VISBUNDLE

Visualization tools for geodetic data sets

Nico Sneeuw, Matthias Weigelt, Matthias Roth,
Markus Antoni, Mohammad Tourian et al.

affiliation: Institute of Geodesy, University of Stuttgart

May 4, 2021

Terms of use

This package is free software; you can redistribute it and/or modify it under the terms of
the GNU General Public License as published by the Free Software Foundation; either
version 3 of the License, or (at your option) any later version.

This package is distributed in the hope that it will be useful, but WITHOUT ANY WAR-
RANTY; without even the implied warranty of MERCHANTABILITY or FITNESS
FOR A PARTICULAR PURPOSE. See the GNU General Public License for more de-
tails.

You should have received a copy of the GNU General Public License along with Octave;
see the file COPYING. If not, see http://www.gnu.org/licenses/.

In publications, we suggest the following acknowledgment:

The toolbox VISBUNDLE (version #/date #) was developed by N. Sneeuw, M. Weigelt,
M. Roth, M. Antoni, M. Tourian et. al. and its latest version is provided via download from
the Institute of Geodesy (GIS), University of Stuttgart:
http://www.gis.uni-stuttgart.de/en/research/downloads/

For feedback, questions or bugs reports, please contact bundle @ gis.uni-stuttgart.de

1 Content and history of the
VISBUNDLE

MATLAB enables a quick or advanced visualization of data, which is an important reason for
its usage in teaching or academic research. Nevertheless, users might miss certain features
or built-in routines might be too general or difficult to handle. Hence the question arises,
whether someone has faced a similar problem, or if there is a simple solution.

The VISBUNDLE package is a collection of small routines, which support the visualization
of “geodetic” data sets in MATLAB. From their concepts, these functions can be sub-divided
into

e visualization tools for time series or statistics,
e visualization tools for location dependent data,
e and modified color schemes.

According to the documentation, the first routines were created by Nico Sneeuw since 1993
at the IAPG, TU Mnchen, and collected until 2000. The software was updated and extended
— e.g. by map projections or visualization of spherical harmonics — in the following years
by Nico Sneeuw and Matthias Weigelt, firstly at the IAPG, TU Mnchen, then at the Depart-
ment of Geomatics Engineering at the University of Calgary, and latest at the Institute of
Geodesy (GIS) at the University of Stuttgart.

In 2013, the MATLAB routines at GIS were reviewed and re-arranged by M. Antoni, B De-
varaju and M. Roth. The developed prominent toolbox — the SHBUNDLE for spherical har-
monic synthesis and analysis — was published on a webpage of the institute, other tools were
collected in their own “bundles” and offered to institutes’ members on a local server. The
toolbox for visualization was reduced to its core and published with the new name VISBUN-
DLE on the SHBUNDLE’s webpage.

In 2021, we decided to emphasize the toolbox VISBUNDLE with minor updates and an
extended documentation on its own webpage.

Please feel free to make comments on the software, notify us about bugs or even provide
useful enhancements via bundle @ gis.uni-stuttgart.de.

Please consider:

e Ocatve can often substitute MATLAB for calculations without code modification, but
the graphic tools and features sometimes differ. Problems in Octave (version 4.2.2) are
observed for

— graypatch.m: graphics look similar, but the gray patches are not in the 1% layer,
— barplotcol.m: no graphics due to missing built-in routine bar3.m,
— plotcolm.m: no graphics due to missing mapping toolbox or different commands.

— sphrwarp.m: not all options of visualiation on the sphere are possible

e The function plotcolm.m requires the mapping toolbox of MATLAB.

2 Time series and statistics

barplotcol.m improves as a *wrapper function’ the behaviour of the built-in function bar3.m
and provides three-dimensional bar charts per row and column. In opposite to the original
function —in its standard call — the color is not chosen depending on the column in the matrix,
but depending on the entries’ values. Each matrix entry creates a colored block and the color
is either defined by the total height of the block (’building’-option), or equal height levels
are marked by the same color (’floor’-option).

barplotcol(..) with 'building'-option

barplotcol(..) with 'floor'-option

bar3.m 16

Figure 2.1: These three-dimensional bar charts are produced by the routine barplotcol.m —
with its two options — and the original function bar3.m. The particular colorbar
is only chosen to illustrate the *floor’ option better.

graypatch.m highlights user-defined time intervals in one figure by switching the background
from white to gray and back to white again. This can be used for emphasizing different
behaviors of a signal in user-defined time intervals or for highlighting smaller time spans
(month/years) in a longer time series. This feature is strongly recommended for time series
on presentation slides for a better readability.

graypatch(..) with regular intervals
T T T T T T T T T T T T

Figure 2.2: The upper figure illustrates the effect of the routine graypatch.m for a time series
with regular intervals, the lower figure shows the case of irregular time intervals.

1800 T T T T T T T

1000 (— A —

1000 [— o n

Mass (Gt)

1500 — L L\ i

2000 [—

2500 |— A e ~ -

-3000

02 2003 2004 2008 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015, 2016 2017 2018 2019 2020

Figure 2.3: Time series of the mass variation in Greenland estimated from GRACE-data by
Shuang Yi and re-visualized by the updated graypatch.m function

plotmulti.m stacks (similar) signals within the same time interval into one figure, but with
copied and shifted x-axes. All sub-figures use the same labeling and the different figures
are visually separated by switching the background from white to gray and back to white
again. This kind of visualization increases the readability of very similar signals and it is in
particular recommended for presenting/comparing data in articles without color printing.

plotmulti(..) for 4 signals in black color
I I I

P Ao an
:

DS o aN

v Ao AN

Mo AN

10 20 30 40 50 60 70 80 920 100

Figure 2.4: Four random signals are stacked together by plotmulti.m into one big figure with
common labels.

3 Data in the Euclidian space

bubble_voronoi.m calculates a kind of Voronoi diagram for points given by their coordinates
in the z-y-plane. In opposite to standard voronoi routines, each cell has a circular shape
instead of a polygonal one. The size of the circles is determined by a user-defined maximum
radius, and optionally the total amount of polygon points.

bubble_voronoif..)

Figure 3.1: Example of a circular Voronoi diagram by bubble_voronoi.m

plotcol.m visualizes location dependent data — with 1D, 2D or 3D coordinates — and observed
values, which define then the colors. A color is used either along the line between two
subsequent points, or in the marker at the location. The program combines the features of
the built-in routines mesh.m, scatter.m and scatter3.m.

. plotcol(..) for input 'x' . plotcol(..) for input '(x,y)"

15} 15 15+ 15
10 10 101 10
5 /\ [5 5+ ; 5
° \/ 0 o . . (-\ -: N . 0

-5+ 5 . ‘. ."o..o’.. L] .
5 -5
-10+ -10f . ® e e e o ® . 10
-10 o .
151 151 LI .
. . . 15
20 . . ‘ ‘ | 15 20
20 40 60 80 100 -20 -10 0 10 20
plotcol(..) for input '(x,y,z)’ » plotcol(..) for input '(x,y,z,c)'
150
18
20 16 20 ‘e, 100
*
15 14 15 | A R 50
12 Yo, . ‘f
10 10+ R 0
10 ‘,‘nooo.””..o
‘e
5 8 5 R -50
ol 6 0l « 100
20 | 20 T
T T & ~_ = «1/0/ 20
0 _— 0 . 150
~ P 0 2 ~ —~ 0
e -10 S -10
20 -20 20 20

Figure 3.2: Four different signals — for 1D, 2D,3D and 4D data — are visualized by function
plotcol.m.

4 Data on the sphere

circ4sph.m calculates lines of constant spherical distance and of constant azimuth on a sphere
w.r.t. an arbitrary reference point. If the lines pass the mapping boundary or a selected
maximum distance around the calculation point, then NaNs are inserted into the vectors
to avoid a visual connection. The function requires the UBERALL-bundle in particular the
routines R2.m, R3.m and jump2nan.m.

circles around (-30/60) in a cylindrical
map [-180,180] x [-90,90] circles around (-30{60) on the sphere

—

latitude in [deg]

-90
-180 -150 -120 -90 -60 -30 O 30 60 90 120 150 180
longitude in [deg]

circles around (40/40) in a cylindrical circles around (-160/-30) a non-cylindrical
map [0,360] x [-90,90] + cutoff option map + cutoff option
. ~

latitude in [deg]

0 30 60 90 120 150 180 210 240 270 300 330 360
longitude in [deg]

Figure 4.1: The figures illustrates lines of constant azimuth (red) and lines of constant spher-
ical distance (black) around a calculation point in cylindrical and non-cylindrical
mappings. The coordinates are determined by the routine circ4sph.m

coast lines without using jump2nan » coast lines after applying jump2nan

qo g BTN T w© ﬂ}?z{r’s?“‘:,’;}‘:{;{%\/jz%
"% o —; s 4 wimes s o F -
RSV BN RS A N4
NAVAVEYs G T\ L
AT < = o v, .
e TR T3 v‘g R ™y
30 ¢ % 30, iy Y,

) {7 i 7%
e - 6o e~
-90 = -90 =

5 30 60 % 120 150 180 210 240 270 300 330 360 o %0 60 % 120 150 180 210 240 270 300 330 360

Figure 4.2: The routine jump2nan.m — in the UBERALL-bundle — splits lines/vectors by in-
serting NaN based on a threshold condition. This avoids the visual connection of
longitude values across the datum switch.

10

plotcolm.m is a modification of plotcol.m for the visualization of location dependent data
within a map projection. The function requires the mapping toolbox of MATLAB and com-
bines the features of the built-in routines mesh.m, scatter.m and scatter3.m.

Figure 4.3: The routine plotcolm.m visualizes location dependent data within a map
projection

sphrwarp.m maps any N X M matrix onto sphere. The given matrices define the color of the
patches or the grid lines, or the height above the sphere. The function uses the sub-routine
sphere2.m, which is a variation of the built-in routine sphere.m but with 2 input arguments.

sphrwarp(..) wrapping color on patches (option 1) sphrwarp(..) wrapping color on mesh (option 2)

sphrwarp(..) wrapping color on smooth surface (option 3) sphrwarp(..) using height information

Figure 4.4: A matrix of the dimension 30 x 60 is mapped with different options of
sphrwarp.m onto a unit sphere.

11

skyplot.m visualizes positions (of celestial bodies) in a topocentric coordinate system, i.e the
azimuth and elevation angle in the observation location. The function is a modification of
the built-in function polar.m but in a North-oriented figure and a maximum zenith angle of
90 degrees.

skypgot(..)

330 30

300

270

90

240

210 150

180

Figure 4.5: The azimuth and elevation angle of 4 objects are visualized by skyplot.m in the
topocentric system.

12

5 Color schemes

colbrew.m and redblue.m provide a set of diverging color schemes to indicate opposite be-
haviors like wet-dry, cold-hot, or high-low altitudes. The common idea is it, to highlight the
extreme values by opposite and saturated colors, and fill in between only bright colors. Some
color schemes are chosen to be colorblind safe according to www.colorbrewer2.org.
For quick interpretations in hydro geodesy, it is recommended to flip one of the red-blue
color schemes, to obtain blue regions for the large water storage and red regions for dry

areas.

colbrew(1) colbrew(2) redblue(1) redblue(?)

0 0 0
100 200 300 100 200 300 100 200 300 100 200 300
colbrew(4) colbrew(5) redblue(4) redblue(5)

100 100

40 40
200 f; 200 [}
300 ' 20 300 20
400 400 00 400
100 200 300 100 200 300 100 200 300 100 200 300

Figure 5.1: Some of the color schemes generated by colbrew.m and redblue.m

In particular for members of the University of Stuttgart, the routine colbrew.m offers another
color scheme, which varies between the light blue, white, and the medium gray color of the

corporate design:

AR

I
NN
X {‘{III// &&“\“”""

Figure 5.2: Color scheme based on the corporate design at University of Stuttgart

13

grayl.m and gray2.m create two colormaps, where both are ranging from dark gray to white

with a clear break at the center.
100
40 E) D 40
200
20 F 20

0
100 200 300 100 200 300

Figure 5.3: Two gray color schemes produced by grayl.m and gray2.m

14

