Comparing the local gravity field recovery based on radial base functions with the boundary element method

M. Weigelt, W. Keller, M. Antoni

weigelt@gis.uni-stuttgart.de

7th July, 2009
Motivation

- Residual signal
Motivation

• Leakage – problem:

No function can be space-limited and band-limited at the same time

• Example:
 – Total mass change in equivalent water height
 – CSR GRACE-solutions for a six year period
 – Gauss filter with radius 500km.

Courtesy of Oli Baur, Geodetic Institute Stuttgart
Methodology

- Position-optimized Radial Base Functions
- Boundary Element Method
Methodology

- Position-optimized Radial Base Functions
- Boundary Element Method
Position-optimized Radial Base Functions

Modelling the (residual) signal by superposition of localizing radial base functions:

$$\delta V (\lambda, \theta, r) = \frac{GM}{R} \sum_{b=1}^{B} \eta_b \Psi (\sigma_b, \varpi_b, r)$$

$$= \frac{GM}{R} \sum_{b=1}^{B} \eta_b \sum_{n=1}^{N} \left(\frac{R}{r} \right)^{n+1} \sigma_b (n) P_n (\cos \varpi_b)$$

with:

- η_b scale factor
- $\sigma_b (n)$ shape parameter
- ϖ_b spherical distance to the center of the base function
- $P_n (\cos \varpi_b)$ Legendre polynomial
- λ, θ, r spherical coordinates of the point of interest
- GM gravitational constant
- R Earth radius
Properties

- localizing system of base functions
- isotropic = symmetric to the center point
- parameter $\sigma_b(n)$ defines shape
Position-optimized Radial Base Functions

Iterative base search and position optimization

- Reference field
- Preprocessed data
- Initial shape parameter

Nonlinear optimization

- Residual field
- Initial position

Parameter check

- LSQ: scale

Optimized base functions

- LSQ: scale

Initial parameter check
Methodology

- Position-optimized Radial Base Functions
- Boundary Element Method
Motivation of Boundary Element Method

- **Mascon** – approach by Lemoine et al. (2007), Rowlands et al. (2007)
 - successful modelling of GRACE monthly variations
 - use of a small additional layer

\[
\Delta A_{lm}(t) = \frac{(1 + k'_l) R^2 \sigma(t)}{M (2l + 1)} \int Y_{lm} d\Omega
\]

- use of partial derivatives w.r.t. SH-coefficients:

\[
\frac{\partial x}{\partial \sigma_i} = \sum_{lm} \frac{\partial x}{\partial \Delta C_{lm}} \frac{\partial \Delta C_{lm}}{\partial \sigma_i} + \frac{\partial x}{\partial \Delta S_{lm}} \frac{\partial \Delta S_{lm}}{\partial \sigma_i}
\]

- **Possible improvements:**
 - use \(\frac{\partial x}{\partial \sigma_i} \) directly
 - use elements with a finite support

- **Here:** test the approximation quality of different shapes

Boundary Element Method

- Modelling the potential of a single layer

\[V(\mathbf{x}) = \int_{\Omega} \frac{\sigma(\mathbf{y})}{\|\mathbf{x} - \mathbf{y}\|} d\Omega \]

- Decomposing the boundary into finite elements:

\[\Omega = \bigcup_{i=1}^{N} \Omega_i \]

- Assuming a constant behavior of surface mass densities within an element

\[\sigma|_{\Omega_i} = \sigma_i = \text{const.} \]

\[V(\mathbf{x}) = \sum_{i=1}^{N} \sigma_i \int_{\Omega_i} \frac{1}{\|\mathbf{x} - \mathbf{y}\|} d\Omega_i \]
Boundary Element Method - Rectangles

- Considering regular rectangles:

\[\Omega_i = \{(\lambda, \phi) | \lambda_i \leq \lambda \leq \lambda_i + \Delta\lambda_i, \phi_i \leq \phi \leq \phi_i + \Delta\phi_i\} \]

- Potential:

\[
V(x) = \sum_{i=1}^{N} \sigma_i \int_{\Omega_i} \frac{1}{\|x - y\|} \, d\Omega_i
\]

\[
= \sum_{i=1}^{N} \sigma_i \int_{\lambda_i}^{\lambda_i+\Delta\lambda_i} \int_{\phi_i}^{\phi_i+\Delta\phi_i} \frac{R^2 \cos \phi \, d\phi \, d\lambda_i}{\|x - (R \cos \phi \cos \lambda, R \cos \phi \sin \lambda, R \cos \phi)^T \|}
\]

- Discontinuous and non-differentiable elements
- Numerical quadrature
- Many (small) elements for smooth surfaces ⇒ Regularization
Boundary Element Method - Rectangles

- Example for rectangles
Boundary Element Method - Triangles

- Considering triangles and linear interpolation of the surface mass densities and the kernel within a triangle

\[\kappa_i (x, \lambda, \phi) = \frac{\sigma_{i,1}}{\|x-y(\phi_{i,1}, \lambda_{i,1})\|} \Phi_{i,1} + \frac{\sigma_{i,2}}{\|x-y(\phi_{i,2}, \lambda_{i,2})\|} \Phi_{i,2} + \frac{\sigma_{i,3}}{\|x-y(\phi_{i,3}, \lambda_{i,3})\|} \Phi_{i,3} \]

- Potential:
\[V(x) = \sum_{i=1}^{N} \int_{\Omega_i} \frac{\sigma_i}{\|x-y_i\|} d\Omega_i \]
\[= \sum_{i=1}^{N} \sum_{k=1}^{3} \frac{\sigma_k}{\|x-y(\lambda_k, \phi_k)\|} \int_{0}^{1} \int_{0}^{1-\xi} \Phi_{ik} |J| d\eta d\xi \]

- with
\[\Phi_{i,1} (\lambda (\xi, \eta), \phi (\xi, \eta)) = 1 - \xi - \eta \]
\[\Phi_{i,2} (\lambda (\xi, \eta), \phi (\xi, \eta)) = \xi \]
\[\Phi_{i,3} (\lambda (\xi, \eta), \phi (\xi, \eta)) = \eta \]

- Continuous but non-differentiable elements
- Analytical solution of the normal triangle
Boundary Element Method - Triangles

- Example for triangles
Simulation study

a) Single point mass

b) Multiple point masses forming a residual field
Simulation study

a) Single point mass

b) Multiple point masses forming a residual field
a) Single point mass

- Single point mass at depth 125km
- Area: 20° x 20°
- Keplerian orbit
 - height = 385 km
 - 30 days
 - 5 second sampling
 - 3204 observation

- Pseudo-observation: potential energy

\[V(\lambda, \phi, r) = \frac{2 \cdot 10^{-8} \cdot GM}{\sqrt{(R - d)^2 + r^2 - 2r(R - d)\cos\psi}} \]
a) Single point mass – BEM at depth 10km
a) Single point mass
a) Single point mass – BEM at depth 110km
a) Single point mass - BEM at depth 110km

<table>
<thead>
<tr>
<th>Model</th>
<th>RMS [m²/s²]</th>
<th>Rel. %</th>
<th>Max [m²/s²]</th>
<th>Rel. %</th>
<th>Min [m²/s²] rel. %</th>
<th>Corr. %</th>
</tr>
</thead>
<tbody>
<tr>
<td>RBF</td>
<td>0.055</td>
<td>0.40</td>
<td>0.382</td>
<td>0.61</td>
<td>-1.085</td>
<td>20.99</td>
</tr>
<tr>
<td>BEM (Triangle)</td>
<td>0.266</td>
<td>1.94</td>
<td>3.157</td>
<td>4.99</td>
<td>-3.564</td>
<td>68.98</td>
</tr>
<tr>
<td>BEM (Rectangle)</td>
<td>0.043</td>
<td>0.31</td>
<td>0.226</td>
<td>0.36</td>
<td>-0.501</td>
<td>9.70</td>
</tr>
</tbody>
</table>

Statistics:
a) Single point mass - BEM at depth 110km

<table>
<thead>
<tr>
<th>Method</th>
<th>Number of elements</th>
<th>Regularization</th>
</tr>
</thead>
<tbody>
<tr>
<td>RBF</td>
<td>13</td>
<td>No</td>
</tr>
<tr>
<td>BEM (Triangle)</td>
<td>209</td>
<td>No</td>
</tr>
<tr>
<td>BEM (Rectangle)</td>
<td>441</td>
<td>Yes (409)</td>
</tr>
</tbody>
</table>
Simulation study

a) Single point mass

b) Multiple point masses forming a residual field
Simulated residual field

- 4225 point masses at depth 120km – 130km
- Area: 20° x 20°
- Keplerian orbit
 - height = 385 km
 - 30 days
 - 5 second sampling
 - 3204 observation

- Pseudo-observation: potential energy

\[V(\lambda, \phi, r) = \sum_{i=1}^{4225} \frac{\sigma_i \cdot GM}{\sqrt{(R - d_i)^2 + r^2 - 2r(R - d_i) \cos \psi_i}} \]
Simulated residual field - BEM at depth 110km
Simulated residual field - BEM at depth 110km

<table>
<thead>
<tr>
<th></th>
<th>RMS [m²/s²]</th>
<th>Rel. %</th>
<th>Max [m²/s²]</th>
<th>Rel. %</th>
<th>Min [m²/s²]</th>
<th>Rel. %</th>
<th>Corr. %</th>
</tr>
</thead>
<tbody>
<tr>
<td>RBF</td>
<td>3.734</td>
<td>18.00</td>
<td>24.047</td>
<td>54.67</td>
<td></td>
<td></td>
<td>58.3</td>
</tr>
<tr>
<td>BEM (Triangle)</td>
<td>0.675</td>
<td>3.25</td>
<td>2.703</td>
<td>6.15</td>
<td>-3.368</td>
<td>193.5</td>
<td>92.2</td>
</tr>
<tr>
<td>BEM (Rectangle)</td>
<td>0.153</td>
<td>0.74</td>
<td>0.821</td>
<td>1.87</td>
<td>-0.570</td>
<td>32.74</td>
<td>98.3</td>
</tr>
</tbody>
</table>
Simulated residual field - BEM at depth 110km

<table>
<thead>
<tr>
<th>Method</th>
<th>Number of elements</th>
<th>Regularization</th>
</tr>
</thead>
<tbody>
<tr>
<td>RBF</td>
<td>10</td>
<td>No</td>
</tr>
<tr>
<td>BEM (Triangle)</td>
<td>209</td>
<td>No</td>
</tr>
<tr>
<td>BEM (Rectangle)</td>
<td>441</td>
<td>Yes (416)</td>
</tr>
</tbody>
</table>
Conclusions

• Position-optimized radial base functions for distinct features
 – number of parameter is small (4 x number of bases)
 – problem is non-linear

• Boundary element method for smooth features
 – preferably continuous/differentiable elements (no regularization)
 – grid?
 – preferably numerical quadrature of the Kernel

Outlook:

• Integration: near-zone and far-zone
 – singular, quasi-singular, regular

• Shape elements: higher order triangles and quadrilaterals

• Partial derivatives of the range rate w.r.t. to the surface mass densities
Comparing the local gravity field recovery based on radial base functions with the boundary element method

M. Weigelt, W. Keller, M. Antoni

weigelt@gis.uni-stuttgart.de

7th July, 2009