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Abstract

The gravity field of the Earth is usually represented in spherical har-
monics, which causes problems in the regional improvement. There-
fore the signal and the model are separated into a global and a local
part by subtracting synthetic observations of a known gravity field
from the measurement. The residual signal is analyzed by radial
base functions with different scale factors, positions and shapes.
The residual analysis could be achieved by a linear adjustment of the
scale factors – fixing the shapes and the positions a priori – or by
solving a non-linear optimization problem for several parameters per
base function. The latter method allows a reduction of the amount of
base functions and stabilizes the solution.
For the non-linear problem a local optimization is implemented, im-
proving an initial guess of the parameters by an iterative trust re-
gion algorithm. A genetic algorithm is tested as global optimization
method, which generates a population of possible solutions and im-
proves them according to stochastic rules of evolution.

1. Modeling of SST-data

THE residual signal is modeled by a superposition of radial base
functions (RBF). Their potential can be described by a sum of

Legendre polynomials:
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The argument is depending on the spherical distance $b between
the calculating point ~xe and the center (λb, ϑb) of the base function.
Every potential function Ψb contains the following parameters ψb:

• ηb: scale factor of the base function,
• σb(n): the shape parameter, i.e. a sequence of real values,

(here: exponential model: σb(n) = (σb)
n for n0 ≤ n ≤ Ñ )

• (λb, ϑb): center of the base function.

In this study, GRACE-like observations (range ρ and range-rate ρ̇) are
transformed into the line-of-sight (LOS) gradient [2, 3]. The functional
model is given by
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neglecting the non-gravitational and time depending effects. Addi-
tionally to the observations, the equation contains the following ele-
ments:
• ∇Tref (~xi) : gradient of the reference field at position ~x1 or ~x2,

• ~̇XLOS : relative velocity in the LOS-direction,
• ~eLOS : unit vector in LOS-direction,
• r : radius to the barycenter of the two satellites,
• a : semimajor axes of the Keplerian ellipse (of the barycenter),
• u : argument of latitude of the barycenter.

2. Non-linear optimization

NOn-linear optimization problems can be solved by global or local
methods. In many cases, the squared sum of the residuals

~v := f̃B(ψ1, . . . ψB)− ~f (3)

is used as objective function of the minimization:

Ξ(ψ1, . . . , ψB) = ‖f̃B(ψ1, . . . ψB)− ~f‖2 = ~v>~v → min . (4)

Conditions could be realized by a penalty term in the objective func-
tion or by modifications of the algorithm.

2.1 Trust region algorithm
Local methods require initial values for all parameters and minimize
the objective function in a descend direction. The trust region method
is based on the least squares adjustment of a linearized model, but it
enables a restriction of each parameter into an interval. The analysis
of SST-data in this project consists in the following steps (Figure 1):
1. Initial positions of the RBF are determined by image processing of

the interpolated data in the orbit (extrema of the signal).
2. An initial shape parameter and its mathematical model is chosen.
3. The scale factors are estimated by a linear adjustment.
4. All parameters are optimized by a trust region algorithm.
5. Non accepted base functions are removed.
6. The scale factors of the remaining RBF are estimated.

Figure 1: Fitting residual SST-data in the orbit

2.2 Genetic algorithm

Genetic algorithms (GA) are a simple and general method for global
optimization. They simulate natural evolution for a set (= generation)
of possible solutions (= individuals/parents) [1]. The solutions are
sorted according to a scalar fitness, which is determined by the ob-
jective function. The next generation is produced from the previous
one by the following rules:
→ The best solutions remain in the next generation.
→ Previous solutions are combined by interchanging values at ran-

dom positions of the vector.

→ Solutions mutate by adding random numbers to the parameters.
The individuals for mutation and combination are chosen arbitrarily
from the previous generation, but better solutions are preferred by a
weighting in the stochastic process of selection.
To achieve a better fit between the observation and the model, a
hybrid genetic algorithm is developed. The non-linear parameters
{σb, λb, ϑb} are determined by the genetic algorithm, while the scale
factors ηb are estimated by linear adjustment. The condition number
κ of the normal equation is used for a penalty term

Ξ(ψ1, . . . , ψB) = ~v>~v +

log κ(A>A)× ‖
~f‖2

100 if κ ≥ 108

0 else,
(5)

to avoid an ill-posed system.

3. Simulated observations

THE approach is tested in a GRACE-like scenario, using the EGM96
up to degree N = 120 as reference field. In the orbit integration

5 radial base functions are added in terms of spherical-harmonic co-
efficients to generate the disturbed gravity field. A region of interest
with 4080 observations is selected from the signal. Figure 2 shows
the potential and the LOS-gradient in the orbit after subtracting the
effects of the reference field at the integrated positions.

Figure 2: Disturbing potential and LOS-gradient in the orbit

4. Results and outlook

IN the experiment, the radial base functions are developed up to the
degree Ñ = 120. The genetic algorithm is tested with 5, 10, 15, 20

and 25 radial base functions, using 50 individuals and 100 generations.
This choice requires more than 5000 evaluations of the objective func-
tion, which increases the calculating time up to 1− 4.2 h.
The trust region method detects 18 base functions located at the ex-
trema of the interpolated signal. After 45 iterations and around 5 min
the algorithm is stopped, as the relative improvement of the objective
function is less than the default threshold of 10−6.

MAX [mE] MIN [mE] STD [mE] correlation [%]
trust region 0.0380 −0.0397 0.0079 98.9
GA (5 RBF) 0.2009 −0.1205 0.0302 81.5
GA (10 RBF) 0.0797 −0.0898 0.0163 95.0
GA (15 RBF) 0.0762 −0.0549 0.0139 96.4
GA (20 RBF) 0.1080 −0.0788 0.0150 95.8
GA (25 RBF) 0.0577 −0.0380 0.0091 98.5

Table 1: statistic of the differences between the observation and the
approximation
(observation: MAX: 0.268 mE, MIN: −0.178 mE, STD: 0.0521 mE)

Both methods are able to approximate the signal in the orbit, but the
result of the local optimization is much faster and provides a better

fit (cf. Figure 3 and Table 1). The solutions and the calculating time
of the genetic algorithm depend on the choices of the user, like the
number of base functions, the population size or the number of gen-
erations. Local optimization should be preferred, if an initial guess of
the parameters and the derivatives of the observation are available
(cf. Table 2).

Figure 3: Final error between the model and the signal in [mE]
(The common colorbar is cut-off at ±0.03 [mE] )

trust region genetic algorithm
initial values necessary not necessary
derivatives necessary not necessary
number of RBF ”’on the fly”’ a priori choice
number of evaluations iteration iteration × population size
calculating time 5 min 1 – 4.2 h
repetition possible yes no (stochastic processes)

Table 2: Local optimization (trust region) vs. global optimization (ge-
netic algotithm)
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