. Hill equations

Assumptions •almost circular orbit
•arc-length smaller than one revolution

Technique: •Introduction of an fictitious satellite in the same orbital  plane 
on a circular orbit with the same orbital period as the actual 
satellite.

•Definition of a rotation coordinate system (x,y,z) with
•the x-y plane identical to the orbital plane and
•the x-axis pointing to the artificial satellite.
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5. Hill equations (cont.)

The deviations                                      of the positions of the actual satellite 
from the fictitious satellite, with respect to the rotating system solve the 
following differential equations:

�x = (�x,�y, �z)

�ẍ� 2µ�ẏ + 3µ2�x =
⇤V0 + �V

⇤x

�ÿ + 2µ�ẋ =
⇤V0 + �V

⇤y

�z̈ + µ2�z =
⇤V0 + �V

⇤z
The corresponding variational equations are

�⇥̈x � 2µ�⇥̇y + 3µ2�⇥x =
⇧2�V

⇧x⇧p

�⇥̈y + 2µ�⇥̇x =
⇧2�V

⇧y⇧p

�⇥̈z + µ2�⇥z =
⇧2�V

⇧z⇧p

(⇥x, ⇥y, ⇥z) = (
⇧�x

⇧p
,
⇧�y

⇧p
,
⇧�z

⇧p
)

simple ODE with 
constant coefficients
=> closed solution can be
found, if simple expressions
for r.h.s exist
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For the solution of the variational equations the potential        
produced by radial base functions hast to be rotated into the  Hill 
system. This rotation is given by 

�V

5. Hill equations (cont.)
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6. SO(3) group 

Y l,m(�,⇥)
Y l,m(�0, ⇥0)

Dl
k,m(�,⇥, ⇤)

A surface spherical harmonic                      in a rotated system can be 
expressed by a linear combination of its non-rotated cousins                         as:

The weights                         of this linear combination are the matrix elements 
of an invariant representation of SO(3) of order 2l+1
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Dl
k,m = e�ık�dl

k,m(�)e�ım⇥ , dl
k,m � Jacobi polynomials
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6. SO(3) group (cont.)

With the help of the matrix elements of a SO(3) representation spherical harmonics
can be transformed into a rotated system.

These weights are defined by
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7. Radial base functions in Hill System

The typical structure of a radial base function with respect to an Earth-fixed system is:

For a transformation into the rotating Hill System, 
the following equivalent representation can be 
used

position of the center with respect to the Earth

variable position

Only the second factor has to be transformed into the Hill System
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6. Radial base functions in Hill System (cont.)

Transformation of a spherical surface harmonics into a rotated system can be 
obtained using the representation coefficients of the SO(3) group

Wigner function of inclination

structure of a base function in the Hill System

periodic force function in the Hill equations
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7. Closed solution of variational equations in Hill system

Recall the variational equations in Hill system

and the structure of the disturbing force:

due to the superposition principle for linear ODEs, only the force term
                      has to be consideredCeı(ku�m�)
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7. Closed solution of variational equations in Hill system

This is the equation of a coupled harmonic oscillator with periodic excitation. 
Closed solution can easily be obtained via Laplace transform

The result is the sum of two oscillations:
1. the satellite rotation rate
2. the linear combination of the satellite rotation rate      and the Earth rotation rate

µ
µ �̇

All together this yields the following computation strategy:

• Computation of the Wigner function only once
• Update of the coefficients C in each iteration step (due to changing values of p)
• Multiplication with exponentials at each epoch
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8. Numerical verification

Aim: Closed formulas for the Jacobian 
=

numerical solutions of variational equations

The following August 2002 GRACE scenario was chosen:

satellite 1 satellite 2

a 6867504 m 6867504 m

e 0,004 0,004

i 89.0169° 89.0169°

Ω -23.471° -23.471°

omega 92.861° 93.952°
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8. Numerical verification (cont.)

All tracks crossing the following test area were investigated.

investigated base function close to 
the middle of the arc in red
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8. Numerical verification

partial derivatives with respect to sigma_j   (shape)
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8. Numerical verification (cont.)

partial derivatives with respect to c_j  (amplitude)
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8. Numerical verification (cont.)

Using the closed solution for the variational equations, a small-scale simulation study 
was carried out. It consisted of four steps:

1. Three radial base functions were randomly chosen. (All parameters randomly). 
These base function were superimposed the GGM02 field.

2.The orbits of the two GRACE satellites and the resulting range rates were 
computed in this combined field.

3. The same procedure was repeated for the GGM02 field alone.

4.From the residual range rates the parameters of the base functions were 
estimated, using non-linear optimization techniques
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8. Numerical verification (cont.)

Regional test: (synthetic data) 
(i)  Collect all data along the orbital arcs. 
(ii) Find best fitting radial base function approximation
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8. Numerical verification (cont.)

Global test:
*GRACE data of August 2002 - GGM02c produce residual observations.
*Earth divided in 72 equi-angular subregions.
*Separate analysis of the regional residual data on each patch
*Merging the 72 patches to a global solution
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9. Summary

• approximation of a residual potential by radial base functions with 
variable sizes and position leads to a non-linear optimization problem

• iterative solution of the non-linear optimization problem requires the 
computation of the partial derivatives in each step

• the usual computation via variational equation is computational 
demanding

• an arc-wise treatment in a rotating Hill system leads to variational 
equations which can be solved in a closed form

• the feasibility of regional gravity field improvement via the closed 
solution was demonstrated

• further examples for
•energy-balance approach
•line-of-sight gradiometry
•satellite-to-satellite tracking
•gradiometry

can be found in the PhD thesis of M. Antoni.


