On the capability of non-dedocated GPS-tracked satellite constellations for estimating mass variations: case study SWARM

(1) Institute of Geodesy, Stuttgart University, Geschwister-Scholl-Strasse 24D, 70174 Stuttgart
(2) Space Research Institute, Austrian Academy of Sciences, Graz, Austria
(3) University of Luxembourg, Faculté des Sciences, de la Technologie et de la Communication
(4) Institute of Theoretical Geodesy and Satellite Geodesy, Graz University of Technology, Austria
GRACE and GRACE Follow-On

low-low-SST

- K-Band (Laser)
- GPS
- Accelerometer

~ 4-5 year data gap (?)

IAD Scientific Assembly 2013, Potsdam, Germany, Sept 1-6, 2013
Other gravity field missions

high-low SST

GOCE

SWARM

(COSMIC I/II)

SWARM

GOCE

GFO

GRACE

IAD Scientific Assembly 2013, Potsdam, Germany, Sept 1-6, 2013
CHAMP reprocessing

GPS positions
- 10 s sampling
- empirical absolute antenna phase center model

Approach
- acceleration approach
- no regularization and no a priori information

Kalman filter:
- prediction model:
 - trend
 - mean annual signal

(source: Weigelt et al. 2012)
CHAMP results – time series

KOUR, Brazil

CUSV, Thailand

(source: Weigelt et al. 2012)
CHAMP results – time series

Equivalent water height [mm]

Sermilik, Greenland

HYDE, India

(source: Weigelt et al. 2012)

IAD Scientific Assembly 2013, Potsdam, Germany, Sept 1-6, 2013
Change rates [Gt/yr] from point mass approach (no GIA correction applied)

(source: Baur (2012))

<table>
<thead>
<tr>
<th>Spectral resolution</th>
<th>GRACE</th>
<th>CHAMP</th>
<th>Error (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>60</td>
<td>-223</td>
<td>-267</td>
</tr>
<tr>
<td>2</td>
<td>30</td>
<td>-222</td>
<td>-252</td>
</tr>
<tr>
<td>3</td>
<td>20</td>
<td>-218</td>
<td>-242</td>
</tr>
<tr>
<td>4</td>
<td>10</td>
<td>-203</td>
<td>-211</td>
</tr>
</tbody>
</table>
SWARM orbit parameters

satellite A: \(h \approx 455 - 330 \text{ km} \)
\[I = 87.3^\circ; \ M_0 = 0^\circ; \ \Omega_0 = 0^\circ \]

satellite B: \(h \approx 455 - 330 \text{ km} \)
\[I = 87.3^\circ; \ M_0 = 0.5^\circ; \ \Omega_0 = 1.4^\circ \]

satellite C: \(h \approx 530 - 515 \text{ km} \)
\[I = 88^\circ; \ M_0 = 0^\circ; \ \Omega_0 = 0^\circ \]
Trends of input mass fields

hydrology (H) trend

solid Earth (S) trend

ice (I) trend

combined (HIS) trend

time-period J2000 - J2004; $L_{\text{max}} = 60$; AOHIS fields from Gruber et al. 2011, H from MERRA
maximum degree: $L = 60$
sampling-time: $\Delta t = 5$ s
background errors: 30% of AOHIS
tidal error: EOT08a – GOT4.7
orbit noise: $\sigma_X = 4$ cm, coloured
Gaussian smoothing (spatial averaging) with a radius of 1000km applied
SWARM basin mass trends

Mass trends of selected basins

Greenland (GRE)
Canada (CAN)
Amazon (AMA)
Antarctica (ANT)
West-Antarctica (WAN)
Mekong (MEK)
Okawango (OKA)
Congo (CON)
Parana (PAR)
SWARM basin mass trend errors

Mass trend errors of selected basins

- Greenland (GRE)
- Canada (CAN)
- Amazon (AMA)
- Antarctica (ANT)
- West-Antarctica (WAN)
- Mekong (MEK)
- Okawango (OKA)
- Congo (CON)
- Parana (PAR)

Trend relative to mean fields (%)
Annual amplitudes of selected basins

- Amazon (AMA)
- Mekong (MEK)
- Eurasia (EUR)
- Australia (AUS)
- Okawango (OKA)
Amplitude errors of selected basins

Amazon (AMA)
Mekong (MEK)
Eurasia (EUR)
Australia (AUS)
Okawango (OKA)
• SWARM (CHAMP) and GRACE solutions overlap for low degrees
 → sensitivity of hl-SST to long wavelength time-variability

• CHAMP results demonstrate that mass trend estimation is possible from hl-SST

• basins with strong signals (e.g. GRE, CAN, ANT) show in our SWARM simulations little affected spatial patterns and normal signal strength
 → estimation within 10% - 30% (Greenland: 10%).

• Kalman-filtering is able to reduce errors of solutions with larger error source (e.g. CHAMP, SWARM ‘basis + low freq. noise’), but might also reduce signals, especially for scenarios of lower noise.

• We conclude that SWARM is likely able to see time variable gravity field patterns, especially where the signals are strong.
 → valuable source of information for GRACE/GFO gap filling.

We thank C. Lorenz (Institute of Meteorology and Climate Research, Karlsruhe Institute of Technology) for providing time-variable hydrology gravity fields generated by the MERRA model.