Canonical Correlation Analysis (CCA) of GRACE, hydrological and hydro-meteorological signals

M. J. Tourian 1,2, B. Devaraju 2, N. Sneeuw 2, J. Riegger 1

1 Institute of Hydraulic Engineering, University of Stuttgart
2 Institute of Geodesy, University of Stuttgart

Geodetic Week, Oct. 2010
GRACE, Hydrology and Hydro-meteorology

\[P - ET_a - R = \frac{dS_H}{dt} \leftrightarrow \frac{dM}{dt} \leftrightarrow \frac{dS_A}{dt} = -\nabla.Q - R \]

Hydrology

GRACE

Hydro-meteorology

![Graph showing time series data for different parameters over months from January 2003 to January 2007.](image-url)
GRACE, times series, monthly mean and residual

Residual contains:
- Error
- Physical variations
EOF analysis

\[A = U \Sigma V^T \]

- \(U \) : Eigenvectors of matrix \(AA^T \)
- \(\Sigma \) : Eigenvalues of matrix \(A^T A \) or \(AA^T \)
- \(V \) : Eigenvectors of matrix \(A^T A \)
EOF analysis

\[\frac{dM}{dt} = U_G \Sigma_G V_G^T \]

GRACE

\[P = U_p \Sigma_p V_p^T \]

Precipitation

\[\nabla \cdot Q = U_D \Sigma_D V_D^T \]

Vertically integrated moisture flux divergence

![Graph showing EOF analysis results]
Canonical Correlation Analysis (CCA)

\[A = U_A \Sigma_A V_A^T \]
\[B = U_B \Sigma_B V_B^T \]

\[\Sigma_{AB} = U_A^T A_{AB}^T B V_{AB} \]

\[R \Sigma_{AB} = (U_A^T U_B) S \]

- Measuring the linear relationship between two multi dimensional variables
- Finding two sets of basis vectors such that the correlation between the projections of the variables onto these basis vectors is maximized
- Determine Correlation Coefficients
- Correlation coefficients: Proportion of correlation between the canonical variates accounted for the particular variable
- Correlation coefficient represents unique contribution of each variable to relation
CCA of GRACE $\left(\frac{dM}{dt}\right)$ and Divergence $\nabla \cdot Q$

\[\left(\frac{dM}{dt}\right)^T \nabla \cdot Q = U_{GD} \Sigma_{GD} V_{GD}^T \]
CCA of GRACE $\frac{dM}{dt}$ and Divergence $\nabla \cdot Q$

\[
\left(\frac{dM}{dt} \right)^T \nabla \cdot Q = U_{GD} \Sigma_{GD} V_{GD}^T
\]

Mode 2

Correlation coefficient : 88%
CCA of GRACE \(\left(\frac{dM}{dt} \right)^T \) and Precipitation \((P)\)

\[
P = U_{GP} \Sigma_{GP} V_{GP}^T
\]
CCA of GRACE \(\frac{dM}{dt} \) and Precipitation \(P \)

\[
\left(\frac{dM}{dt} \right)^T P = U_{GP} \Sigma_{GP} V_{GP}^T
\]

Mode 2

Correlation coefficient : 29%

Projection of \(U_{GP} \)

Projection of \(V_{GP} \)

Graphs showing the projection of \(U_{GP} \) and \(V_{GP} \) on a world map, with time series plots below for Jan 2004 to Jan 2008.
CCA on catchments based signals
CCA on catchments based – GRACE and hydro-meteorology

\[
\left(\frac{dM}{dt} \right)^T \nabla \cdot Q = U_G \Sigma_G V_G^T
\]
CCA on catchments based – GRACE and hydro-meteorology

\[\frac{dM}{dt} \leftrightarrow -\nabla \cdot Q - R \quad \text{Residual} \]
CCA on catchments based – GRACE and precipitation

\[\frac{dM}{dt}^T P = U_{GP} \Sigma_{GP} V_{GP}^T \]
CCA on catchments based – GRACE and Precipitation

\[
\frac{dM}{dt} \quad \leftrightarrow \quad P - R \quad \text{Residual}
\]
Summary and Outlook

Summary

• CCA was performed on GRACE, hydrological and hydro-meteorological signals
• Selecting the 75% of correlation of GRACE, hydrological and hydro-meteorological signals leads to:
 • Improvement in correlation of signals
 • Decreasing the RMS of residual
• The correlation of GRACE, hydrological and hydro-meteorological residuals does not show improvement or deterioration

Outlook

• Applying CCA on different climate regions
• Using other source of data sets like temperature
Thanks for your attention