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Abstract

Past and current gravimetric satellite missions have contributed
drastically to our knowledge of the Earth’s gravity field. Never-
theless, several geoscience disciplines push for even higher
requirements on accuracy, homogeneity and time- and space-
resolution of the Earth’s gravity field. Apart from better instru-
ments or new observables, alternative satellite formations could
improve the signal and error structure. With respect to other
methods, one significant advantage of the semi-analytical ap-
proach is its effective pre-mission error assessment.
The semi-analytical approach builds a linear analytical relation-
ship between the Fourier spectrum of the observables and the
spherical harmonic spectrum of the gravity field. The spectral
link between observables and gravity field parameters is given
by the transfer coefficients, which constitute the observation
model. In connection with a stochastic model, it can be used
for pre-mission error assessment of gravity field missions.
The cartwheel formation is formed by two satellites on elliptic
orbits in the same plane. The time dependent ranging is con-
sidered in the transfer coefficients via convolution. The trans-
fer coefficients are applied to assess the error patterns, which
are caused by different orientation of the cartwheel for range-
acceleration. The formal errors and isotropy are presented for
different orientations of the cartwheel.

1. The semi-analytical approach

The semi-analytical approach enables the prediction of formal
errors of the recovered gravity model based on satellite observ-
ables in space. Figure 1 illustrates the scheme of the semi-
analytical approach. The design matrix A is filled by the transfer
coefficients H#

lmk, which are calculated from the nominal orbital
parameters:
• h: orbit height,
• I: inclination,
• ω0: initial argument of perigee, . . . ,

and the type of observables (without data). Inversion of
the normal matrix separately for each order m and even/odd
separation for degree l and order k provide the formal er-
ror σlm of the gravity field due to the satellite formation.
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Figure 1: Concept of the semi-analytical approach.

For the semi-analytical approach, the observations must be ex-
pressed in the rotating local triad, where x-axis is pointing to-
wards the satellite and the z-axis is perpendicular to the orbital
plane. In this system, for the eccentric nominal orbit, the along-
orbit gravitational potential can be presented as time series:
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Figure 2: Nominal orbit configuration
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(1)
with

ψmkq = kω + (k + q)M +mΛ = kω + k∗M +mΛ, k∗ = k + q.

In the above formula, F̄lmk(I) is the complex inclination func-
tion, and Glkq(e) is the eccentric function. In this work, we don’t
consider the procession of perigee. Not only the potential, but
also its functionals f#, in which the label # represents a specific
observable, can be represented by 2D Fourier series [1].
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with the transfer coefficients H#
lmk. The formal errors of K̄lm are

found by error propagation D{x̂} = (A⊤PA)−1.

2. Transfer coefficients for the cartwheel formation

2.1 Cartwheel formation
In the cartwheel formation, ranging measurements are
observed between two satellites on two elliptic or-
bits in the same plane, with a 180◦ separation in
perigee. In comparison to GRACE, the observation
contains components in along-track and radial directions
depending on the time-dependent central angle α.

( a ) formation in space [2]
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( b ) relative orientation

Figure 3: Cartwheel formation with ω0 = 0◦ (the radial direction
is at the equator)
The cartwheel formation can be described by relative motion

of two satellites in the Hill-frame by means of the homogeneous
solution of the Hill equations as

ρx(t) = −2ρr sin(u̇t− ω0)

ρy(t) = 0

ρz(t) = ρr cos(u̇t− ω0).

(3)

In Figure 3(b), A and B are satellites of the cartwheel formation
and satellite A is set as the reference point. So the perturba-
tions of satellite B,

−→
∆B = (∆xB,∆yB,∆zB)

⊤ in B-Hill frame have
to be rotated into A-Hill frame around y-axis by α, yielding to:

−→
∆B′ = R ·

−→
∆B = (∆xB′,∆yB′,∆zB′)⊤, (4)

According to formula (3), we know the unit vector of baseline in
A-Hill frame is,

−→e A =
−→
AB/|

−→
AB| = (−2ρr sin(nt− ω0), 0, ρr cos(nt− ω0))

⊤√
ρr2 + 3ρr2 sin2(u̇t− ω0)

So the contributions of satellites A and B to the perturbation of
baseline are

∆ρ = ∆ρA +∆ρB = −−→e A ·
−→
∆A +−→e A ·

−→
∆B′.

Then we can get the final expression of the perturbation of
range:

∆ρ =
2 sin(u̇t−ω0)√
1+3 sin2(u̇t−ω0)

∆xA +
− cos(u̇t−ω0)√
1+3 sin2(u̇t−ω0)

∆zA

+
cos(u̇t−ω0)·sinα−2 sin(u̇t−ω0)·cosα√

1+3 sin2(u̇t−ω0)
∆xB

+
2 sin(u̇t−ω0)·sinα+cos(u̇t−ω0)·cosα√

1+3 sin2(u̇t−ω0)
∆zB

(5)

2.2 Transfer coefficients for cartwheel

Satellite A and B have different arguments of perigee and mean
anomalies, and both of the differences are π. Here we set the
argument of perigee of satellite A as ω0. The choice ω0 = 0◦

means that the cartwheel orientation is radial at the equator and
along-track at the poles, and ω0 = 90◦ means that along-track is
at the equator and radial is at the poles. So the perturbation in
x-direction can be expressed as:

∆xA =
∑
l,m,k∗

Q∑
q=−Q

H∆x
l,m,k∗−q Gl+1,k∗−q,q eikω0 K̄lmeiψmk∗
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∑
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Q∑
q=−Q

H∆x
l,m,k∗−q Gl+1,k∗−q,q eikω0(−1)qK̄lm eiψmk∗

(6)

with k∗ = k+q. The factor (−1)q in the term ∆xB is introduced by
the difference of argument of perigee between these two satel-
lites. The perturbations in z-direction can be derived analytically
in the similar way. Similar to the pendulum formation, the time
dependent orbital elements (in the gray boxes) can be expanded
as Fourier series with the orbit frequency as base frequency:
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Substituting formula (5) and (6) into range perturbation formula
(5) results in the final transfer coefficients:

H
∆ρ
lmk′ =

Q∑
q=−Q

N∑
n=−N

(
H∆xA
l,m,k′−n−q,qAn +H∆zA

l,m,k′−n−q,qBn
)

+
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q=−Q

N∑
n=−N

(
H∆xB
l,m,k′−n−q,qCn +H∆zB

l,m,k′−n−q,qDn
)

with k′ = k∗ + n = k + q + n.

3. Simulations

In our simulation, the semi-analytical approach is performed for
a semi-major axis a = 335 km, ρr = 50 km, ρx = 100 km, and in-
clination of 90◦. The white noise 10−10 s2

√
Hz and realistic noise

models based on the model of NGGM [3] are used on for the
simulations, respectively. The formal error and spatial covari-
ance functions are presented for radial direction at the equator
(ω0 = 0◦) and at the poles (ω0 = 90◦), respectively.
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Figure 4: Formal error [log10] for white noise (up) and colored
noise (down)

λ [°]

φ 
[°

]

 ω
0
 = 0°

 

 

Spatial covariance functions [m 2] at φ = 0°

−20 −10 0 10 20
−20

−10

0

10

20

λ [°]

ω
0
 = 90°

 

 

−20 −10 0 10 20
−20

−10

0

10

20

−2

−1

0

1

2
x 10

−8

−4

−2

0

2

4
x 10

−8

φ 
[°

]

 ω
0
 = 0°

 

 

Spatial covariance functions [m 2] at φ = 0°

λ [°]
−20 −10 0 10 20

−20

−10

0

10

20

λ [°]

ω
0
 = 90°

 

 

−20 −10 0 10 20
−20

−10

0

10

20

−4

−2

0

2

4
x 10

−8

−2

−1

0

1

2
x 10

−8

Figure 5: Spatial covariance functions for white noise (up)
and colored noise (down)

4. Conclusions

From the results, we can see that for the white noise, the for-
mal error level for ω0 = 90◦ is better, but for the isotropy, the
ω0 = 0◦ case is better. For the colored noise case, the formal
error level is lower for ω0 = 90◦. At the same time, the argument
of perigee of 90◦ case also leads to the more isotropic solution
in spatial domain. Since we didn’t consider the procession of
perigee, the results for other perigee cases should be between
these extreme two cases (ω0 = 0◦ and ω0 = 90◦).
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