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Abstract

Gravity fields are mainly represented in spherical har-
monics, which causes problems in the regional improve-
ment. Therefore the signal and the model are separated
into a global and a local part, by subtracting a synthetic
observation of a reference field from the measurement.
The residual signal is analyzed by radial base functions,
each of them described by a scale factor, a shape pa-
rameter and a position. To avoid an over-parametrization
a non-linear algorithm is used to optimize these parame-
ters for a minimal number of base function.

1. Optimized radial base functions

THE potential of a radial base function in the (earth-
fixed) orbit ~xe can be described by a sum of Legendre

polynomials [1]:
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The argument ψb contains the parameter ηb (scale factor),
σb(n) (shape-parameter), and the position of the center
(λb, ϑb). Latter one is hidden in the spherical distance $b

between center and calculating point. For the shape pa-
rameter an exponential model σb(n) = σnb is chosen, so
that the behavior is described by a single value per base
function.
Two kinds of observations are modeled in the study:
• the energy integral, where the residual potential δT in

the orbit is calculated by the superposition:

δT (~xe, ψ1, ψ2, ..., ψB) =

B∑
b=1

Ψb(~xe, ψb) (2)

• the line-of-sight gradient (LOS), i.e. second derivate in
flight direction of GRACE, which is generated by apply-
ing the differential operator
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to the field δT , using the argument of latitude u and the
semi-major axis a of the Kepler-ellipse [2, 3].

Both kind of observations can be described pointwise as
function of the unknown parameters ψb and in closed for-
mulas, if the orbit integration is done in a previous step.

2. Methodology

IN order to optimize the parameters of the base func-
tions, the following steps are necessary (cf. figure 1):

1. calculating a residual signal by subtracting a synthetic
observation of the reference field

2. finding initial positions and shape parameters

3. linear adjustment to estimate proper scale factors

4. nonlinear Levenberg-Marquardt algorithm to optimize
all parameters

5. comparing/subtracting the residual signal and the ap-
proximation

6. repetition of the steps 2 − 6 until the approximation is
”‘good enough”’

7. removing non accepted base functions and linear ad-
justment of the scale factor of the remaining ones

Figure 1: Workflow of the nonlinear optimization

For pointwise observations the position of additional ra-
dial base functions should be evident in the orbit as well.
In several simulations it turned out that the best local-
ization is close to the maxima and minima of the residual
signal. Therefore the data are interpolated and smoothed
in the orbit to find the initial positions of a small number
of base functions.

3. Simulated observations

THE approach is tested by a GRACE-like scenario, us-
ing the EGM96 up to degree N = 150 as reference

field. Before the orbit integration some additional radial
base functions added to the field in terms of spherical-
harmonic coefficients, to generate a disturbed signal.

( a ) potential
on the ground

( b ) potential
in the orbit

( c ) LOS-gradient
in the orbit

Figure 2: Residual signal caused by 4 base functions

Figure 2(a) illustrates the residual potential on the ground
caused by four additional base functions, while the effects
in the orbit are shown in the figures 2(b) and 2(c).

4. Results and outlook

AFTER the optimization the parameters ψb can be used
to calculate an approximation of the observation in

the orbit and the potential on the ground. By comparing
the signal and the approximation in orbit, the best solu-
tion is achieved by the energy integral (cf. table 1). One
reason is the clearly separated signal of the disturbing
radial base functions in the orbit, so that the initial values
are very good. The solution of the LOS-gradient suffers
from the insensitiveness across the flight direction and an
unsolved ambiguity. Nevertheless the correlation coeffi-
cient in the orbit is already 0.97 and can be improved by
using a second iteration.

Potential LOS-gradient LOS-gradient
[m2

s2 ] (1.step)[E] (2.steps)[E]

max(signal) 4.89× 10−1 5.11× 10−3 5.11× 10−3

min(signal) −5.84× 10−1 −3.66× 10−3 −3.66× 10−3

mean(signal) −3.46× 10−2 8.89× 10−5 8.89× 10−5

std(signal) 2.03× 10−1 1.28× 10−3 1.28× 10−3

max(diff.) 5.87× 10−7 9.07× 10−4 1.81× 10−4

min(diff.) −7.10× 10−7 −1.21× 10−3 −1.88× 10−4

mean(diff.) 4.85× 10−10 −1.51× 10−5 −3.22× 10−7

std(diff.) 1.86× 10−7 2.87× 10−4 3.30× 10−5

correlation 1.0000 0.9746 0.9997
Table 1: Analysis of the signal and the difference (diff.) to
the approximation in the orbit

The difference between the estimated and the simulated
potential on the ground is shown in figure 3 and analyzed
in table 2 in more details.

( a ) energy
integral
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Figure 3: Difference between the simulated and the esti-
mated potential on the ground

Potential LOS-gradient LOS-gradient
(1.step) (2.steps)

max(diff.) 2.49× 10−6 2.52× 100 1.23× 100

min(diff.) −1.68× 10−6 −1.23× 100 −7.84× 10−1

mean(diff.) −7.06× 10−9 4.02× 10−2 3.62× 10−3

std(diff.) 3.52× 10−7 3.70× 10−1 1.26× 10−1

correlation 1.0000 0.9272 0.9912
Table 2: Difference between the estimated and the sim-
ulated potential on the ground, compared to the real
field (min = −5.7,max = 3.6,std = 9.4 × 10−1 and mean
= −4.9× 10−2)

The calculating time is less then 3 minutes for all opti-
mizations and can be neglected compared to effort of the
orbit integration. Another remarkable point is the small
number of base functions for the approximation and the
distances ρ between the positions of the simulated and
the estimated base functions (cf. table 3).

Potential LOS-gradient LOS-gradient
(1.step) (2.steps)

calc. time 30 s 38 s 153 s
iterations 8 9 9 + 16

base functions 4 5 20
distance ρ [◦] 0.00− 0.14 0.30− 8.83 0.08− 0.47

Table 3: Performance for the example of 3750 data points
and a maximal degree of Ñ = 100
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